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Abstract The main goal of this paper is to present results
of comparison study for the level set and direct Lagrangian
methods for computing evolution of the Willmore flow of
embedded planar curves. To perform such a study we con-
struct new numerical approximation schemes for both
Lagrangian as well as level set methods based on semi-
implicit in time and finite/complementary volume in space
discretizations. The Lagrangian scheme is stabilized in tan-
gential direction by the asymptotically uniform grid point
redistribution. Both methods are experimentally second order
accurate. Moreover, we show precise coincidence of both
approaches in case of various elastic curve evolutions pro-
vided that solving the linear systems in semi-implicit level set
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1 Introduction

In the past years, elastic curves, the Willmore functional and
the corresponding gradient flow (the Willmore flow) attracted
a lot of attention from both theoretical as well as computa-
tional point of view. Following Daniel Bernoulli’s model of
an elastic rod, a classical elastica is a curve Γ in the plane
which is a critical point (minimizer) for the elastic energy
functional

E(Γ ) = 1

2

∫

Γ

k2 ds. (1)

The first comprehensive study of analytical properties of non-
closed planar curves that are minimizers to (1) goes back
to Leonhard Euler who presented their characterization and
classification in the pioneering work Additamentum I (De
Curvis Elasticae) contained in his Opera Omnia [11]. Since
then much effort has been spent to analyze and provide com-
plete characterization of both minimizers to (1) as well as
solutions corresponding to the gradient flow associated with
the elastic energy functional (1). It is well known from Euler’s
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work that the flow of planar curves with the normal velocity
given by

β = −∂2
s k − 1

2
k3 (2)

is a gradient flow for the elastic energy functional E(Γ ) (see
e.g. [7,10]). Such fourth order flows of closed curves and its
3D analogies appear in various physical and computer vision
applications dealing with a motion of phase interfaces or with
an image and surface reconstructions [4–6,10,15,22,25].

We remind ourselves that the so-called surface diffusion
problems (see e.g. [2,20]) are described by nonstationary
4th order intrinsic partial differential equations. Similarly,
a numerical solution to the Willmore flow, either in direct
(Lagrangian) or level set (Eulerian) formulation, is a nontriv-
ial problem and leads to a solution of fourth order in space
nonlinear evolution PDEs Convergence of a semidiscrete
time continuous finite element discretization in the case when
the evolved surface is a graph has been proved by Dziuk and
Deckelnick in [8]. First numerical study based on the finite
element method for the Willmore flow in Lagrangian formu-
lation was presented in [10] and for the level set formula-
tion in [9]. Finite difference discretization has been analyzed
in [1,21]. Tangential stabilization of Lagrangian approach
for solving fourth order elastic curve flows in case of sur-
face diffusion was first introduced in [20]. Then a paramet-
ric finite element method was tangentially stabilized in [3].
Although the Lagrangian methods are fast and robust (when
incorporating a suitable tangential velocity) they cannot han-
dle topological changes for which the level set methods are
preferred [9,22]. However, a careful and systematic compari-
son of nontrivial examples of direct and level set approaches
for fourth order curve evolution problems is still missing.
The goal of this paper is to provide such a comparison study,
and, moreover to derive new numerical schemes based on the
finite/complementary volume strategies for both Lagrangian
and level set formulations of the Willmore flow.

First, we present a tangentially stabilized Lagrangian
method based on a solution to the curvature, local length
and position vector equations accompanied by the asymp-
totically uniform tangential redistribution of numerical grid
points. We show experimentally that the method is second
order accurate. We apply this method to various examples
of evolution of planar embedded curves. Stabilization by the
tangential velocity allows us to use reasonable large compu-
tational time steps and prevent formation of various instabil-
ities like merging of evolving curve representing grid points
or swallow tails, which are typical disadvantages of the direct
methods.

Then we develop new semi-implicit complementary vol-
ume scheme for solving level set formulation of the Willmore
flow. It is again second order accurate. Due to a finite volume

character of discretization it has a potential to be naturally
connected with finite volume schemes for advective level
set equations [12,13] and thus to be used in various models
where the fourth order terms serve as a curve motion regu-
larization arising, e.g., in image segmentations [25].

The outline of the paper is as follows. In Sect. 2.1 we
recall a closed governing system of equations for the cur-
vature, local length and position vector describing evolution
of plane curves satisfying (2) in Lagrangian formulation and
describe the main idea of asymptotically uniform tangential
redistribution. Section 2.2 focuses on the brief derivation of
the governing equation representing the evolution of zero
level set satisfying the geometric equation (2). In Sect. 3.1
we present our Lagrangian numerical approximation scheme
and, in Sect. 3.2, approximation of the level set equation for
the Willmore flow. Section 4 is devoted to study of the exper-
imental order of convergence for both methods and to com-
parison of both methods in various elastic curve evolution
examples.

2 Governing equations

2.1 Direct Lagrangian method

Henceforth we shall parameterize an embedded regular plane
curve Γ by a smooth function x : S1 → R

2, i.e. Γ =
Image(x) := {x(u), u ∈ S1} such that the local length ele-
ment g = |∂u x | > 0 is everywhere positive. Taking into
account the periodic boundary conditions at u = 0, 1 we shall
hereafter identify S1 with the interval [0, 1]. The unit arc-
length parameterization will be denoted by s, so ds = g du.
The tangent vector T and the signed curvature k of Γ satisfy
T = ∂s x = ∂u x/g, k = ∂s x ∧ ∂2

s x = ∂u x ∧ ∂2
u x/g3. More-

over, we choose the unit inward normal vector N such that
T∧N = 1 where a ∧b is the determinant of the 2×2 matrix
with column vectors a, b. By ν we denote the tangent angle
to Γ , i.e. T = (cos ν, sin ν)T . Now it follows from Frenét’s
formulae that ∂sT = kN, ∂sN = −kT and ∂sν = k. Notice
that the curvature k is positive for convex closed curves
in our convention of picking of normal and tangent vector
orientation.

Let a regular smooth initial curve Γ0 = Image(x0) be
given. According to [17], an evolving family of planar curves
Γt = Image(x(., t)), t ∈ [0, T ), satisfying (2) can be repre-
sented by a solution to the following system of PDEs

∂t k = ∂2
s β + α∂sk + k2β, (3)

∂t g = −gkβ + g∂sα, (4)

∂t x = βN + αT, (5)

subject to initial conditions k(., 0) = k0, g(., 0) = g0, and
x(., 0) = x0(.),. We impose periodic boundary conditions
at u = 0, 1. Having recalled the general form of governing
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equations we are able to calculate the time derivative of the
elastic energy functional

2
d

dt
E(Γt ) = d

dt

1∫

0

k2g du =
∫

Γt

2k∂t k − k3β + k2∂sα ds.

Since
∫
Γt

k∂2
s β = ∫

Γt
β∂2

s k and
∫
Γt

∂s(αk2) = 0 we obtain
the following equation

d

dt
E(Γt ) =

∫

Γt

(∂2
s k + 1

2
k3)β ds. (6)

It enables us to conclude that the evolution of Γt with the
normal velocity β = −∂2

s k − 1
2 k3 is a gradient flow (the

Willmore flow) for the Willmore elastic energy functional E .
Notice that the tangential velocity α is a free parameter

in (3)–(5) and it may depend on other quantities like e.g.
the curvature, normal velocity and/or local length element
in various ways including local or nonlocal dependences,
cf. [14,16–19]. In this paper we make use of the so-called
asymptotically uniform tangential redistribution derived in
[18,19] which is the most natural for the Willmore flow since
an initial shape is approaching evolution of expanding circles.
Let us denote L = Lt the total length of a curve Γt . It follows
from analysis of the tangential velocity made in [18,19] that

g(u, t)

Lt
→ 1 as t → Tmax uniformly w.r. to u ∈ S1

provided that the tangential velocity is a solution to a non-
local equation

∂sα = kβ − 〈kβ〉Γ + (L/g − 1) ω, α(0, t) = 0. (7)

Here ω > 0 is a given positive constant and 〈.〉Γ is an aver-
aging operator over a curve Γ , i.e. 〈kβ〉Γ = 1

L

∫
Γ

kβ ds. It is
clear that redistribution of grid points along a curve becomes
uniform as t approaches the maximal time of existence Tmax .
In the case of a Willmore flow the time horizon is infinite
(i.e. Tmax = +∞) for planar Jordan curves and Tmax can
be finite for some selfintersecting immersed curves in the
plane. Furthermore, inserting α computed from (7) into (3)–
(5) and making use of the identity α∂sk = ∂s(αk) − k∂sα

then the curvature and local length equations can be rewritten
as follows

∂t k = ∂2
s β + ∂s(αk) + k〈kβ〉Γ + (1 − L/g) kω, (8)

∂t g = −g〈kβ〉Γ + (L − g)ω. (9)

In other words, the strong “point-wise” influence of the term
kβ in (3) and (4) has been softened by the “averaged” term
〈kβ〉Γ in (8) and (9). As a consequence, this important prop-
erty of asymptotically uniform tangential velocity enables us

to construct an efficient and stable numerical scheme prevent-
ing fast local decrease of local lengths (merging of numeri-
cal grid points) as well as forming various further numerical
instabilities related to high local curvature. Since

∂4
s x = ∂3

s T = ∂2
s (kN)∂2

s kN + 2∂sk∂sN + k∂2
s N

= ∂2
s kN − 2(∂sk)kT − k∂s(kT)

= ∂2
s kN − 3k(∂sk)T − k2∂sT

= ∂2
s kN − 3

2
∂s(k

2)∂s x − k2∂2
s x

and ∂2
s x = kN we have

(−∂2
s k − 1

2
k3)N = −∂4

s x − 3

2
k2∂2

s x − 3

2
∂s(k

2)∂s x

= −∂4
s x − 3

2
∂s(k

2∂s x).

Thus the governing system of Eqs. (3)–(5) for the Willmore
flow (2) with tangential redistribution can be written as
follows:

∂t k = −∂4
s k − 1

2
∂2

s (k3) + ∂s(αk) + k(kβ − ∂sα), (10)

∂tη = −kβ + ∂sα, η = ln(g), (11)

∂t x = −∂4
s x − 3

2
∂s(k

2∂s x) + α∂s x (12)

where the tangential velocity α is the unique solution to
Eq. (7).

2.2 Level set method

In the level set method the evolving family of planar curves
Γt , t ≥ 0, is represented by the zero level set of the so-called
shape function u : Ω × [0, T ] → R where Ω ⊂ R

2 is
a simply connected domain containing the whole family of
evolving curves Γt , t ∈ [0, T ]. Assuming zero is the regular
value of the mapping u(., t), i.e. |∇u(x, t)| 
= 0 for u(x, t) =
0 we can express the unit inward normal vector and signed
curvature as: N = ∇u/|∇u| and k = −div (∇u/|∇u|). Let
us denote the following auxiliary functions:

H = div

( ∇u

|∇u|
)

, Q = |∇u|, w = Q H.

Then ∂sk = −∇H.∂s x = −∇H.T and, by Frenét’s for-
mula, ∂2

s k = −k∇H.N−Tt∇2 HT. Differentiating the equa-
tion u(x(s, t), t) = 0 with respect to time we obtain ∂t u +
∇u.∂t x = 0. Since the normal velocity of x is β = ∂t x .N
we obtain 1

|∇u|∂t u = −β. Inserting expressions for ∂2
s k and

k = −H we obtain

1

Q
∂t u = 1

2
div

(
H2

Q
∇u

)
− H3 − Tt∇2 HT.

Here T = (−n2, n1) where N = (n1, n2), i.e. T is the vector
N rotated by −π/2. Straightforward calculations show that
the right hand side of the above equation can be rewritten
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in the divergent form. The resulting system of two equations
governing the evolution of the shape function has been derived
by Droske and Rumpf in [9] and it reads as follows:

∂t u = −Q div

(
E∇w − 1

2

w2

Q3 ∇u

)
, (13)

w = Q div

( ∇u

|∇u|
)

(14)

where the 2×2 matrix E = 1
Q

(
I − ∇u

Q ⊗ ∇u
Q

)
is a projection

into a tangential space of the curve representing the zero
level set of u. System of Eqs. (13–14) is subject to the initial
condition

u(x, 0) = u0(x), x ∈ Ω

and clamped boundary conditions at ∂Ω , i.e. u(x, t) = 0,
∂νu(x, t) = 0, x ∈ ∂Ω . The initial function u0 is a signed
distance function, i.e. u0(x) = dist(x, Γ 0), x ∈ Ω .

3 Numerical approximation schemes

3.1 Numerical approximation of the Lagrangian method

Our numerical approximation of an evolved curve is
represented by discrete plane points x j

i where the index i =
1, . . . , n, denotes space discretization and the index j =
0, . . . , m, stands for a discrete time stepping. Due to periodic
boundary conditions we use additional values x j

−1 = x j
n−1,

x j
0 = x j

n , x j
n+1 = x j

1 , x j
n+2 = x j

2 . If we take a uniform divi-
sion of the time interval [0, T ] with a time step τ = T

m and a
uniform division of the fixed parameterization interval [0, 1]
with a step h = 1/n, a point x j

i corresponds to x(ih, jτ).
The systems of difference equations corresponding to (7),
(10)–(12) will be solved for discrete quantities α

j
i , η

j
i , r j

i ,

k j
i , x j

i , i = 1, . . . , n, j = 1, . . . , m, representing approx-
imations of the unknowns α, η, gh, k and x, respectively.
Here α

j
i represents the tangential velocity of a flowing node

x j
i , and η

j
i , r j

i ≈ |x j
i −x j

i−1| and k j
i represent piecewise con-

stant approximations of the corresponding quantities in the

so-called flowing finite volume
[
x j

i−1, x j
i

]
. In order to derive

new position x j
i we use corresponding flowing dual volumes[

x̃ j
i−1, x̃ j

i

]
where x̃ j

i = x j
i−1+x j

i
2 with approximate lengths

q j
i ≈ |x̃ j

i+1 − x̃ j
i |. Our computational method is simple and

natural. At the j-th discrete time step, we first find values
of the tangential velocity α

j
i by discretization of (7). Then

the values of η
j
i are computed and used for updating local

lengths r j
i by discretizing Eq. (11). Using computed local

lengths, the intrinsic derivatives are approximated in (10),
and (12), and pentadiagonal systems with periodic boundary

conditions are constructed and solved for new discrete
curvatures k j

i and position vectors x j
i .

In order to discretize (7) we integrate it over flowing finite
volume

[
xi−1, xi

]
to obtain

xi∫

xi−1

∂sα ds =
xi∫

xi−1

kβ − 〈kβ〉Γ + ω (L/g − 1) ds.

Hence

αi − αi−1 = ri (kiβi − 〈kβ〉Γ ) + ω (L/n − ri )

where α0 = 0. Taking discrete time stepping in the previous
relation we obtain following expression for discrete values
of the tangential velocity:

α
j
i = α

j
i−1 + r j−1

i (k j−1
i β

j−1
i −B j−1) + ω

(
L j−1

n
− r j−1

i

)

where, for i = 1, . . . , n,

β
j

i = − 1

r j
i

(
k j

i+1 − k j
i

q j
i

− k j
i − k j

i−1

q j
i−1

)
− 1

2

(
k j

i

)3
,

q j
i = 1

2

(
r j

i + r j
i+1

)
, L j =

n∑
l=1

r j
l , B j = 1

L j

n∑
l=1

r j
l k j

l β
j

l ,

and α
j
0 = 0, i.e. the point x j

0 is moved in the normal direction.
Now, a similar approximation methodology is applied for

equation (11). Thus

r j−1
i

η
j
i − η

j−1
i

τ
= −r j−1

i k j−1
i β

j−1
i + α

j
i − α

j
i−1

for i = 1, . . . , n. It leads to the update formula for local
lengths:

r j
i = exp(η

j
i ), i = 1, . . . , n,

subject to periodic boundary conditions r j
−1 = r j

n−1, r j
0 =

r j
n , r j

n+1 = r j
1 , r j

n+2 = r j
2 . New local lengths are used

for approximation of intrinsic derivatives in the curvature
Eq. (10). We obtain

∫ xi
xi−1

∂t k ds = ∫ xi
xi−1

−∂4
s k − 1

2∂2
s (k3) +

∂s(αk) ds + ∫ xi
xi−1

k(kβ − ∂sα) ds. Hence

ri
dki

dt
= −

[
∂3

s k
]xi

xi−1
− 1

2

[
∂s(k

3)
]xi

xi−1

+ [αk]xi
xi−1

+ ki (ri kiβi − (αi − αi−1)) (15)

and taking semi-implicit time stepping, i.e. replacing time
derivative by backward difference and treating linear terms
at the current time level j while the nonlinear terms at the
level j −1, and approximating derivative terms on the bound-
aries of flowing finite volumes by finite differences we obtain
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following pentadiagonal system with periodic boundary
conditions for new discrete values of the curvature:

a j
i k j

i−2 + b j
i k j

i−1 + c j
i k j

i + d j
i k j

i+1 + e j
i k j

i+2 = f j
i (16)

for i = 1, . . . , n, subject to periodic boundary conditions
k j
−1 = k j

n−1, k j
0 = k j

n , k j
n+1 = k j

1 , k j
n+2 = k j

2 . For complete-
ness, a detailed description of the system coefficients is given
in Appendix.

Finally we discretize Eq. (12) by integrating in a dual
volume

[
x̃i−1, x̃i

]
to get

x̃i+1∫

x̃i

∂t x ds =
x̃i+1∫

x̃i

−∂4
s x − 3

2
∂s(k

2∂s x) + α∂s x ds,

qi
dxi

dt
=

[
−∂3

s x − 3

2
k2∂s x

]x̃i+1

x̃i

+ αi (x̃i+1 − x̃i ).

Now replacing the time derivative by the backward differ-
ence, derivative terms on boundaries of dual volume by finite
differences and x̃i by the average of grid points in the last
term, we obtain two tridiagonal systems for updating the
position vector:

A j
i x j

i−2 + B j
i x j

i−1 + C j
i x j

i + D j
i x j

i+1 + E j
i x j

i+2 = F j
i (17)

i = 1, . . . , n, subject to periodic boundary conditions x j
−1 =

x j
n−1, x j

0 = x j
n , x j

n+1 = x j
1 , x j

n+2 = x j
2 . The exact form of

coefficients A,B, C,D, E can be found in Appendix.
The initial quantities for the algorithm are computed from

discrete representation of the initial curve x0. The reader
is referred to [19] for further details. Every pentadiagonal
system is solved by Gauss-Seidel iterates. We stop the Gauss-
Seidel iteration procedure if a difference of subsequent iter-
ates in maximum norm is less than the prescribed tolerance
10−10.

3.2 Numerical approximation of the level set method

Concerning approximation of the level set Eq. (13) we con-
sider rectangular domain Ω ≡ 〈a1, a2〉 × 〈b1, b2〉 and we
assume an equidistant spatial step h in both directions. We
define a regular mesh ωh consisting of grid points xi j =
[a1 + ih, b1 + jh] for i = 0, . . . , N1, j = 0, . . . , N2, where
a1 + N1h = a2 and b1 + N2h = b2. Without loss of gen-
erality we shall assume a1 = b1 = 0. The corresponding
dual mesh V is given as the union of the finite volumes Vi j of
the form

〈(
i − 1

2

)
h,

(
i + 1

2

)
h
〉 × 〈(

j − 1
2

)
h,

(
j + 1

2

)
h
〉

for
i = 0, . . . , N1, j = 0, . . . , N2. The projection of a solu-

tion at xi j is defined as ui j = u(xi j ). Similarly as in the
Lagrangian method we take a uniform division of the time
interval [0, T ] with a time step τ = T

m . Let us consider an
element Vi j of the dual mesh V . Integrating (13)-(14) over
Vi j and applying the Stokes theorem we obtain
∫

Vi j

1

Q

∂u

∂t
dx =

∫

∂Vi j

1

2

w2

Q3

∂u

∂ν
− 〈E∇w, ν〉 dσ, (18)

∫

Vi j

w

Q
dx =

∫

∂Vi j

1

Q

∂u

∂ν
dσ (19)

where ν is the outer normal of the boundary ∂Vi j .
We start with approximation of the term Q on Vi j . For

r, s ∈ {−1, 1}, |r | + |s| = 1, we define the linear operator
∇rs as follows:

∇r,0ui j = 1

h

(
r(ui+r, j − ui j ), ur,1

i j − ur,−1
i j

)
,

∇0,sui j = 1

h

(
u1,s

i j − u−1,s
i j , s(ui, j+s − ui j )

)

where urs
i j is the average of ui j defined as:

urs
i j = 1

4
(ui j + ui+r, j + ui, j+s + ui+r, j+s).

For a fixed regularization parameter 0 < ε � 1 we define

Qrs;n
i j =

√
ε2 + |∇rsun

i j |2, Q̄n
i j = 1

4

∑
|r |+|s|=1

Qrs;n
i j .

Let E
rs;n
i j =

(
Ers;n

kl;i j

)
k,l=1,2

be the 2 × 2 projection matrix:

E
rs;n
i j = 1

Qrs;n
i j

(
I − ∇rsun

i j

Qrs;n
i j

⊗ ∇rsun
i j

Qrs;n
i j

)
.

Now we are able to derive a discretization of (18)

un
i j − un−1

i j

τ
= Q̄n−1

i j

2h2

∑
|r |+|s|=1

(ŵ
rs;n−1
i j )2

(Qrs;n−1
i j )3

(un
i+r, j+s − un

i j )

− Q̄n−1
i j

h2

∑
|r |+|s|=1

h〈Ers,n−1
i j ∇rswn

i j , νrs〉 (20)

where

ŵ
rs;n
i j = 1

2

(
wn

i j + wn
i+r, j+s

)
, (21)

and νrs is the unit outer normal vector, νrs = (r, s) for |r | +
|s| = 1. In order to approximate wn and wn−1 on Vi j and on
its boundary ∂Vi j we have used expression (19) to obtain

wn
i j = Q̄n

i j

h2

∑
|r |+|s|=1

1

Qrs;n
i j

(un
i+r, j+s − un

i j ). (22)
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Since (20) contains a new time level wn expressed through
new time level of the solution un (see (22)) as well as the pre-
vious time level wn−1, the resulting discrete level set scheme
is semi-implicit in time. After some calculations it can be
written as twenty one points scheme of the form

∑
(r,s)∈O

Ars
i j un

i+r, j+s = un−1
i j (23)

where O = {(r, s),−2 ≤ r, s ≤ 2, |r | + |s| < 4} and
i = 2, . . . , N1−2, j = 2, . . . , N2−2. For the remaining i, j ,
the values of un

i j are linearly extrapolated. The coefficients
of the above system can be found in Appendix.

System (23) is solved by the iterative GMRES algorithm
with ILUT (ILU with threshold) preconditioning or by the
complete LU decomposition as a direct solver (cf. [23]). The
time step τ is chosen to be proportional to h2 and the regu-
larization parameter ε can chosen either as a function of h
or ε can be prescribed as a small fixed constant. As an initial
condition we choose a signed distance function d(x) to the
initial curve. At prescribed redistancing time steps we per-
form redistancing of the level set solution back to the signed
distance using the fast sweeping method (see [24] for details).
As an alternative to the semi-implicit scheme (20) we may
also consider its explicit version, i.e. all the terms on the
right hand side of (20) are considered at the time step n − 1,
c.f. [1,21] for other similar explicit schemes. In this case we
avoid the singularities of the signed distance function in its
local extrema and the initial condition has a “phase-field”
like shape

u0(x) = δsgn(d(x))(1 − exp(−|d(x)/δ|),
where δ is a parameter describing the width of the region
where u0 changes from −δ to +δ.

4 Discussion on numerical experiments

4.1 Experimental order of convergence for the methods

Let an initial curve be a circle with radius r0. Since for
the circle we have k = 1

r then it follows from (2) that

ṙ(t) = 1
2r(t)−3. Hence r(t) = (2t + r4

0 )
1
4 . Using this sim-

ple analytical solution we can compute experimental order
of convergence for both schemes. Without loss of generality
we choose r0 = 1.

In the case of the Lagrangian scheme we approximate
the initial unit circle subsequently by n = 10, 20, 40 and
80 nodes with h = 1/n. The final time was set up to be
T = 2.56 and time step was chosen to be proportional
to h2, i.e. τ = h2. Table 1 shows errors and experimen-
tal order of convergence (EOC) of the scheme in L p =
L p((0, T ), L p(S1)) = L p(S1 × (0, T )) for p = 2,∞.

Table 1 EOC for the Lagrangian scheme in L p, p = 2,∞ norms

Error
EOC \h 0.1 0.05 0.025 0.0125

p = 2 0.04301 0.01089 0.00271 0.00067

EOC 1.982 2.005 2.003

p = ∞ 0.03402 0.00886 0.00223 0.00056

EOC 1.940 1.986 1.988

Table 2 EOC for the level set scheme in L p, p = 2,∞ norms

Error
EOC \h 0.4 0.2 0.1 0.05

p = 2 0.21497 0.06585 0.01699 0.00400

EOC 1.707 1.954 2.086

p = ∞ 0.71190 0.12286 0.03780 0.00973

EOC 2.534 1.700 1.957

In the level set approximation we solve the problem in domain
Ω = 〈−2, 2〉 × 〈−2, 2〉. The domain Ω was splitted subse-
quently into n × n finite volumes for n = 10, 20, 40, 80
with h = 1/n. The final time was chosen as T = 0.5 and
again τ = h2. The regularization parameter ε was refined
proportionally to the grid refinement using the rule ε2 = 2h.
Finally, the redistancing period was τredist = 0.25h. Errors
in L p, p = 2,∞ norms are presented in Table 2.

4.2 Comparison of the Lagrangian and the level set
evolutions

In this section we compare the numerical results obtained
by our Lagrangian and the level set approaches on various
representative examples. In the case of Lagrangian scheme
we approximate an evolving curve by 100 grid nodes in all
experiments to follow. In the case of the level set method we
hereafter split domain Ω into 100 × 100 finite volumes.

In Fig. 1 we present comparison of both methods for the
case of evolution of an initial circle with the radius r0 =
1. The time horizon T = 0.5. By cross marks we depict
approximation by the Lagrangian direct scheme where the
evolution was computed using the time step τ = 0.002
and no tangential redistribution (α = 0). The evolution of
the level set function was computed in the spatial domain
Ω = 〈−2, 2〉×〈−2, 2〉 with the time step τ = 0.002 and the
smoothing parameter ε = 0.001. We did not provide redis-
tancing in this case in order to show deformation of an initial
distance function to final shape of the level set function (see
Fig. 1 bottom).

In Fig. 2 we show evolution of an initial ellipse with half-
axes 1 and 2. It asymptotically approaches a circle. We stop
computations at the time horizon T = 2.56. In the case
of the Lagrangian approach we pick τ = 0.002 and the
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Fig. 1 a A circle as an initial condition; c the same initial condition
for the level set approximation; b a circle computed at the time T = 0.5
by both methods (cross marks correspond to the Lagrangian method);
d the level set function at the time T = 0.5

tangential redistribution parameterω = 1. We computed evo-
lution of the level set function in the computational domain
Ω ≡ 〈−4, 4〉 × 〈−4, 4〉. We chose the smoothing parameter
ε = 0.001 and we did redistancing just once at τredist = T/2.
Both, the initial and final level set functions are depicted in
Fig.2.

In Fig. 3 (top) the initial condition is a non-convex curve
given by

x0(u) =
(

1 − 0.5 cos2(4πu) cos(2πu)

1 − 0.5 cos2(4πu) sin(2πu)

)
(24)

where 0 ≤ u ≤ 1. The time evolution of such a non-convex
initial curve was stopped at the time T = 0.01. In the

Fig. 2 a An initial ellipse with half-axes ratio 1:2; c the same initial
condition for the level set approximation; b the approximate circle com-
puted at the time T = 2.56 by both methods (cross marks correspond to
the Lagrangian method); d the level set function at the time T = 2.56

Lagrangian approach we picked τ = 10−5, and the tangential
redistribution parameter was ω = 1. The level set function
was computed in the domain Ω ≡ 〈−2, 2〉 × 〈−2, 2〉, with
τ = 2.5 · 10−5, ε = 0.001 and τredist = 0.001. Again, a
comparison of the zero level set and the initial curve evolved
by Lagrangian method show compatibility of both methods
in the common time interval. In this example the Willmore
flow quickly changes the shape of evolving curves from non-
convex to a circular one. We show several time steps of the
curve evolution in Fig. 3.

In Fig. 4 we present evolution with the initial curve hav-
ing sharp corners (see also a detailed close-up in Fig. 5).
Although the initial curve (square) is convex, the evolved
curve need not be convex for small times. Concerning
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Fig. 3 An initial condition a given by (24) and curves computed by
both methods at b: t = 0.001, c: t = 0.005 and d: t = 0.01

Fig. 4 A square as an initial condition a and computed evolved curves
b: t = 0.001, c: t = 0.01 and d: t = 0.1

numerical parameters, we chose n = 100 spatial nodes,
τ = 10−7 and the tangential redistribution parameter
ω = 1 (asymptotically uniform redistribution) in the direct
Lagrangian method. As for the level-set method we took
h = 0.04, τ = 2.5 · 10−5, ε = 10−5 and τredist = 0.01.

Figure 6 shows comparison of the methods for another
non-convex curve with very sharp corners. We chose the same

Fig. 5 The detail of the square corner at the times t = 0, 0.001 and
t = 0.01

Fig. 6 An asteroid as an initial condition a and its evolution at
b: t = 0.0001; c: t = 0.0005 and d: t = 0.005

numerical parameters as in the previous example for both the
Lagrangian as well as level set methods. Also in this exam-
ple one can observe satisfactory coincidence of numerically
computed curves by both methods.

Finally, in Fig. 7 we present an example illustrating a topo-
logical change. It has been computed by the level set method
only because the direct method is unable to handle topologi-
cal changes like pinching and splitting of curves. The initial
zero level set consists of two almost touching curves - the
inner curve being a circle and the outer curve being an ellipse
with a shorter axis just slightly larger than the radius of the
inner circle. We then let evolve this configuration by the level
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Fig. 7 From top to bottom initial condition composed of two curves—
a circle within an ellipse a and its evolution at b: t = 0.00006;
c: t = 0.0002; d: t = 0.002 and e: t = 0.008

set equation. The phenomenon of pinching and subsequent
splitting of the evolved curves can be observed in this exam-
ple. Such a behavior can be observed in the mean curvature
driven evolution of a dumb-bell initial surface in 3D where
the Grayson theorem does not hold. To our best knowledge,
there is no analytical proof of pinching-splitting phenomenon
in the case of a Willmore flow of planar curves. Notice that
this numerical result has been obtained only by using very
small time steps, in the range 10−11 − 10−10. Since for such
small time steps we do not increase efficiency by using the
semi-implicit scheme we use here its explicit version with
the Runge–Kutta–Merson fourth order adaptive time solver.
As further parameters we used h = 0.0166, ε = 10−5 and
τredist = 10−5.

Acknowledgments The authors are thankful to the referee for her/his
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version of the paper.

Appendix

Coefficients of the Lagrangean systems

The coefficients for the curvature system (16) are as follows:

a j
i = 1

q j
i−1r j

i−1q j
i−2

, e j
i = 1

q j
i r j

i+1q j
i+1

,

b j
i = −

(
1

r j
i q j

i q j
i−1

+ 1

r j
i (q j

i−1)
2

+ 1

(q j
i−1)

2r j
i−1

+ 1

q j
i−1r j

i−1q j
i−2

)
+ α

j
i−1

2
,

d j
i = −

(
1

q j
i r j

i+1q j
i+1

+ 1

(q j
i )2r j

i+1

+ 1

r j
i (q j

i )2

+ 1

r j
i q j

i q j
i−1

)
− α

j
i

2
,

c j
i = 1

(q j
i )2r j

i+1

+ 1

r j
i (q j

i )2
+ 2

r j
i q j

i q j
i−1

+ 1

r j
i (q j

i−1)
2

+ 1

(q j
i−1)

2r j
i−1

+ r j
i

τ
− r j−1

i k j−1
i β

j−1
i + α

j
i

2
− α

j
i−1

2
,

f j
i = r j

i

τ
k j−1

i + (k j−1
i )3 − (k j−1

i−1 )3

2q j
i−1

− (k j−1
i+1 )3 − (k j−1

i )3

2q j
i

where we used following approximation of third order deriv-
ative terms on boundaries of flowing finite volume in (15):

∂3
s k(xi ) − ∂3

s k(xi−1) ≈
≈ ∂2

s k(x̃i+1) − ∂2
s k(x̃i )

qi
− ∂2

s k(x̃i ) − ∂2
s k(x̃i−1)

qi−1
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≈ · · · ≈ 1

qiri+1qi+1
ki+2 + 1

qi−1ri−1qi−2
ki−2

−
(

1

qiri+1qi+1
+ 1

q2
i ri+1

+ 1

ri q2
i

+ 1

ri qi qi−1

)
ki+1

+
(

1

q2
i ri+1

+ 1

ri q2
i

+ 2

ri qi qi−1
+ 1

ri q2
i−1

+ 1

q2
i−1ri−1

)
ki

−
(

1

ri qi qi−1
+ 1

ri q2
i−1

+ 1

q2
i−1ri−1

+ 1

qi−1ri−1qi−2

)
ki−1.

Using a similar strategy for approximation of the third order
derivatives of position vector on boundaries of flowing dual
volume we can write coefficients of (17):

A j
i = 1

r j
i q j

i−1r j
i−1

, C j
i = q j

i

τ
− (A j

i + B j
i + D j

i + E j
i ),

E j
i = 1

r j
i+1q j

i+1r j
i+2

, F j
i = q j

i

τ
x j−1

i ,

B j
i = −

(
1

r j
i q j

i−1r j
i−1

+ 1

(r j
i )2q j

i−1

+ 1

(r j
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i

+ 1
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i r j
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+ 3
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j
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2
,

D j
i = −

(
1

r j
i q j

i r j
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+ 1

(r j
i+1)

2q j
i

+ 1

(r j
i+1)

2q j
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+ 1

r j
i+1q j

i+1r j
i+2

)
+ 3

2

(k j
i+1)

2

r j
i+1

− α
j
i

2
.

Coefficients of the level set system

The coefficients Ars
i j of the 21-diagonal system matrix (23)

are given by:

A00
i j = 1 + τ Qi j

h4

∑
r,s∈{−1,1}

⎡
⎢⎣

h2
(
ŵ

rs;n−1
i j
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2
(
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i j
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for |r |+|s| = 1. Here we have denoted by Q∗;n
i, j the harmonic

average of Qrs;n
i j defined as:

1

Q∗;n
i, j

=
∑

|r |+|s|=1

1

Qrs;n
i j

.

For |r | = 1 and |s| = 1 we have the expression:

Ars
i j = rs

τ
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i j
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Next, for |r | = 2 or |s| = 2 such that |r | + |s| = 2 we have

Ars
i j = τ

h4 Q̄n−1
i j

(
Er̄ ,s̄;n−1
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,

and, finally for |r | + |s| = 3, we have

Ars
i j = sgn (rs)
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4h4
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i j Q̄n−1
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,

where we have denoted r̄ = sgn(r), s̄ = sgn(s) and r̃ =
r − r̄ , s̃ = s − s̄.
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