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Abstract: The paper presents local quasigeoid modelling in Slovakia using the finite

volume method (FVM). FVM is used to solve numerically the fixed gravimetric bound-

ary value problem (FGBVP) on a 3D unstructured mesh created above the real Earth’s

surface. Terrestrial gravimetric measurements as input data represent the oblique deriva-

tive boundary conditions on the Earth’s topography. To handle such oblique derivative

problem, its tangential components are considered as surface advection terms regularized

by a surface diffusion. The FVM numerical solution is fixed to the GOCE-based satellite-

only geopotential model on the upper boundary at the altitude of 230km. The horizontal

resolution of the 3D computational domain is 0.002× 0.002 deg and its discretization in

the radial direction is changing with altitude. The created unstructured 3D mesh of fi-

nite volumes consists of 454,577,577 unknowns. The FVM numerical solution of FGBVP

on such a detailed mesh leads to large-scale parallel computations requiring 245 GB of

internal memory. It results in the disturbing potential obtained in the whole 3D compu-

tational domain. Its values on the discretized Earth’s surface are transformed into the

local quasigeoid model that is tested at 404 GNSS/levelling benchmarks. The standard

deviation of residuals is 2.8cm and decreases to 2.6cm after removing 9 identified outliers.

It indicates high accuracy of the obtained FVM-based local quasigeoid model in Slovakia.

Key words: local quasigeoid modelling, fixed gravimetric boundary-value problem, finite
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1. Introduction

Detailed terrestrial gravimetric mapping in Slovakia accomplished during
the last 6 decades (Zahorec et al., 2017b) has brought valuable information
about the gravity field in this region. Thanks to a very dense distribu-
tion of gravimetric measurements, the precise local quasigeoid modelling

∗corresponding author: e-mail: robert.cunderlik@stuba.sk

287doi: 10.31577/congeo.2020.50.3.1

https://orcid.org/0000-0001-7325-5336
https://orcid.org/0000-0001-6949-7201
https://orcid.org/0000-0002-5360-8779
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in Slovakia has been dominantly based on the so-called gravimetric meth-
ods, i.e. on solving different types of the geodetic boundary value prob-
lems (GBVP). The first local quasigeoid models were obtained using the
well known remove-compute-restore strategy, cf. Mojzeš and Janák, (1999),
Mojzeš et al. (2006), Val’ko et al. (2008). Later on, new approaches based on
numerical methods like the boundary element method (BEM), finite element
method (FEM) or finite volume method (FVM) have been developed and ap-
plied for local quasigeoid modelling in Slovakia, e.g. Čunderĺık et al. (2008),
Fašková et al. (2010), Macák et al. (2015), Medl’a et al. (2018). Recently,
an approach based on a combination of spherical harmonics, band-limited
spherical radial basis functions and the residual terrain model technique has
resulted in the most precise local quasigeoid model in Slovakia (Bucha et al.,
2016).

In this paper we apply a newly developed FVM approach to the local
quasigeoid modelling in Slovakia with an aim to reach similar ‘cm-level’ ac-
curacy. This approach is based on FVM on 3D unstructured meshes above
the real Earth’s topography (Medl’a et al., 2018) and the oblique deriva-
tive boundary condition is treated in the way that its tangential component
is considered as an advection along the Earth’s topography regularized by
a carefully designed surface diffusion term (Droniou et al., 2019). This
has an obvious advantage that the FVM numerical solution to GBVP is
computed directly on the discretized Earth’s surface. To obtain such a nu-
merical solution as precise as possible, a computational domain requires its
discretization with high resolution while leading to large-scale parallel com-
putations.

Section 2 presents the fixed gravimetric boundary-value problem and its
“satellite-fixed” modification. To solve such a problem numerically, main
ideas of the applied FVM approach are briefly introduced while referring to
(Droniou et al., 2019), where a detailed mathematical background is pub-
lished. Section 3 describes a 3D computational domain and input data
considered as boundary conditions. Section 4 briefly comments computa-
tional aspects of the large-scale parallel computations performed on the
parallel cluster. Section 5 presents the obtained FVM numerical solution
transformed into the local quasigeoid model in Slovakia. Here its precision
is validated by the GNSS/levelling test. Finally, Section 6 summarizes main
conclusions.
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2. FVM for the linearized fixed gravimetric boundary-value
problem

The linearized fixed gravimetric boundary-value problem (FGBVP) repre-
sents an exterior oblique derivative problem for the Laplace equation. It
is defined as (cf. Koch and Pope, 1972; Bjernhammar and Svensson, 1983;
Grafarend, 1989):

∇2T (x) = 0 x ∈ �3 −E , (1)

〈∇T (x), s(x)〉 = − δg(x) x ∈ Γ , (2)

T (x) = O(x)−1 x → ∞ , (3)

where T is the disturbing potential (as a difference between the actual grav-
ity potential Wand the normal gravity potential U) at any point x, and δg
is the gravity disturbance. The domain E represents the body of the Earth
with its boundary Γ given by the Earth’s surface. 〈∇T, s〉 is the inner prod-
uct of two vectors ∇T and s, where the unit vector s is defined as:

s(x) = − ∇U(x)

|∇U(x)| x ∈ Γ . (4)

Eq. (2) represents the oblique derivative boundary condition (BC) as the
normal to the Earth’s surface Γ does not coincide with the vector s defined
in Eq. (4).

Although the FGBVP (1)–(3) deals with the infinite domain, in the pre-
sented FVM approach we restrict our computations only to a bounded do-
main Ω constructed by artificial boundaries (Fig. 1a). The bottom boundary
Γlocal is given by a part of the Earth’s surface in the area of interests while
considering its real topography. An artificial upper boundary is chosen at
a mean altitude of the GOCE satellite orbits, where the Dirichlet-type BC
are prescribed in the form of the disturbing potential T SAT that can be
generated from some GOCE-based satellite-only geopotential model. On
four side boundaries, the Dirichlet-type BC are prescribed as well. In this
bounded computational domain we consider the linearized FGBVP in the
form:

∇2T (x) = 0 x ∈ Ω , (5)
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〈∇T (x), s(x)〉 = − δg(x) x ∈ Γlocal , (6)

T (x) = T SAT (x) x ∈ ∂Ω− Γlocal . (7)

Such a “satellite-fixed” modification of the original FGBVP (1)–(3) is based
on fixing the solution on the upper and side boundaries, i.e. the regularity
condition at infinity in Eq. (3) is not considered.

On the 3D domain Ω above the discretized Earth’s topography we con-
struct an optimal computational grid using an evolving surface method
(Medl’a et al., 2018). Here the discretized bottom boundary Γlocal is evolved
through the 3D computational domain until the chosen upper boundary.
The evolving surfaces are then combined to construct a hexahedral mesh
(Fig. 1b).

Fig. 1. a) Sketch of a computational domain, and b) its discretization by a hexahedral
mesh.

On such a 3D unstructured mesh, a generic finite volume approximation
of FGBVP has been developed in (Droniou et al., 2019). Its “advection-
diffusion form” along the boundary, see formula (19a) in Section 2 of (Dro-
niou et al., 2019) is used for all computations presented in this paper. Such
FVM discretization is based on recasting of the model to transform the
oblique derivative into a normal derivative, handled as the Neumann bound-
ary condition, and a boundary advection term along Γlocal. The boundary
advection term is treated by a second-order central approximation and reg-
ularized by a small amount of diffusion along Γlocal proportional to a bottom
boundary discretization step h. Such “advection-diffusion approach” is sta-
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bilizing otherwise a second-order central approximation of the surface advec-
tion. For such FVM, the rigorous theory has been established in (Droniou et
al., 2019) showing a convergence of the numerical solution to the analytical
solution of FGBVP as well as estimates of the error between the numerical
and analytical solutions. The method is generic in that sense that it allows
to choose different approximations of diffusion fluxes inside the domain, for
solving the Laplace equation, and on the boundary, for treatment of the
oblique derivative, under the broad consistency and coercivity assumptions.
For computations presented in this paper we chose the fluxes specified in
detail in Section 3.1 of (Droniou et al., 2019).

3. Computational domain and input data

The aforementioned FVM approach has been applied for local gravity field
modelling in the area of Slovakia. Our computational domain has been
bounded by the Earth’s topography as a bottom boundary, by an upper
boundary chosen at the altitude of 230 km above the reference ellipsoid,
which represents a mean altitude of the GOCE satellite orbits, and by 4
side boundaries (see the sketch on Fig. 1a). Such a computational domain
has been discretized into finite volumes using the approach introduced in
Medl’a et al. (2018). To reduce large memory requirements, the radial di-
mension of finite volumes has been changing with increasing altitude. Hence,
the radial size of finite volumes close to the Earth’s topography has been
almost 6 times smaller than those on to the upper boundary.

In our numerical experiment we have considered the Earth’s topogra-
phy with the horizontal resolution 0.002× 0.002 deg (latitude× longitude),
which represents approximately 200× 200m. Figure 2 depicts such a detail
consideration of the Earth’s topography. At the grid nodes on the bottom
boundary, the gravity disturbances as the oblique derivative BC have been
prescribed (Fig. 3). Inside Slovakia, they have been generated from the
detailed map of the Complete Bouguer Anomalies (Pašteka et al., 2017)
using the CBA2G software (Marušiak et al., 2015) and a detailed digital
terrain model. In this process precise modelling of terrain corrections plays
a crucial role, c.f. Majkráková et al. (2016) or Zahorec et al. (2017a). In
this way all information from the detailed terrestrial gravimetric mapping in
Slovakia (Zahorec et al., 2017b) has been incorporated into the input data.
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Fig. 2. The Earth’s topography in area of Slovakia as a bottom boundary of the compu-
tational domain (the horizontal resolution: 0.002× 0.002 deg).

Fig. 3. Gravity disturbances on the Earth’s topography as the oblique derivative BC on
the bottom boundary.

Outside Slovakia, the gravity disturbances have been interpolated from the
GGMPlus database (Hirt et al., 2013).

On the upper boundary at the altitude of 230 km above the reference
ellipsoid, the Dirichlet BC has been prescribed in the form of disturbing
potential (Fig. 4). It has been generated from the satellite-only geopoten-
tial model, namely GO CONS GCF 2 DIR R5 up to d/o 300 (Bruinsma et
al., 2013). On 4 side boundaries, the Dirichlet BC has been prescribed as
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Fig. 4. Disturbing potential at the altitude of 230 km above the reference ellipsoid as
the Dirichlet BC on the upper boundary generated from the GO CONS GCF 2 DIR R5
model.

well. However, here the disturbing potential has been generated from the
EIGEN-6C4 geopotential model up to d/o 2160 (Förste et al., 2014). Due
to the fact that the side boundaries have been chosen quite close to the bor-
ders of Slovakia, the prescribed disturbing potential could not be generated
purely from satellite-only models. Otherwise it would badly influence our
numerical solution close to the side boundaries, especially on the Earth’s
surface.

As mentioned above, a discretization of the computational domain in
the radial direction has depended on altitude. We have divided the radial
dimension into 126 parts. The size of finite volumes in the radial direction
has been about 250m for those on the Earth’s surface while exceeding 1km
for those on the upper boundary. To consider such non-uniform division
is quite natural taking into account that the gravity field becomes smother
and smoother with increasing altitude.

Finally, the computational domain has been discretized into the 3D un-
structured mesh of finite volumes which has consisted of 3, 251× 1, 101×
127 (longitude× latitude× height) = 454,577,577 unknowns in the whole
computational domain (3,579,351 on the discretized Earth’s topography).
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4. Computational aspects

A numerical solution of FGBVP on such a 3D unstructured mesh using the
developed FVM approach has required about 245 GB of the internal mem-
ory. Therefore, we were able to perform large-scale computations on one
node of our cluster with 256 GB RAM and 32 cores. Thanks to its NUMA
architecture, the parallelization has been performed using multithreading
and the OpenMP standard. The final large-scale computations took about
77 h of the CPU time (∼ 3.2 days). Such relatively high computational time
was partly caused by a slow convergence of the BiCGSTAB linear solver for
such a detailed consideration of the Earth’s topography, and partly by too
sensitive tolerance as a stopping criterion.

5. Local quasigeoid model in Slovakia and its validation

The numerical solution of FGBVP using the FVM approach has resulted in
the disturbing potential obtained in the whole computational domain. To
obtain a local quasigeoid model, we have focused on the obtained solution
on the bottom boundary, i.e. at the points directly on the Earth’s surface
(Fig. 2). Here the obtained disturbing potential T has been transformed
into the quasigeoidal heights ζ using the formula:

ςi = hi −Hnorm
i = hi − −(Ti + Ui −W0)

γi
, (8)

where h is the ellipsoidal height, Hnorm denotes the normal height, U is
the normal potential evaluated at the i-th grid point on the Earth’s surface,
γ is a mean value of the normal gravity between the quasigeoid and the
Earth’s surface at this point, and W0 represents a reference value of the
geopotential adopted for a realization of the International Height Reference
System (IHRS) (Sánchez et al., 2016). Parameters of the normal gravity
filed have been computed from the WGS-84 reference ellipsoid. In this way
the quasigeoidal heights have been expressed with respect to the WGS-84
reference ellipsoid and to the W0 value adopted for IHRS.

Figure 5 depicts the obtained local quasigeoid model in Slovakia. Its
resolution is 0.002× 0.002 deg (approximately 200× 200 m). To validate its
precision, the GNSS/levelling test has been performed at 404 benchmarks.
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Fig. 5. Local quasigeoid model in Slovakia as the FVM numerical solution of FGBVP
(the horizontal resolution: 0.002× 0.002 deg).

Figure 6 depicts the obtained residuals. Their statistics is summarized in
Table 1. The local quasigeoid model is also compared with DVRM05 (Dig-
ital Vertical Reference Model), which is currently an official model in Slo-
vakia to transform ellipsoidal heights (determined by GNSS in the ETRS89
system) into sea level heights, namely into the normal heights in the Bpv
system (http://www.geoportal.sk). This model was developed by poly-
nomial fitting of a gravimetric-only quasigeoid to 304 GNSS/levelling bench-
marks of the National Spatial Network of Slovakia (Klobušiak et al., 2005).
Consequently, differences between both models depicted in Figure 7 show
how the “GNSS-levelling quasigeoid” differs from our gravimetric-only quasi-
geoid. When overlapping both figures (Fig. 8a), one can see a nice agreement
except several points, where the colours are significantly different. These
benchmarks have been identified as outliers (depicted in black in Fig. 8b).
Statistics of the GNSS/levelling test excluding these 9 outliers is presented
in Table 1.

Differences between the obtained local quasigeoid model and DVRM05
depicted in Figure 7 are affected by two main aspects: 1) by accuracy of the
GNSS/levelling benchmarks that include errors of the precise 3D position-
ing by GNSS as well as of precise levelling, and 2) by differences between our
FVM solution and the original gravimetric-only quasigeoid used for develop-
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Fig. 6. GNSS/levelling test of the local quasigeoid model in Slovakia at 404 benchmarks.

Fig. 7. Differences between the obtained local quasigeoid model in Slovakia and DVRM05.

ing the DVRM05 model. It is evident that our solution makes considerably
higher undulation in the areas of our highest mountains, especially in High
and Low Tatras. Here the residuals at two ‘highest’ GNSS/levelling bench-
marks, namely ‘Skalnaté Pleso (1772 m)’ and ‘Král’ova hol’a (1936 m)’, are
quite significant (in orange colour, see Fig. 8a). They indicate too high un-
dulation in this mountainous region. On the other hand, accuracy of normal
heights can be here of lower quality due to the complicated precise levelling,
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Fig. 8. a) Overlapping the residuals at GNSS/levelling benchmarks with differences be-
tween the obtained local quasigeoid model and DVRM05, b) the same without outliers
depicted in black.

therefore it is difficult to estimate real accuracy of the obtained quasigeoid
undulation.

Analysing the residuals, one can also detect a small but significant tilt
from west to east (about few cm). Slightly higher positive residuals domi-
nate in the western part of Slovakia, while in the eastern Slovakia negative
tendencies are visible, especially close to the borders with Poland and Hun-
gary. This can be probably due to a lack of terrestrial gravimetric data
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Table 1. Statistics of the GNSS/levelling test.

from neighbouring countries. On the other side, the detected tilt can also
indicate some systematic tendencies in the vertical levelling network in Slo-
vakia.

A mean value and median of the residuals of the GNSS/levelling test is
23.1 and 23.0 cm, respectively (Table 1). They indicate an offset of the na-
tional vertical datum of Slovakia with respect to W0 = 62, 636, 853.4 m2s−2

adopted as a reference value for a realization of IHRS (Sánchez et al., 2016).
Remark: the statistics in Table 1 includes corrections of the normal heights
from the mean-tide into tide-free system. In Figures 6 and 8 these correc-
tions are not considered in order to have consistent values with the differ-
ences depicted in Figure 7.

Finally we can state that the GNSS/levelling test indicates high preci-
sion of the obtained local quasigeoid model. Comparing with the previous
quasigeoid models in Slovakia, it has outperformed all versions developed
before 2016, and it is of a very similar quality as the recent one obtained
by a completely different approach, namely by a combination of spherical
harmonics, band-limited spherical radial basis functions and the residual ter-
rain model technique (Bucha et al., 2016). Our approach based on the local
gravity field modelling in spatial domain using FVM on the unstructured
3D mesh above the real Earth’s topography has resulted in the quasigeoid
model whose accuracy is about 2.8 cm and after excluding evident outliers
2.6 cm (Table 1). Taking into account that the GNSS/levelling benchmarks
considered in our validation include also errors of the precise GNSS 3D posi-
tioning and precise levelling, which can exceed several cm especially in high
mountainous regions, such accuracy confirms high efficiency of the applied
FVM approach.
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6. Conclusions

The local quasigeoid model in Slovakia has been obtained by a numerical
solution to the linearized FGBVP, namely to its “satellite-fixed” modifica-
tion. For this purpose the developed generic FVM has been applied in the
3D computational domain above the real Earth’s surface while solving the
problem in spatial domain. Here the numerical solution has been fixed on
the upper and side boundaries by the Dirichlet BC. In this way information
from the GRACE/GOCE gravitational models have been incorporated into
the FVM solution. Such a consideration essentially differs from the classical
approaches based on the remove-compute-restore strategy that are usually
used for local gravity field modelling.

On the discretized Earth’s surface as a bottom boundary, terrestrial
gravimetric measurements have been used as the oblique derivative BC.
It is worth to remind that they are fully independent from the satellite
data. The FVM discretization on the Earth’s topography has been based
on recasting of the model to transform the oblique derivative into a nor-
mal derivative and boundary advection term along the Earth’s topography
regularized by a carefully designed surface diffusion term (Droniou et al.,
2019). The numerical experiment has shown that such a treatment of the
oblique derivative problem has iteratively converged, even in the compli-
cated Earth’s topography of highest mountains like High Tatras. Although
the quasigeoid undulation is here considerably higher in comparison with
the official DVRM05 model, reliability of few GNSS/levelling benchmarks
in this mountainous region is so far not sufficient to confirm, which quasi-
geoid model is closer to reality. On the other hand, GNSS/levelling test
in other regions, mainly in lowland areas, could indicate some ‘systematic
tendencies’ of the vertical levelling network in Slovakia.

An obvious advantage of the presented approach is that the FVM nu-
merical solution to FGBVP has been obtained directly at points on the
discretized Earth’s surface. However, to get a solution as precise as possi-
ble, the 3D computational domain has required its discretization with high
resolution. In our numerical experiment the horizontal resolution has been
0.002× 0.002 deg and the discretization in the radial direction has been
changing with altitude. The final unstructured 3D mesh of finite volumes
has consisted of 454,577,577 unknowns. This has led to large-scale parallel
computations requiring 245 GB of internal memory. As a result, the dis-
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turbing potential has been obtained in the whole 3D computational domain.
Hence, different quantities of the local gravity field like the first derivatives
(gravity disturbances and deflections of vertical) or the second derivatives
(disturbing gravity gradients) can be derived at different altitudes of the
3D computational mesh. Such outcomes can be also useful for geophysical
applications.

The disturbing potential on the discretized Earth’s surface has been
transformed into the local quasigeoid model in Slovakia. Its accuracy has
been tested at 404 GNSS/levelling benchmarks. The standard deviation of
residuals 2.8 m, which has decreased into 2.6 cm after excluding 9 identi-
fied outliers, indicates its high accuracy. It is very similar as the accu-
racy of the recent local quasigeoid model obtained by a completely different
approach (Bucha et al., 2016). It shows that local gravity field modelling
based on a numerical solution of the problem in spatial domain using the
developed FVM approach can reach the same quality as the state-of-the-art
approaches nowadays used in physical geodesy.
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analysis of methods for gravity determination and their utilization for the calcula-
tion of geopotential numbers in the Slovak national leveling network. Contrib. Geo-
phys. Geod., 46, 3, 179–202, doi: 10.1515/congeo-2016-0012.
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Mojzeš M., Janák J., 1999: New gravimetric guasigeoid of Slovakia. Boll. di Geofis. Teor.
ed Appl., 40, 3-4, 211–217.
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