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Abstract

We present an algorithm of pattern recovery (image segmentation) based on the solution of the Allen—Cahn
equation. The approach is usually understood as a regularization of the level-set motion by mean curvature where
we impose a special forcing term whitgts the initial level set closely surround the pattern in question. We show
convergence of the numerical scheme and demonstratédomd the algorithm on several artificial as well as real
examples.
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1. Introduction

The level set technique is known in the image-processing community due to its successful
applicability, e.qg., to filtering and segmentation tasks (see [14]). In this paper, we suggest an alternative
based on the phase-field approach to the mean-curvature flow (see [16,6]). The phase-field methods ar
used in a wide range of problems (e.g., differential geometry, phase transitions) as discussed in [36,4].
We offer a new application of such methods to the rapidly growing domain of image processing by PDEs
(see [13,14)).

In particular, we propose an algorithm for image segmentation, i.e., a technique devoted to recovery of
pattern boundaries from the original, possibly noisy image or signal. The algorithm is based on numerical
solution of the generalized Allen—Cahn equation which is a nonlinear parabolic partial differential
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Fig. 1. Image size: 256 by 256 pixels, parametérs: 0.04, r = 0.001,& = 0.05, F = 15,1 = 10. The time steps 0, 100, 200,
300 and 835 are shown. The original image is in the bottom right corner.

equation arising in the treatment of mean-curvature flow problems. This modification is new among
the phase-field models. We show the convergence of the discrete solution given by the proposed fully
discrete scheme to the weak solution. Our segmentation equation has the following form:

e = €9 (e(1VG, * Po) V1) + £(1VG, = 2ol) (£ o) + £F1V ) &
The image is located in a rectangular two-dimensional donfainThe segmentation process is
parametrized by the variableplaying the role of time in the physical context. The functjpe- p(z, x)
should bring the initial segmentation (phase) functign as close as possible to objects in the target (the
original imagePy) in certain sense.

The initial gueswin; can be given in the form of the characteristic function of the domain covering the
objects of interest (see Figs. 1-4, 7) or as the characteristic function of a growing initial seed inside the
object of interest (see Figs. 5, 6). At any time moment we can detect the Ieyjeisétas a segmentation
curve which is moving towards edges in the image

The equation uses a non-increasing Perona-Malik fungtidR; — R* (compare with [32]), for
which g(0) > 0, g(s) — 0 for s — oo, and g(4/s) is smooth. The functiory is combined with a
smoothing kerneG, € C*°(R?) usually represented by the Gauss function or a mollifier with compact
support [10,22] satisfying

[Gawar=1. [ve, <.
R2 R2
G,(x) — 4§, foro — 0, &, isthe Dirac function at point.
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Fig. 2. Image size: 256 by 256 pixels, parametérs: 0.04, r = 0.001,& = 0.05, F = 15,1 = 10. The time steps 0, 200, 400,
600, 800, 1000, 1400, 1765 are shown. The original image is in the bottom right corner.

The equation also contains the functiggand the parameteks F, which are given below together with
the complete setting of the initial-boundary-value problem.

The role of convolution with a smoothing kernel is to change a piecewise constant digital image
(given discretely) to the infinitely smooth function for which differential quantities, e.g., gradients, are
well defined. At the same time the convolution is used in pre-filtering the infadpefore segmentation
in order to smooth spurious structures like noise.

In our work we are motivated by the results related to the geodesic (or conformal) mean-curvature
motion of planar curves [23,9] in the level-set formulation described by the equation

op Vp

— =|VpIV.&(IVG, * Pol) ==
” IV p (g(l * 0|)|Vp|)

Vp Vp
=|Vp|<g VG, % Py|)V. —— 4 Vg(IVG, Py —) (2)
( ) |V pl ( ) IV pl
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Fig. 3. Image size: 256 by 256 pixels, parametérs: 0.04, r = 0.0006,¢ = 0.05, F = 20, » = 5. The time steps 0, 100, 200,
300, 400, 532 are shown. The original image is in the bottom right corner.
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The segmentation model (2) is an important generalization of the level-set equation (see [35])

P vpv. 22,

ot IVpl
used in a wide range of applications (see [35,29]). The curvature-driven level-set equation (3) and its
various generalizations arise in two main contexts of image processing: in filtering and in segmentation.

In case ofimage filteringthe functionp(z, x) represents an updated intensity function starting at the

original imageP; (i.e., we setpini = Pp). According to Eg. (3) each level line of the image intensity
p moves with normal velocity proportional to its curvature. For example, the mean-curvature motion
without external forcing shrinks any closed curve to a point with asymptotically infinite speed (see, e.qg.,
[27]). Noise (a small structure with high curvature) disappears relatively fast as a consequence of such
evolution. This fact may justify the use of level-set-like equations in image filtering. Edge information
can also be incorporated into such models. The Perona—Malik idea of a controlled, selective diffusion
is adopted here. For example, in [1], the mean-curvature motion is modified according to the following
equation

@)

aip _
ar IVpl

where the edge-indicator term is dynamically updated following the diffused image. The term
g(IVG, % p|) is used to slow down the motion of image contours (edges). Noise in the regions between
edges is removed by the mean-curvature flow. Numerical methods solving this equation and applications
in image filtering have been discussed in [1,12].

g(IVGs % pl)IVpIV. 4)
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Fig. 4. Image size: 180 by 180 pixels, parametérs: 0.05, T = 0.001, & = 0.05, F = 10, A = 20. The time steps 0, 1000,
2000, 3000, 4000, 5000, 6000, 7371 are shown. The original image is in the bottom right corner.

Partial differential equations famage segmentatioare similar to (4). However, as mentioned above,
the sense of the solutionis different. The equation

\Y
?’—lz=g(|VGU*P0|)|Vp|<V.ﬁ—i—F), (5)
has been proposed for the two- and three-dimensional pattern recognition (see [9,26]). In thigcase,
is the segmentation function whose particular level set evolves to the edge of obj@gtsTime initial
segmentation level set is put inside or outside the object. Then it is evolved in the normal direction
by a constant speeH plus the curvature regularization tervh. |§_p\ both weighted by (|VG, * Pyl)
representing a “distance” from the edge. However, with a nonzeribis not easy to guarantee that the
level-set motion stops appropriately, especially in case of nBjsy
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Fig. 5. Image size: 117 by 117 pixels, parametérs:0.04,7 = 0.001,& = 0.05, F = —5, A = 10. The time steps 0, 100, 200,
300, 400, 480 are shown.

In (2), a new driving force-Vg(|VG, * Py|) advects the segmentation functipriowards the edge.

In the vicinity of an edge, the segmentation level curve is therefore automatically driven to the desired
object boundary [23,9].

In this paper, we take advantage of both driving forces mentioned above. The constant one allows to
bring the segmentation level curve close to the object boundary. If the segmentation curve is expected
to shrink from outside the object to its edges, then- 0. If the segmentation curve is to expand from
the interior of the object towards the object edges, tiiea 0. The vector field—Vg(|VG, * Py|)
allows to accurately detect the edges. The curvature regularization term makes the final curve smooth anc
causes minimization of the curve length in regions with missing edge information (e.g., due to noise).
Furthermore, we propose the model which replaces the level-set formulation by the phase-field technique
(see, e.g., [8,3]). A series of results is known, which shows a correspondence between the two approache
within the context of mean-curvature flow (see, e.qg., [16]) and within the context of phase transitions (see
[17,3,24]). We show that the resulting modified Allen—Cahn equation can be solved numerically without
any difficulties and that corresponding numerical algorithm can be used in the above-described image-
processing operations.

We organize our text as follows. In Section 2, we present known results concerning our problem, we
propose the nonlinear fully-discrete semi-implicit finite-difference scheme for the numerical solution.
The scheme leads to the solution of a nonlinear algebraic system at each discrete time level. Here,
the nonlinear Gauss—Seidel iteration technique is used. In Section 3, we prove the convergence of the
fully discrete scheme to the weak solution of our problem. In Section 4, numerical examples of image
segmentation in both artificial and real images are discussed.
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Fig. 6. Image size: 250 by 250 pixels, parametérs; 0.04, r = 0.0009,& = 0.06, F = —5, A = 50. The time steps 0, 1000,
2000, 3000, 4000, 4329 are shown.
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Fig. 7. Image size: 252 by 400 pixels, parametérs: 0.04, 7 = 0.001,& = 0.05, F = 15,1 = 40. The time steps 0, 500, 1000,
1500, 2000, 2660 are shown.

2. Modified Allen—Cahn equation

We recall and study in detail an initial-boundary-value problem for the parabolic semi-linear partial
differential equation (1) which is of the Allen—Cahn type. For this purpose we denote the rectangular
domains2 = (0, L1) x (0, Ly) C R?, x = [x1, x2] € £2, the time variable € (0, 7). The problem for the
unknown functionp = p(¢, x) reads as follows

0 1 .
Sa—l; =&V - (¢(IVGs * Pol)Vp) +8(IVG, * PoI)(gfo(p) +§F|VPI) in (0, T) x £,

ap

=0 on(0,7) x 382, pli—o= pini(x) in 2. (6)
on |yo

Here,& > 0 is a parameter related to the thickness of the interface layer (it is usually set to axvadlue
The polynomialfo(p) =ap(1l— p)(p — %), with a > 0, is derived from the double-well potentiah as
wg = — fo. The functionF = F(x) is bounded and continuous, the functipe C* strictly positive. The
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function pj,; is the initial condition, the functiorP, € L. (£2). We refer the reader to [4,3] for details
concerning the equation and physical background of it.

We observe that the functiop(|VG, * Py|) is infinitely smooth and bounded. We will denote it
g = g(x) again and we stress the following properties

O<pyi<gx) <y, Vxegf, (7)

whereys, y, are positive constants.

Remark. A minor modification in the proof of Theorem 3.2 in [3] yields the existence and unigueness of
the weak solution of (6) provides c R? is a bounded rectangular domain apg € H1(£2). We also

see thatp € L»(0, T; H?(£2)). We notice that the numerical analysis presented below will confirm the
existence result implicitly.

In case thag = 1, the problem (6) can be studied within the context of the mean-curvature flow (see
[18,11] for the introduction, [2,6] for the current context). Wher> 0., the motion lawy = —«x — F
is recovered with the accuracy up to the orde®fin terms of formal asymptotic expansion (see [3,
Lemma 4.6]). Herey denotes the normal velocity arg the mean curvature of the level gét= p = %
More details concerning the asymptotic behaviour of the problem (6) when0, can be found, e.g.,

in Theorem 2.2 of [6].

Numerical scheme
A discretized version of the problem (6) will be used in the context of image processing. We
propose the numerical scheme based on the finite-difference method in space and time. First, we
summarize some notation of the spatial discretizatién;—#, are the mesh sizegy, = {[ih1, jho] |
i = 1,...,N1 -1 ] = 1,...,N2 — 1}, wp = {[lhl,]hz] | i = 0,...,N1; ] = 0,...,N2} gridS of
internal and of all nodes, respectively;,, uz, backward differencesy,,, u,, forward differences,
Vyu = [uz,, uz,] and Vyu = [u,,, uy,] (details can be found in [6]). Introducing the time step- 0,
the time-level index i« =0, 1, ..., Ny. We can consider the grid functian {0, 1, ..., Ny} x @, > R

k k—1
for which v¥, = v(kt,ihy, jhy), svf = %M We also introduce a linear space of grid functions with
homogeneous discrete Neumann conditiGtys= {u : @, — R | uy0; =0, Uy, i0 =0, uz n,; =0,
ug,in, =0, i =0,...,N1, j=0,..., No}. We propose the two-level semi-implicit finite-difference
scheme in the following form at the time level

_ 1 _
E5pl = £, - (gVhpt) + g(gfo(p,’j) +5F\vhp;;1\) ona,.

pf € Hu, pY="Pupini, (8)

where the solution is a map, : {1,..., N7} x @, — R, g stands for the grid values of the function
g(x) (see Section 4) an®, :C(£2) — H, is the projection (restriction) operator. We observe that the
scheme (8) is nonlinear with respect;if and dominated by the second-order difference operator. The
convergence result is contained in the following statement:

Theorem 1. The schemg8) has the unique solution farsmall. Ift — 0, and# — 0y, then this solution
converges to the weak solution (&) provided pini € H1(22) N C(R2).
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3. Convergence of the numerical scheme

Finite-difference interpolation theory

In this section, we summarize features of grid functions and their interpolants. Details can be found in
[6] and related references therein. We use them when proving the above mentioned r¢sglE #,,,
f=[f% f2 ] andg = [g", g%, we denote(f, g = X012 “hahafigi, IfIE = (fs P, (.01 =
valle L hihofigh + Y0 lfohlhzf”g”, If112 = (f, f]. According to [33], the discrete analogues
of various mtegral relations are valid, in particular the Green formulaffere H;, and p: @, — R:
(f, Vi(pVa2)n) = —(pVi f, Vig]. We continue by introducing extensions of grid functions, so that they
are defined almost everywhere ¢h Such extensions are studied by the usual technique of Lebesgue
and Sobolev spaces.

Remark. We recall necessary definitions needed to extrapolate grid functioR$ {gee [6]). We also
define a subdomaire,, C £2 consisting of thin bands neax2:

2, =(0,L1) x (0, h2/2) U (0, L1) x (N2 — h3/2, N>) U (0, h1/2)
x (0, L3) U (N1 —h1/2, N1) x (O, L»).

We use thepiecewise linear interpolatiomperatorQ,, : H;, — C(£2) defined in the usual way (see
[7]) on the triangles given by the grid, with diagonals connecting the nod@s— 1, j) and (i, j — 1).
The piecewise constant interpolatiooperatorS;, : H, — L (§2) is built on rectangular cells centered
on the nodes of;, (S,u = 0 on £2,). The piecewise constant interpolatiaperatorS;, : H;, — Lo (£2)
is built on rectangular cells centered on the node®;0fWe proceed by determining basic properties of
the above defined maps as implied by [6] and by the references therein:

Q) fu,veH,, thenf_(2 SpuS,vdx = (u, v)y,.
(2) If u,veH,,then

N1—-1 No—1
1
/Shushvdx (u, v + hthZ(uv|lo+uv|,N2>+Zhlhzg(wmﬁuvm,)
1
+ Zhth(uv|00+ uv|on, + uv|y,0 + uv|yN,).
(3) We observe that the operatofs and Sh have the following properties||S,ullL,2) = llullx,

||Shu||L2<Q) < 2|lul|,. Furthermore, both operators have suitable convergence properties, namely
|SpPrp — ShPthLZ(Q) — 0, wheneveh — 0 andp € C(£2).
(4) Letu,v e H,. Then

(V(Quu), V(Quv)) = (Vau, Vyv] + E(u, v), 9
where we denote

N1 N>

1 1
E@w,v)=3 Zhlhz(uxlvxlli,zvz tunvalio) + 3 Zhlhz(uxzvlezvl,j + uz,V5,0,)-
i=1 j=1

Consequently,



M. Benes et al. / Applied Numerical Mathematics 51 (2004) 187-205 197

[V | < 5] %] (10)

(5) The relation between norms of the operat@sands;: || QuullL,2) < 2IShullL,2) is implied by a
similar relation|| Qxu || ,2) < IShullL 2y given in [6] and by the point 3 of this list.

(6) The convergence propey, P, p — @, Py pllL,e) — 0 is valid wheneveh — 0 andp € C(£2) (see
[6] and the point 3 of this list).

Remark. According to [21], we define the Rothe functions for the interpolation along the time axis.
We denote, = {v | v:(0,1,..., Nr) — R} the space of grid functions with respect to time. We use
piecewise linear interpolatioby means of the operat@®, : 7, — C({0, T')) such that for each € H,,
(Q.v)(t) = v 14+ 8v5(t — (k—1)1) for t € ((k— 1), kt); andpiecewise constant interpolatiaperator

S; :H, — Lo (0, T) such that for each € H,, (S;v)(t) = v* for ¢t € ((k — 1)t, kt). We mention the
known relationship between the Rothe functioﬁ£:|Q,v — Svf2dr = ’—32 M TISvR|2,

Remark on the solvability of (8). The spacet, is a finite-dimensional Hilbert space with the scalar
product(u, v)y, = (Vau, Vyvl + (1, v),. The operatofl” given by the formula

. 1
(T (ph), v):=&(py> ), +&(eVapy, Vav] - g(gfo(p’,i), v),,

which appears in (8), is the variation of the potential
- = 1
Fu) := %(u, w) + %(gvhu, Viu] + E(ng(u)’ 1),

The functionwg, with wy = — fo, is a double-well potential density (see [4]). The operd&toon H,,
becomes strongly monotone, following the estimate

<T<u)—T(v>,u—v>=%nu—vn,§ % (g9 — ). vh<u—v>]—g( g(fow) = fo)), u—v),

+5(

> (% _ ggm) e — w2 + n%HWM -],

using (7), the fact thatfo (1) — fo(v))(u —v) < ga(u — v)? and provided the condition

4
T<—&° (11)
Say;
holds (in agreement with other results, e.g., [28,31]). We therefore satisfy the assumptions of
[20, Theorem 26.11] and of remarks thereafter, from which we obtain existence of the unique solution

of (8).

A priori estimate of the discrete solution

Now, we estimate quantities contained in the discrete scheme (8) in order to prepare the convergence
proof. We multiply (8) byzsp, sum overw, and fork = 1,...,/ and use the Green formula. Then we
have

Wi

SZIHcSp'ZHthSZ ©(gVipi, Vadpy] =

k=1 k=1

1 I
> t(gfo(pk). opk), +& > t(eF|Vapi .
k=1 k=1

W\“IH
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The Abel summation rule, the relationshipg(x)| < Cr, and y; < g(x) y2, and a manipulation
(motivated, e.g., by [34, p. 378]) with the nonlinear te(@yo(p~), spf), by means of a function
ho(s) = a(5 — (s — 3)?) such thatfo(s) = fo(s)(s — 3),

ot =3 (43 (4-3)+(43)- (=)o),
=~ 2 5(glho(pt) . 1), — o (elsho(p) " ), +g(gho<p:z>, (a(p:: - ;)))

allow to obtain the following inequality

§ Z z|ép; Hh 2(8% (pr— Py )

a0k~ o)1+ 5 (6%ph il

k 1
1 T <
+ Eg(g\ho(l?h ) Ak ;T g|8h0 ph ’1)
g 1 2 T o 1\’
<5 (&Varih, Vari] + = 20 = (glno(ph)[". 1), + % ;T(gho(p”i)’ (5(,)’; N E)) ),,

l
+ ECFVZZT(|VhP£71|, 5192);,-
We treat the non-linear term as follows

(st (151 -3)) ), = 3= )3, o= 3) o)),

which together with the Young inequality applied to the te(nf%p’,j‘ﬂ, 8ph), and by the restriction to
the terms useful for our purposes gives

1 « Lo _
56 > tlonk]; + %)/1 > (VP = 2. Valph = pi 7))
k=1 k=1

+ Sn(Tphe k] + o (elnolo) .2,

2
l

<% 22 (sliolrf) " 3), + £2CH[Sunf]f + v2CE | Sund]
k=1

The discrete Gronwall lemma (see [21]) allows us to obtain that
- 1 2
Tul <—(( c) v ho(p)[2. 1 )
& V]l (1—21V—22C2)’< 2y1+ b CF £1vipS]I° 4@ (Ino(p)]" 1),

Assuming thatp,n, is regular enoughpgn, e HY(£2) N C(£)), we obtain uniform boundedness of
ENVapIZ, & X it IV (pf — P DI (glho(pl)I2, D)y and £ Yy TlIspsli2 for all 1 =0,..., Ny
independently ot, 4.

v2(Vaps- Vapn] +
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Passage to the limit

We explore the interpolation operatass, 9, andS,, Q.. We take arbitrary sequencgés andz, of
space and time steps tending to 0, and look for the convergence of the approximate solutions depending
on the mentioned sequences. In the following, we omit the indékhe above given properties of the

mentioned operators (see also [6]) imply t§3tvS, 9, p! 1%, (gwo(S:Shpl. 1) andgflf agfs’l”’l 112
are uniformly bounded for all= ., Ny independently of, 2. Mutual relations of the mterpolatlon

operators listed above imply th@,th’,j in Lo (0, T; HY(£2)) and dQ’dQ"”h in Lo(0, T; Lo(£2)) are
uniformly bounded for alk =0, ..., Ny independently ot, /. This setting is suitable for the imbedding
theorem (for the given context, used, e.g., in [3]), from which we can find a subsequence strongly
converging top in Lg(0, T; Lg(£2)). The Aubin lemma (see [25]) as a typical argument for the given
nonlinearity yields thatfo(S,Shp’,j) converges tofo(p) in L(0, T; L,(£2)). Strong convergence of
gradients is shown in the following lemma:

Lemma 1. The sequencES, Q, pk converges strongly t& p in L(0, T; L(£2; R?)) and S, S, | Vi pa| x
(t — 7) converges strongly toV p| in L»(0, T'; L»(£2)).

Proof. The proof of the lemma is similar to the proof of [3, Lemma 3.4]. However, it is delivered due to
points through which both proofs differ. We multiply Eq. (8) p§ — P, p and sum ovew,,:

E(8py. Py — Pup), +£(eVapy. Vi(py — Pup)]

1 )
= g(gfo(p;’i), pE—Pup), +E(gF|Vipt 2| Pk — Pup), -

We add and subtract the terfiigV,, P, p, Vi(pk — P, p)] to the equality, multiply it byr, sum over
k=1,..., Ny and rewrite in terms of Lebesgue spaces using the properties of interpolation operators

T
¢ / (S Pg VS, Qu (b — Php). VS, Qi (pk — Prp))
0

T

T
90,8, pk 1
< / <%,&&1( Php)> +z / (SaPagfo(S:Shpt). 5.8 (pk — Pyp)) dr
0

0

T
be / (SiPa@F)S S, (|90 pk )t = 7). 5.5 (pk — Pup))
0

T
_g/(ShPthSrQhPhpaVSrQh(pi_,Php))dt"i‘g/SrE(lphp’ pl}f_lphp)dt
0

We observe tha$, S, (pf — Pyp) — 0 strongly in (0, T; L2(£2)), asS. S, pf — p — 0 strongly, and
S:SyPp — p — 0 strongly in the same space due to properties of the extension operators. Furthermore,
VS, Qi(pf — Pup) — 0 weakly in (0, T; L2(2)), asQ. 9, pk — p — 0 weakly in (0, T; HY(R2)),



200 M. Benes et al. / Applied Numerical Mathematics 51 (2004) 187-205

Q. Qupk — 8. Qupk — 0 strongly in (0, T; Lo(£2)). The interpolation property of,, implies that
p — QuPyp — 0in HL(2) (see [7]). The sequenck S, E(Pyp, pk — Pyp)dr — 0 as

fs E(Pup. pl—Pip)d f/smgvs QuPyp - VS, Q4 (pk — Pup) dr b,

0 £

and [y [ IVS: QuPupl2dxdr < 2y [, VS QuPyp — Vpl2drdr + 2 [, [Vpl>dydr. Therefore
VS, Q, Py p restricted tos2;, tends strongly to 0, an¥S, 9, (pk — P,p) tends weakly to 0. As all

terms in the right side tend to 0 for — oo, we see thatv(S, Q. (pf — Pup)) — 0 strongly in
L2(0, T; L2($2; R?)).
Now, we use the fact th@tzk 1 ||Vh(ph - )]|2 is bounded, which together with the property (9)
gives the convergence of the tet‘i‘l;ksh(lvhphl)(t —7)to|Vp|l. O
We multiply (8) by a test functiofP, w, wherew € C3°(£2), and integrate it ove®;,. Then, we have
- - 1 = g
£(8py. Paw), +&(gVapy. ViaPhw] = g(gfo(l?ﬁ), Paw), +&(F|Vipy . Paw), .

Rewriting the preceding relation in terms of(l2) and exploring the time-extension operators, we obtain
09,
5( athph ShPhU)) +£(SiPugVS: Qups, VO Pyw) — ES.E(py, ps — Pup)

1 _
= E(Smgfo(sfshp,’;), Puw) + £ (S P F)S:Si(|Vapi|) t — ), SyPaw). (12)

We multiply (12) by a scalar functiogr () € C1((0, T')), for which v (T) = 0. Integrating by parts, we
arrive to
0 X oY
E(Q:Shpp. SiPaw) Y (0) — & | (Q:Supp. ShPhw)E dr

T
+ & / (ShPrgV QS: py. VO Pyw) ¥ (t) df — & / S E(SyPugpy. Py — Pap)dt
0

T
/ (SyPagfolS:Shpl). Prw)yr(t) di
0

"Wll—‘

be / (SiPu @ F)S: S| pE]) ¢t — 7). SyPyw) (o) o,

We pass to the limit in all terms of this equation, knowing t&aP,w — w, VQ,Prw — Vuw,
SyPrg — g andS, P, (g F) — gF uniformly in £, S, Py pini — pini S pini € C(2), VS, Qypf — Vp
in Lo(0, 75 L2(£2)), Q:Supf — p in La(0, T; La(£2)), fo(S:Supf) — fo(p) in La(0, T; Lo(£2)) due
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to the Aubin lemma (see also [6]5.S,|Vipkl(t — ) — |Vp| in La(0, T; Lx(£2)) by Lemma 1,
Jo S-Ep}, pk = Pup)dt — 0 8sVS, Qypf — Vp in La(0, T; Lo(2)), VS Qu(pf — Pup) — Vp in
L2(0, T'; L2(£2)).

Taking into account all previous results, the fact tgp? = S, P, pini, and the Lebesgue theorem, we
are able to pass to the limit.

T T
9
S(pim,w)w(O)—%‘f(p,w)a—lfdtJrff(ng,Vw)dt

I =

i

Obviously, the functiorp satlsfles the initial condition in4(£2) (see [25]). The uniqueness shown in [6]
allows to claim the convergence of the entire sequence of discrete solutions to the weak solution of the
problem (6).

T
fgfo(m w dr+s/ ¢FIVpl.w)dr.
0

4. Numerical experiments

In this section, we present results obtained by means of the above-described algorithm. We process no
only several artificially created examples, but we also test our approach on real photographically obtained
images.

We first mention the nonlinear Gauss—Seidel iteration scheme for the resolution of (8), which
represents a system @V, — 1)(N, — 1) nonlinear algebraic equations, and can be written as follows:

£Ap— £f(p) = ¢F. (13)
where

pP= (Plﬁ,i,j)fill_,]l'ivf—l’

Ap = (Pﬁ,i,j — TV - (8Vhph), J)l 1J1le 1,

fp) = (g1, folph s )y 12272,
—1,No—1

k-1 o k-1 Ny
F= (ph,i,j + 781 Fi 5| (Vap) )i,j |)i=1,j=1
We decompose the operatdrusing auxiliary operators

N1—1,No—1
8i+1,j t 8  &ij+1t8ij
Dp= (pﬁ,i,j +T< ; o ]>plff,i,j> )

2 2
hy h5 i=1,j=1
N1—1,No—1
8i,j gt J
Lp= < h2 —2 Phi-1j— h2 Ph -1 )
2 i=1j=1
8i+1 8ij+1 A
_ i+lj & Ljt+l
Up = (‘T 12 Phiv1,j — T 12 Ph,i,j+1> ;
1 2 i=1j=1

so that we havé =D + L + U.



202 M. Benes et al. / Applied Numerical Mathematics 51 (2004) 187-205

We solve (13) by means of the point-wise Gauss—Seidel nonlinear iterative method in the following
form

ED+L)(p"" —p)=£F - (EApl - gf(p’)), (14)

where the index denotes the iteration sequence. For the initial guess, we choose the previous time level:

0 __ (. k—-1\N1—1N>-1
p = (ph,i»j)i=l,j=l

Remarks on the practical use of the scheme

In the segmentation tasks, the presented method exhibits behaviour similar to other level-set schemes
and is semi-automatic, too, i.e., it requires an initial user’s interaction. We give a recipe for the parameter
values as follows:

(1) Choice of F and pji,i: Given the imageP, to process, we choose the two parametérand pin
simultaneously by the usual experience with the behaviour of the mean-curvature flow in plane governed
by the law

vpr=—kr — F, (15)

where the closed curvE shrinks to a point wher = 0, and this motion is accelerated fBrpositive,
slowed, suppressed or even inverted fonegative. We either cover the objects of interest (a paf? of
in which we expect to recognize some edges) by the&sgtvith the smooth boundaryi, representing
the initial segmentation curve and get- 0. Alternatively, we insert the s&2;,; inside the object to be
segmented, and sét < 0. Thenpy, is the characteristic function a®i,;, or optionally its regularized
version, andF can have the magnitude corresponding faliams2;,; and the sign mentioned above
ensuring motion ofj,; by velocity of the order of Adiame2;,; (therefore not too slow, and not too fast)
towards the edges of interest. The fine-tuning of the segmentation curve in the vicinity of the edge is
performed by the terms containing the functign

(2) Choice ofg: The functiong has the following form

g(s) = m,

where) > 0 is a parameter. For € (5, 50) used in our computations, we did not observe big difference
in the result and in reliability of the method.

(3) Choice ofg, a, h and t: The parametet relates the solution of (6) and the motion by mean
curvature, as indicated in [3, Lemma 4.6]. However, we do not require any quantitative approximation
of the mean-curvature flow by the Allen—Cahn equation (6), for the given range of applications. The
extensive computational experience with the model (6) containing the gradient coupling term (see [4,
5] and compare with other computational results without such a term, e.g., in [24,19,30,15]) therefore
suggests to take < 0.1 andh < £. The scheme (8) is proved to be unconditionally stable. However, the
sufficient condition for the solvability of (8) suggests the relationship (11). The parametdrich has
no significant influence to the results, is set:ite: 1 in all experiments.

(4) Choice ofG,: The functionG, is represented by a 8 3 smoothing kernel. The convolution
G, * Py can be computed beforehand.
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(5) Choice of the stopping timdhe time evolution generated by the algorithm ko= 0,1, ... is
terminated whenever a position change of the recovery curve is below a specified threshold. For this
purpose, we use the stopping criterion according to [37], i.e., we stop the computation as soon as the
following inequality for the discrete values of the segmentation function holds

% > |pit = pkj| < cTh® .
¥

The sum is over all grid points{ denotes the total number of grid points. The use of (16) originally
developed for the level-set methods rely on the fact that the phase-field method works on a similar
principle. This criterion is sometimes too strict, the solutppmay not satisfy (16) yet, but the position

of the interface is not visibly changing anymore.

In the following, we describe the computational experiments presented in Figs. 1-7. The parameters
used for the computations are presented in the caption of each figure. During the evolution, a diffuse
interface develops around the level lipe= 0.5, which determines position of the segmentation curve.

In the experiments with artificial images, we plot the segmentation fungtivom which the position of
the curve is apparent. In the experiments with real images, we plot the recovery curve into the processed
image Py.

In Fig. 1, a shape recovery of four different objects in an artificial image (bottom right) is presented.
The image was not degraded by noise. Sharp corners and quite a complicated shape of the letter ‘R’
are recovered. The solutignis shown at 5 subsequent time levels. Fig. 2 presents the same experiment
performed on the image on which additive noise has been applied. The sguisoshown at 8 time
levels. Apparently, the noise delays the curve evolution and therefore, the second experiment takes longel
to stop. In Fig. 3, we present a numerical experiment on the artificial noisy image (bottom right) that was
degraded by the “salt-and-pepper” noise. The results are shown at 5 time levels. Another experiment
with the artificial image of the letter ‘A is presented in Fig. 4. Additive noise was applied to the image.
We can see that a neighborhood of the letter is recovered very fast. However, most of the time evolution
is spent in recovering the sharp corner in the upper part of the letter. The soui®rshown at 8
time levels. In the following experiments with real images, we do not plot the solytidout only
the position of the curve (i.e., the level set pfat 0.5). In Fig. 5, we present the experiment with an
echocardiographic image. The initial position of the curve is given inside the human left ventricle. Due
to the negative sign of’, the curve grows outwards. The curve is shown at 6 time levels. The original
picture is provided by Prof. C. Lamberti, University of Bologna, Italy. The boundary at which the curve
stops need not be very sharp as it is demonstrated in Fig. 6 of the satellite image of a tornado over
the Indian Ocean. The curve is placed inside the cloud and expands outwards. In this experiment, a
higher value of: is used. The evolving curve is shown at 6 time levels. The original picture is provided
by EUMETSAT htt p: / / www. eunret sat . de). The last numerical experiment presented in Fig. 7
demonstrates the recovery of edges in the microscopic picture of a growing dendrite. The evolving
curve is shown at 6 time levels. The original picture is provided with courtesy of H. Singer and J.H.
Bilgram, Solid-State Physics Laboratory, Swiss Federal Institute of Technology Zurich, Switzerland
(http://ww. dendrites. ethz. ch).
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