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Abstract. We present an adaptive numerical scheme for com-
puting the nonlinear partial differential equations arising in
3D image multiscale analysis. The scheme is based on a semi-
implicit scale discretization and on an adaptive finite element
method in 3D-space. Successive coarsening of the compu-
tational grid is used for increasing the efficiency of the nu-
merical procedure. L∞-stability of the semi–discrete scheme
is proved and computational results related to 3D nonlinear
image filtering are discussed.

1 Introduction

Nonlinear image multiscale analysis is an important task of
computer vision. It is related to selective nonlinear filtering,
edge detection, enhancement, segmentation and further op-
erations of image processing. With a new development of
medical applications, an efficient and robust treating of 3D
problems is highly desirable.

The “scaling of the image” is represented by a solution
of a nonlinear PDE for which the processed image gives an
initial condition. In the last decade such models have been
suggested and studied, and in general they are based on de-
generate diffusion equations, see for instance [2, 8–11, 15–
17, 19]. The multiscale approach has been axiomatized, i.e.
derived from “first principles”, in [1]. There, it was proved in
a rigorous way that the majority of image processing opera-
tions can be viewed as solutions of second order degenerate
parabolic partial differential equation. In some sense, it sum-
marizes the linear scale space theories, started in the eight-
ies by Witkin and Koenderink and a few decades before by
Iijima, as well as the ideas of the so-called “morphological
school”, see [13, 20–22].

In this paper, we consider the following problem, which is
an interesting combination of linear and nonlinear scale space
ideas. Let u be the solution of

∂tb(u)−∇(g(|∇Gσ ∗u|)∇u) = f(u0 −u) in QT ≡ I ×Ω,
(1)

∂νu = 0 on I × ∂Ω, (2)

u(0, ·) = u0 in Ω, (3)

where Ω ⊂Rd , d = 3 in our case, is a bounded domain with
Lipschitz continuous boundary (in our application Ω is rect-
angular), I = [0, T ] is a scale interval, and

g is a Lipschitz continuous function,
g(0) = 1, 0 < g(s) → 0 for s → ∞, (4)

Gσ ∈ C∞(Rd) is a smoothing kernel,
∫
Rd

Gσ (x)dx = 1, (5)

Gσ (x) → δx for σ → 0, where δx is the delta distribution,
the convergence is understood in the usual sense and∫
Rd

|∇Gσ |2dx ≤ Cσ .

∇Gσ ∗u :=
∫
Rd

∇xGσ (x − ξ)ũ(ξ)dξ, (6)

where ũ is some extension of u, e.g. by reflection, such that

‖ũ‖L2(Rd) ≤ C‖u‖L2(Ω). (7)

b is a strictly increasing continuous function for which (8)

b(0) = 0, Γ ≥ b′(s) ≥ γ > 0, (9)

f is a Lipschitz continuous, nondecreasing function with

Lipschitz constant L, f(0) = 0, (10)

u0 ∈ L∞(Ω)∩ V, V = W1,2(Ω). (11)

In [6] we have explained the mechanism of selective
smoothing process of the model (1)–(3) in case b(s) ≡ s. Such
an equation has been suggested by Catté, Lions, Morel and
Coll and it combines the ideas of linear Gaussian scaling and
nonlinear Perona and Malik anisotropic diffusion equation.
We have also reported the role of adaptively coarsened 2D
finite element computational grids used in the discrete scale
steps. In this paper we present a 3D approach to the prob-
lem. We use the structure of tetrahedral meshes obtained by
the bisection algorithm ([3–5]), which can be backwardly
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coarsened in a straightforward way. Using the coarsening
criterion as in [6] we remove tetrahedra from the image re-
gions where the gradient of the image intensity function is
small. Moreover, we modify the Catté, Lions, Morel and Coll
nonlinear diffusion equation by adding a faster diffusion in
those parts of the image which are (a-priori) out of inter-
est. Using a small slope of b for such image intensities we
speed up the diffusion and thus enhance the grid coarsen-
ing. Such effect, together with the opposite, slowing down
of the diffusion process depending on the image intensity
and/or position in the image, has been suggested and studied
in [11]. There, a kind of Jäger–Kačur algorithm is used for
the proof of existence of the solution and provides also a nu-
merical scheme. In this paper we consider the nondegenerate
case (8)–(9) in which we use a simpler semi-implicit approx-
imation scheme where all nonlinearities are simply treated
from the previous discrete scale step. Thus in each discrete
scale step we solve a linear elliptic equation by a finite elem-
ent method with decreasing number of elements due to the
coarsening.

In Sect. 3 we prove that such a method is L∞-stable in
a semi-discrete setting. In Sect. 4 we discuss in detail the 3D
adaptive finite element space discretization and coarsening
strategy in 3D. In Sect. 5 we discuss some computational re-
sults with artificial as well as real images.

We mention related work by Preusser and Rumpf [18].
There a similar technique is presented. They use trilinear
elements on hexahedra and apply the method to flow field
visualization.

2 Notation

Let Ω ⊆ R3 be a bounded domain. Denote by (u, v) :=∫
Ω

u(x)v(x)dx the L2 inner product for u, v ∈ L2(Ω). V :=
W1,2(Ω) is the Sobolev space of L2-functions with square in-
tegrable weak derivatives.

A triangulation T of Ω is a set of (non-degenerate) tetra-
hedra with

⋃
T∈T

T = Ω̄.

A triangulation T is called conforming if the intersection
of two non-disjoint, non-identical tetrahedra consists either of
a common vertex, a common edge or a common face. T ∈ T
is said to have a non-conforming node, if there is a vertex P of
the triangulation which is not a vertex of T but P ∈ T . A se-
quence of triangulations T1,T2, . . . has the property of shape
regularity if sup

T∈Tk,k∈N

{
hT /ρ(T )

} ≤ C. Here, hT := diam(T )

and ρ(T ) := max{r | Br ⊂ T } denotes the radius of the largest
ball inscribed T .

3 Numerical approximation scheme

In order to solve (1)–(3) we use the following semi-implicit
linear approximation scheme:

Let n ∈N, τ = T
n , 0 < τ ≤ 1/2, ti = iτ and σ > 0 be fixed

numbers and u0 be given by (3). For i = 1, . . . n, let ui ∈ V be
the solution of
(
b′(ui−1)(ui −ui−1), v

)+ τ(g(|∇Gσ ∗ui−1|)∇ui,∇v) =
τ( f(u0 −ui−1), v), (12)

for all v ∈ V . These scale-discrete (ui)’s are expected to be
approximations of the image intensity function at the discrete
scale instants ti .

For the scale-discrete ui’s we state the following result.

Theorem 1. For every i = 1, ..., n there exists a unique solu-
tion ui of (12). Moreover, there exists a positive constant C
such that

||ui ||∞ ≤ C||u0||∞.

The constant is given by C = e
(

2+ L
γ

)
T
(1 + L

γ
). If f ≡ 0 then

C can be chosen to be C = 1.

Proof. Our assertion is clearly true for u0. Let it hold for ui−1.
Due to (6), (7) and the Cauchy–Schwartz inequality we

derive

|∇Gσ ∗ui−1| ≤ Dσ < ∞,

and so there exists a constant νσ such that

gi−1 := g(|∇Gσ ∗ui−1|) ≥ νσ > 0. (13)

Thus, for any fixed σ , by the Lax–Milgram theorem and (9)
we have existence and uniqueness of ui ∈ V which is the so-
lution of (12). Moreover ui ∈ L∞(Ω), see [14]. Thus the first
part of the assertion is proved.
By the above conclusion we know that v = ui |ui|p−1 ∈ V and
we can use it as a test function in (12) for any p ∈ N. Using
(9) and (10) we obtain

∫
Ω

b′(ui−1)|ui |p+1dx + τ

∫
Ω

gi−1 p|ui|p−1|∇ui |2dx ≤
∫
Ω

b′(ui−1)|ui−1||ui |pdx + Lτ

∫
Ω

|u0||ui|pdx + L

γ
τ

×
∫
Ω

b′(ui−1)|ui−1||ui |pdx.

Let us denote C1 = L
γ

. Then due to the positivity of the second
term on the left hand side we have

∫
Ω

b′(ui−1)|ui |p+1dx ≤ (1 +C1τ)

∫
Ω

b′(ui−1)|ui−1||ui |pdx

+ Lτ

∫
Ω

|u0||ui|pdx. (14)

Now we use Young’s inequality in the form

ab ≤ 1

p +1
ap+1 + p

p +1
b

p+1
p

in the last term of (14) with a = ε|u0|, b = 1
ε
|ui |p. This to-

gether with (9) gives us
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Ω

b′(ui−1)|ui |p+1dx ≤ (1 +C1τ)

∫
Ω

b′(ui−1)|ui−1||ui |pdx

+ Lτ
εp+1

p +1

∫
Ω

|u0|p+1dx

+C1τ
p

p +1

1

ε
p+1

p

∫
Ω

b′(ui−1)|ui |p+1dx.

Let us take ε =
(

C1
p

p+1

) p
p+1

. Subtracting the last term we get

(1 − τ)

∫
Ω

b′(ui−1)|ui |p+1dx ≤ (1 +C1τ)

×
∫
Ω

b′(ui−1)|ui−1||ui|pdx + Lτ
εp+1

p +1

∫
Ω

|u0|p+1dx.

Since for τ ≤ 1
2 we have 1

1−τ
≤ (1 +2τ) we obtain

∫
Ω

b′(ui−1)|ui |p+1dx ≤ (1 +C1τ)(1 +2τ)

×
∫
Ω

b′(ui−1)|ui−1||ui|pdx + (1 +2τ)Lτ
εp+1

p +1

×
∫
Ω

|u0|p+1dx.

Let us use Young’s inequality with a = (1+C1τ)(1+2τ)|ui−1|,
b = |ui |p in the first term on the right hand side and get

∫
Ω

b′(ui−1)|ui |p+1dx ≤ (1 +C1τ)
p+1(1 +2τ)p+1

p +1

×
∫
Ω

b′(ui−1)|ui−1|p+1dx + p

p +1

×
∫
Ω

b′(ui−1)|ui|p+1dx + (1 +2τ)Lτ
εp+1

p +1

∫
Ω

|u0|p+1dx.

Multiplying the previous inequality by p +1, subtracting the
second term on the right hand side and using (9) we obtain the
recurrent relation∫
Ω

|ui |p+1dx ≤ (1 +C1τ)
p+1(1 +2τ)p+1 Γ

γ

×
∫
Ω

|ui−1|p+1dx + (1 +2τ)C1τε
p+1

∫
Ω

|u0|p+1dx.

Then by the induction we get
∫
Ω

|ui |p+1dx ≤ (1 +C1τ)
i(p+1)(1 +2τ)i(p+1)

×
(

Γ

γ

)i

(1 + (1 +2τ)C1Tεp+1)

∫
Ω

|u0|p+1dx.

Taking the (p+1)-th root in the previous inequality and send-
ing p → ∞ (i is fixed and finite) we derive

||ui||∞ ≤ e(2+C1)T (1 +C1)||u0||∞ ≤ C||u0||∞,

since (1 + x)i ≤ eix . Thus the assertion is proved with C =
e(2+C1)T (1 +C1) and C1 = L

γ
. Provided f(s) ≡ 0, a review of

the arguments used above shows C = 1 without any restric-
tion on the time step τ .

The image may be understood as a piecewise linear func-
tion interpolating the given discrete values of the image inten-
sity function. The centers of the image voxels then correspond
in a natural way to the nodes of a finite element grid. Such an
approach is natural for a discretization with piecewise linear
finite elements, see below.

As the smoothing kernel in (1) we use the Gauss function

Gσ (x) = 1

(2
√

πσ)d
e− |x|2

4σ (15)

with a given positive σ . In that case the term ∇Gσ ∗ui−1 in
(12) represents the gradient of the solution at time σ of the
linear heat equation in R3 with initial condition given by the
extension (e.g. by reflection) of ui−1. Using that idea, we re-
place the convolution term in (12) by solving implicitly the
linear heat equation with reflective (homogeneous Neumann)
boundary conditions with just one time discretization step
with length σ . Thus, we end up with the following system of
equations, semi-implicit in scale:

(b′(ui−1)ui, v)+ τ(g(|∇uc|)∇ui,∇v) = (b′(ui−1)ui−1

+ τ f(u0 −ui−1), v) (16)

where uc ∈ V replaces the convolution Gσ ∗ui−1 and is the
solution of the problem

(uc, v)+σ(∇uc,∇v) = (ui−1, v). (17)

The weak identities (16)–(17) are starting points to de-
rive a fully discrete semi-implicit finite element discretiza-
tion of (1)–(3). To that goal the variational identities (16)–
(17) are projected to finite dimensional subspaces consisting
of piecewise linear finite elements Vh ⊂ V , Vh = Vh(Ti) :=
{vh ∈ C0(Ω̄)|vh |T ∈ P1 for all T ∈ Ti}, where P1 denotes the
set of linear polynomials and Ti is a conforming triangula-
tion of Ω ⊆ R3 at the i-th discrete scale step. By introduc-
ing the Lagrangian bases of hat functions ϕj ∈ Vh(Ti), de-
termined by ϕj(xk) = δj,k for all vertices xk, k = 1, . . . Ni of
Ti , N the number of vertices, a function vh ∈ Vh is given by

vh =
N∑

k=1
vkϕk =

N∑
k=1

vh(xk)ϕk.

For each discrete scale instant i = 1, . . . n we are looking
for a function ui

h ∈ Vh(Ti) fulfilling

(b′(ui−1
h ); ui

h, vh)h + τ(g(|∇uc
h|)∇ui

h,∇vh) =
(b′(ui−1

h ); ui−1
h , vh)h + τ(11; f(u0 −ui−1

h ), vh)h (18)

for all vh ∈ Vh(Ti) where uc
h ∈ Vh(Ti) is the solution of

(11; uc
h, vh)h +σ(∇uc

h,∇vh) = (11; ui−1
h , vh)h ∀vh ∈ Vh(Ti),

(19)
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where (w; uh, vh)h is the lumped L2 inner product, defined by

(w; uh, vh)h :=
∑

k

w(xk)uh(xk)vh(xk)

∫
Ω

ϕk.

Using the above bases representation (18)–(19) may be
written in the form

N∑
k=1

{
(b′(ui−1

h ); ϕk, ϕj)h + τ(g(|∇uc
h|)∇ϕk,∇ϕj)

}
ui

k =

(b′(ui−1
h ); ui−1

h , ϕj)h + τ(11; f(u0 −ui−1
h ), ϕj)h

and

N∑
k=1

{
(11; ϕk, ϕj)h + σ(∇ϕk,∇ϕj)

}
uc

k = (11; ui−1
h , ϕj)h

for all j = 1, . . . N.
Thus solving (18)–(19) means inverting two linear sys-

tems with matrices

M
(
b′(ui−1

h )
)+ τA(g(|∇uc

h|)),
M(11)+σA(11),

with Mj,k(w) = (w; ϕk, ϕj)h the lumped mass matrix and
A(w)j,k = (w∇ϕk,∇ϕj) the stiffness matrix.

4 Multiscale image coarsening

As mentioned above, we use a coarsening strategy for the
finite element meshes to increase the effectiveness of the pro-
cedure. Since the image is being smoothed as scale evolves,
and by analogy with the result of [12], we do not expect
a movement of the main edges, (local) coarsening is an appro-
priate way to decrease the number of unknowns.

To be more precise we proceed as follows. We generate
a triangulation T0 corresponding to a voxel structure of the
image by (globally) refining a coarse grid T 0, the so called
macro triangulation. We choose the bisection method, which
allows for coarsening quite easily and was introduced for
the 3D case in [3]. This refinement procedure generates a se-
quence T 0,T 1,T 2, . . . of finer and finer meshes until the
desired (initial) mesh size is reached.

During time-scale evolution, in every time step local
coarsening is used to reduce the number of unknowns accord-
ing to a certain coarsening criterion, see below.

Fig. 1. Tetrahedron; dashed lines indi-
cate the refinement edges

We briefly recall the bisection method, for further details
see [3]:

4.1 Refinement by bisection

Consider a tetrahedron T ∈ T 0, which has been cut open
along the three edges which meet at vertex P4 and unfolded:

With each of the four triangular faces of T we associate
a refinement edge (one example is shown in Fig. 1). We make
the following assumptions:

(A1) For each tetrahedron there is at least one common
refinement edge for two different faces of the tetrahe-
dron adjacent to this edge (Pi1 Pi3 in Fig. 1). We call
such an edge a global refinement edge of the tetra-
hedron.

(A2) If T1, T2 are two tetrahedra with T1 ∩ T2 = S and S is
a triangle, then the refinement edge of S with respect to
T1 and the refinement edge of S with respect to T2 is the
same.

Note that assumptions (A1) and (A2) can be fulfilled for
an arbitrary conforming triangulation: There is an ordering
of the edges of a triangulation (for instance in terms of their
lengths). Choose the refinement edge of a triangular face as
the one with highest index corresponding to this ordering.
Then (A1) and (A2) are fulfilled.

Let us first consider the split of a single tetrahedron:
A single tetrahedron is bisected by cutting through the

midpoint of the global refinement edge to the opposite ver-
tices, thus introducing the midpoint as a new node Pnew. We
get two new tetrahedra:

The refinement edges of the bisected triangles are chosen
as indicated by Fig. 2. Here, ∗ indicates an arbitrary pos-
ition of the refinement edge which is not affected by the split.
The question then is, how to choose the refinement edge for
the new triangle Pnew P4 P3. One requirement is of course the
condition that both new tetrahedra must have again a global
refinement edge.

In [3] it is outlined how to choose this refinement edge
properly. The above procedure is the atomic operation to split
a single element. For the global situation the following algo-
rithm is used.

Bisection algorithm:
Let T k be a given triangulation, either k = 0 or T k being a re-
finement of T k−1. Let Σ+ ⊆ T k be a set of tetrahedra to be
divided.
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Fig. 2. Bisection of a single tet

while Σ+ �= ∅ do
bisect all T ∈ Σ+ as described
above, obtain the intermediate
triangulation T̂ k (possibly
non-conforming)

let now Σ+ be the set of those
tetrahedra with a non-conforming
node.

endwhile
T k+1 := T̂ k

In [3] the following is shown:
Theorem 2. Let the conforming triangulation T k fulfill as-
sumptions (A1) and (A2). Then the above algorithm stops
in a finite number of steps and T k+1 is conforming. The se-
quence T 0,T 1,T 2, . . . is shape regular.

4.2 Local coarsening

We choose the bisection method to generate the starting tri-
angulation T0 because a triangulation which was derived by
a successive application of bisection steps can be derefined
very easily. We make the following definitions:

Definition:

i.) A tet T ∈ T has level l if T was obtained after l refine-
ment steps.

ii.) A tet T is said to have locally finest level if the levels of
all neighbors are less than or equal to the level of T .

iii.) Let T ∈ T and let T ′ be the father of T . A vertex P of T
which was inserted while bisecting T ′ is called the coars-
ening node of T .

iv.) Let K be an edge of the triangulation T and K ′ the
“father”-edge of K with midpoint Q. Set M := {T ∈
T |T ∩ K ′ �= ∅}. If Q is the coarsening node for all T ∈ M
then M is called a resolvable patch.

Figure 3 shows a resolvable patch and the coarsened
patch.

If M is a resolvable patch, then all T ∈ M can be coars-
ened without interfering with T ′ ∈ T outside of M. Therefore
resolvable patches are the configurations which we allow to
be coarsened. This guarantees that the coarsening process
stays local.

We may write the coarsening algorithm in the following
form:

Fig. 3. Resolvable patch and coarsened patch

Coarsening algorithm:
Let T i be a triangulation obtained by refinement and coars-
ening steps. Let Σ− ⊂ T i be the set of tetrahedra to be dere-
fined. Then one coarsening step consists of:

for each T ∈ Σ− do
if T belongs to a resolvable patch M
then

if T ′ ∈ Σ− for all T ′ ∈ M then
derefine M, see Fig. 3

endif
endif

enddo

Since we only derefine resolvable patches the question
arises whether there are “enough” resolvable patches in an
arbitrary triangulation. In [5] it is shown that at least for
so–called “standard triangulations” the following holds: All
tetrahedra of locally finest levels belong to resolvable patches.
This means that using the above algorithm a total derefine-
ment of a triangulation is possible.

4.3 Coarsening criterion and adaptive method

As the local behavior of ∇u determines the evolution process
and is an indicator for edges, the coarsening criterion is based
on this value. More precisely, let ε > 0 be a given tolerance.
For i a time-scale step and ui

h the corresponding numerical
solution on the grid Ti we allow all tetrahedra T ∈ Ti to be
coarsened, if

hT |∇ui
h| ≤ ε on T. (20)
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Note that since ui
h is piecewise linear, ∇ui

h is constant on each
tetrahedron.

Thus we have the following adaptive scheme to approxi-
mate (1)–(3):

Let T0, u0 be given.

for i = 1, 2, . . . n do
define Σ− := {T ∈ Ti−1 | hT |∇ui−1

h | ≤ ε on T }
derefine Ti−1 according to Σ− to obtain Ti
set up the matrix M(11)+σA(11)
compute uc

h ∈ Vh(Ti) solving (19)

set up the matrix M(b′(ui−1
h ))+ τA(g(|∇uc

h |))
compute ui

h ∈ Vh(Ti) solving (18)
enddo

5 Numerical experiments

In this Section we present two numerical examples computed
by the scheme (18)–(19) using the 3D coarsening strategy. In
the computations we used the following definition for g:

g(s) = 1

1 + Ks2
,

where K > 0 is a constant. This Perona–Malik form of g
is well suited for image selective smoothing. However, also
other non-trivial modifications are available in the literature,
see e.g. [7]. The right hand side f was set f ≡ 0 in the pre-
sented computations. A linear f gives comparable results.

In the first example we consider an artificial image con-
taining the object visualized in Fig. 5. The surface S of this
object is described by the equation

S :=
{

x = (x1, x2, x3) | r = 0.475 ∗
∣∣∣∣3

( x2

r

)2 −1

∣∣∣∣ , r = |x|
}

.

Note that this object is smooth (up to singular lines) and the
“steps” in Fig. 5 are due to the resolution of the triangula-
tion. The initial function takes values u0 = 0.6 inside and
u0 = 0.5 outside the object, respectively, plus additive ran-
dom noise with range [−0.15, 0.15]. The object boundary has
large variations of curvature and the level of noise is high
in comparison with the un-noisy difference in intensity. The
computational results in this example are presented in Figs.
6–9 and in Table 1. In Fig. 6 we present successive 3D fil-
tering visualizing level surfaces until the desired object is
extracted. In Fig. 7 we plot 2D slices to show how the original
intensity is corrupted by noise and how the noise is filtered
out. From both Figures, one can see that object boundaries are
preserved very well while noise is removed at the same time.

Table 1. Decrease of number of unknowns, example 1

time step 0 1 2 3 4 5 6 7 8 9 10
� unknowns 274 625 274 623 274 554 272 206 249 774 198 105 134 561 77 670 49 173 35 458 24 930

time step 0 1 2 3 4 5 6 7 8
� unknowns 274 625 178 777 158 355 132 335 110 617 95 619 85 190 77 525 71 906

Table 2. Decrease of number
of unknowns, example 2

Fig. 4. Overall cpu time (∗) and cpu time for mesh adaptation (+), respec-
tively, on a Compaq ES40 with 500 MHz, example 1

Fig. 5. Original artificial image without noise

In Figs. 8 and 9 we plot the results of scaling together with
a cut of the computational tetrahedral grid in order to illus-
trate the local coarsening. In this example we took b(s) = s,
K = 5. Table 1 shows the decrease in the number of degrees
of freedom due to coarsening. Figure 4 document the overall
cpu time and the cpu time devoted to mesh adaptation.

Next, we have applied our method to a real image repre-
senting an in vivo acquired 3D echo-cardiography. The acqui-
sition represents a certain time instant of the cardiac cycle of
a real patient. In Fig. 11 the isosurface corresponding to the
interface between the cardiac muscle and blood is visualized
using an original echo-image (top left) and after processing
by our algorithm. We took advantage of the fact that the grey
value describing this interface is known by setting

b(s) =
{

s for s ≤ s∗,
10−3s + s∗ for s > s∗,
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where s∗ is sufficiently larger than the level of this isosurface,
K = 5. Table 2 gives again the number of nodes in subse-
quent triangulations and Fig. 10 shows the cpu times in this
example.

Fig. 6. Smoothing of the artificial image. Visualization
of the 0th, 3rd, 6th and 10th time-scale step

Fig. 7. Smoothing of the artificial image, 2D slices at
x3 = 0. Cut of un-noisy original (top left), cut of noise-
corrupted initial image (top right) and filtering after
4 (bottom left) and 10 (bottom right) time-scale steps,
respectively

We note that even if we do not have a theoretical anal-
ogy of the semi-discrete stability estimate (Theorem 1) for
our fully discrete scheme, we do not observe any L∞ instabil-
ities in the computations.
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Fig. 8. Level surface and computational grid at the 4th
scale step

Fig. 9. Level surface and computational grid at the 10th scale
step



Adaptivity in 3D image processing 29

Fig. 10. Overall cpu time (∗) and cpu time for mesh adaptation (+),
respectively, on a Compaq ES40 with 500 MHz, example 2

Fig. 11. Smoothing of the human left ventricle. Visual-
ization of the corresponding level surfaces at the 0th,
2nd, 4th and 8th scale steps respectively
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9. Catté, F., Lions, P.L., Morel, J.M., Coll, T.: Image selective smoothing
and edge detection by nonlinear diffusion. SIAM J. Numer. Anal. 29,
182–193 (1992)



30 E. Bänsch, K. Mikula
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