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Abstract. We introduce the coarsening of finite element
computational grid strategy into the method proposed by
Kačur and Mikula in [11] for the numerical solution of the
Perona–Malik model modified in the sense of Catté, Lions,
Morel and Coll. It improves the efficiency of the method,
while the solution tends to be more flat during the selective
smoothing process applied to the image. The numerical ap-
proximation consists of Rothe’s method in time and linear
finite elements on unstructured adaptively coarsened meshes
in space.

0 Introduction

An image can be modelled as a real valued functionu0(x),
representing the values of the greylevel intensity, defined in
some rectangular subdomainΩ ⊂ IRd, in practiced = 2
or 3. In the last decade, models based on acting of evo-
lutionary PDE’s tou0(x) have been suggested for special
purposes in image processing and computer vision such as
selective image smoothing, enhancement, restoration, seg-
mentation, edge detection or shape analysis. Such view is
called “image multiscale analysis”, see [1, 3, 13, 20]. It as-
sociates withu(0, x) = u0(x) a “sequence” of simplified im-
agesu(t, x) depending on the abstract parametert > 0, the
scale. Then the scaling of the initial image is understood as
a “running” through the sequence of physical or biological
filters, what causes the extracting of information which may
be relevant e.g. for human perception. Under some reason-
able assumptions (see [1]), the family of nonlinear operators
representing the filtering is the solutionu(t, x) of a nonlin-
ear partial differential equation of degenerate parabolic type.
Famous examples are nonlinear diffusion of Perona–Malik
type ([9, 11, 12, 17, 18]) and generalized mean curvature
motions ([1, 2, 3, 13, 15]). This approach for image process-
ing problems yields the possibility to apply robust numerical
techniques to image analysis.

In this paper, we are dealing with the following problem,
suggested by Catté, Lions, Morel and Coll:

∂tu−∇(g(|∇Gσ ∗ u|)∇u) = f (u0 − u)

in QT ≡ I ×Ω, (0.1)

∂νu = 0 on I × ∂Ω, (0.2)

u(0, ·) = u0 in Ω, (0.3)

whereΩ ⊂ IRd is a bounded domain with Lipschitz con-
tinuous boundary,I = (0, T ) is a scaling (time) interval,
and
g is a Lipschitz continuous function,g(0) = 1 and
0 < g(s) → 0 for s→∞, (0.4)

Gσ ∈ C∞(IRd) is a smoothing kernel with∫
IRd Gσ(x)dx = 1 andGσ(x) → δx for σ → 0,
δx the Dirac measure at pointx, (0.5)
f is a Lipschitz continuous, nondecreasing func-
tion, f (0) = 0, (0.6)

u0 ∈ L2(Ω). (0.7)

(0.1)–(0.3) represent a slight modification of the original
Perona–Malik model, where∇u stands in the place of
∇Gσ ∗ u in (0.1). The Perona–Malik model, called the
“anisotropic diffusion” in image smoothing and edge detec-
tion analysis, selectively diffuses an image in regions, where
the signal is of constant mean in contrast to those regions
where the signal changes its tendency. Here the “time”t
is an abstract time–scale monitoring the filter process, i.e.
bigger values oft meaning stronger filtering. The diffusion
process is governed by the shape of the functiong and its
dependence on∇u which is in some sense an edge indicator,
see [18].

The analysis of the 1d–case (see e.g. [9]) shows that if
the functiong(s)s is decreasing, the Perona–Malik equation
can behave locally like the backward heat equation, which is
an ill–posed problem. So forg’s used in practice, e.g.g(s) =
1/(1 + s2) or g(s) = e−s, both existence and uniqueness of
a solution cannot be obtained.

One way how to preveal that “mathematical” disadvan-
tage has been proposed by Catté, Lions, Morel and Coll in
[9]. They introduce the convolution with the Gaussian kernel
Gσ into the decision process for the value of the diffusion
coefficient. This slight modification (forσ small, the models
are close and in a sense∇Gσ ∗u→ ∇u for σ → 0) allowed
them to prove the existence and uniqueness of the solution
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for the “modified” model. Moreover, the usage of the “Gaus-
sian gradient”, which is used also for other tasks in image
processing [20], makes the process more stable and trans-
parent in the presence of noise. It has made explicit some
“implicit presmoothing” included in numerical realizations
of the Perona–Malik equation, too.

By means off on the right–hand side of (0.1), the so-
lution u is forced to be close tou0 and to tend to some
nontrivial equilibrium, which can weaken the influence of
the stopping timeT . In [17], f (s) ≡ s is proposed. In our
experiments we choosef (s) ≡ 0.

For the numerical solution of (0.1)–(0.3) we use the tech-
nique suggested and analysed in [11]. It is based on the
Rothe’s type approximation in time, using an implicit Euler
scheme and a semi–implicit formulation of the non–linearity.
This time discretization reduces the equation (0.1) to a se-
quence of linear elliptic problems

ui − ui−1

τ
−∇(g(|∇Gσ ∗ ui−1|)∇ui) = f (u0 − ui−1)

in Ω, (0.8)

∂νu
i = 0 on∂Ω, (0.9)

u0 = u0 (0.10)

for i = 1, ..., n, for the unknown functionsui on eachti =
iτ, τ = T

n , n ∈ IN .
(0.8)–(0.9) are understood in the variational sense and on

each discrete time–scale stepti they are projected to a finite
dimensional subspace (e.g. by the finite element method)
and solved by the methods of numerical linear algebra. The
convergence of such approximations to the unique weak so-
lution of (0.1)–(0.3) was proved in [11].

In this paper we improve the efficiency of the method
by the use of adaptively chosen grids on each time–scale
step. Usually, for time dependent problems a modification
consisting of refinement and coarsening steps is necessary
to adjust the grid on a certain time step, see [7]. However,
for our problem it is sufficient to coarsen the initial grid
successively. The whole information about what is known
of the image is contained in the initial grid. On the other
hand there is no spatialmovementof edges etc., hence no
refinements of the grids are needed.

The basis for the coarsening is described for instance in
[6, 10], see also [4]. This access may reduce the computa-
tional effort considerably, as the solution tends to be more
flat with the increasing time–scale (see the experiments in
Sect. 4). The coarsening of the computational grids rapidly
reduces the number of unknowns in the linear systems to be
solved at the discrete time–scale steps of the method. On the
other hand, it leads to a finite element method on unstruc-
tured grids. Due to that fact, we must realize the convolution
involved in the model in a special way.

Let us note that by the term∇Gσ ∗ u in (0.1) we mean∫
IRd

∇xGσ(x − ξ)ũ(ξ)dξ, whereũ is an extension ofu, for

which we assume

‖ũ‖W 1,2(IRd) ≤ C‖u‖W 1,2(Ω). (0.11)

Then the convergence results of [11] for the approximation
scheme (0.8)–(0.9) hold true for kernelsGσ with

∫
IRd

|∇Gσ|2dx ≤ Cσ. (0.12)

We use the fact that if

Gσ(x) =
1

(2
√
πσ)d

e−
|x|2

4σ (0.13)

the fundamental solution of the heat equation, for which
(0.12) is clearly satisfied, then the term∇Gσ ∗ui−1 in (0.8)
is nothing else than the gradient of the solution at timeσ of
the heat equation inIRd with ui−1 as initial datum. Thus we
replace the convolution by solving the heat equation for one
time step with lengthσ on the same computational grid.

After making some comments on the notations in Sect. 1
we introduce the discrete equations for problem (0.1)–(0.3)
in Sect. 2. In Sect. 3 the coarsening finite element strategy
is explained. We conclude the presentation by a discussion
on some numerical examples in Sect. 4.

In this presentation we restrict ourselves to the cased =
2, although our method can be applied also to the three
dimensional case, see [6, 7]. In the three dimensional case
the resulting discretized systems to solve are usually huge
in image processing and therefore some additional attention
has to be given to the problem of efficient linear solvers,
such as multilevel preconditioning or multigrid techniques.

1 Notation

Let Ω ⊆ IR2 be a bounded domain. Denote by(u, v) the
scalar product foru, v ∈ L2(Ω). W 1,2(Ω) is the Sobolev
space ofL2–functions with square integrable weak deriva-
tives.

For Ψ ∈W−1,2 :=
(
W 1,2

)∗
andu ∈W 1,2 we denote by

〈Ψ, v〉 := Ψ (v) the corresponding dual pairing.
For I ⊂ IR an interval andX a Banach (Hilbert) space

we denote byL2(I,X) the Banach (Hilbert) space of mea-
surable, square integrable functions fromI to X.

A triangulation T of Ω is a set of (non–degenerate)
triangles with

⋃
T∈T

T = Ω̄.

A triangulationT is calledconformingif the intersec-
tion of two non–disjoint, non–identical triangles consists ei-
ther of a common vertex or a common edge.

T ∈ T is said to have anon–conforming node, if there
is a vertexP of the triangulation which is not a vertex ofT
but P ∈ T .

A triangulationT has the property ofshape regularity
if max

T∈T
{hT /ρ(T )} ≤ C, with a constantC which is not too

big. Here,hT := diam(T ) and ρ(T ) := max{r | Br ⊂ T}
denotes the radius of the largest ball inscribedT .

2 Discretization scheme

Let (0.4)–(0.7), (0.11)–(0.12) be fulfilled. We are looking for
a weak solutionu of (0.1)–(0.3), i.e. foru ∈ L2(I, V ) with
∂tu ∈ L2(I, V ∗), u(0) = u0 (in the L2(Ω) sense) such that
the identity

〈∂tu, v〉 + (g(|∇Gσ ∗ u|)∇u,∇v) = (f (u0 − u), v) (2.1)
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holds for allv ∈ V and for a.e.t ∈ I, whereV = W 1,2(Ω)
andI = (0, T ) for someT > 0.

To discretize in time, we replace (2.1) by the following
problem (see also [11]): Letτ, σ be given numbers (usu-
ally σ < τ ). For i = 1, . . . n we are looking forui ∈ V
approximating the image intensity function at the discrete
time–scale pointti, iτ , ui ≈ u(iτ, ·), such that

(ui, v) + τ (g(|∇uc|)∇ui,∇v) = (ui−1 + τf (u0 − ui−1), v)

∀v ∈ V (2.2)

whereuc ∈ V replaces the convolutionGσ ∗ ui−1 and is
solution of the problem

(uc, v) + σ(∇uc,∇v) = (ui−1, v), ∀v ∈ V. (2.3)

From the Lax–Milgram theorem it is clear that the solutions
of (2.2)–(2.3) exist for alli = 1, . . . n.

We approximate (2.2)–(2.3) by the finite element method.
For that letT be a conforming triangulation ofΩ, which
has the property of shape regularity. How to generate and
coarsen such a triangulation is the topic of Sect. 3.

Given a triangulationT , we define the setVh ⊆ V
of piecewise linear finite elements,Vh = Vh(T ) := {v ∈
C0(Ω̄)|v|T is linear for allT ∈ T }.

To derive a fully discrete scheme we choose triangu-
lations Ti for each time–scale pointi = 1, . . . n. We are
looking for a functionuih ∈ Vh(Ti) fulfilling

(uih, vh) + τ (g(|∇uch|)∇uih,∇vh)

= (ui−1
h + τf (u0 − ui−1

h ), vh) (2.4)

for all vh ∈ Vh(Ti) whereuch ∈ Vh(Ti) is the solution of

(uch, vh) + σ(∇uch,∇vh) = (ui−1
h , vh) ∀vh ∈ Vh(Ti). (2.5)

By introducing the usual Lagrangian bases of hat functions
ϕj ∈ Vh, determined by

ϕj(xk) = δj,k

for all verticesxk, k = 1, . . . , N of T , N the number of

vertices,uih, u
c
h are given byuih =

N∑
k=1

uikϕk =
N∑
k=1

ui(xk)ϕk

anduch =
N∑
k=1

uckϕk =
N∑
k=1

uc(xk)ϕk.

Then (2.4–2.5) may be written in the form

N∑
k=1

{
(ϕk, ϕj) + τ (g(|∇uch|)∇ϕk,∇ϕj)

}
uik

= (ui−1
h + τf (u0 − ui−1

h ), ϕj)

and
N∑
k=1

{
(ϕk, ϕj) + σ(∇ϕk,∇ϕj)

}
uck = (ui−1

h , ϕj)

for all j = 1, . . . N .
Thus solving (2.4–2.5) means inverting two linear sys-

tems with matrices

M + τA(g(|∇uch|)),
M + σA(11),

Fig. 1. Triangle with refinement edge

Fig. 2. Bisection of a single triangle

with M j,k = (ϕk, ϕj) the mass matrix andA(w)j,k =
(w∇ϕk,∇ϕj) the stiffness matrix. SinceM , A(g(|∇uch|))
andA(11) are symmetric and positive definite it is clear that
the discrete solutions exist and may be computed by a pre-
conditioned conjugate gradient method quite efficiently. In
our computations we used a simple diagonal scaling, which
is not an optimal method. More appropriately one should
use multilevel preconditioning (see for instance [8, 21]) or
multigrid techniques, see for example [14].

3 Coarsening strategy

In this section, we describe how to generate the initial trian-
gulation on which the initial image is given and how to lo-
cally coarsen this triangulation according to a certain coars-
ening criterion.

Usually, the initial image is given as a set of discrete
grey (or RGB) values. That means that the initial triangula-
tion T0 is a uniform grid whereu0 is given on grid cells or
grid points associated with the corresponding grey values.
We generate this initial triangulation by refining a coarse
grid, the macro triangulation. We choose the so calledbi-
section method, which allows for coarsening quite easily and
is explained for instance in [19] and also in [5, 16]. Such
refinement strategies are commonly used in connection with
multi–grid or multi–level methods, see i.g. [4].

The bisection method may be introduced in the following
way:

3.1 Refinement by bisection

Denote byT 0 the macro triangulation.
Before starting the refinement process one edge of every

triangle of the macro–triangulation is marked (see Fig. 1).
This edge is calledrefinement edge. To divide a single tri-
angle, it is cut through the midpoint of the refinement edge
and the vertex opposite to the refinement edge. The new re-
finement edges are choosen opposite to the new vertex (see
Fig. 2).

This very simple process describes how to refine a sin-
gle triangle. Now starting with a macro triangulationT 0

we want to generate a sequence of successively finer trian-
gulations{T k}k until the desired fineness is reached for a
certainT k0 and we may then defineT0 := T k0.
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Fig. 3. T 0, ˆT 0 andT 1

Q

Fig. 4. Resolvable patchM with coarsening nodeQ
and coarsened patch

For that we define the following (global) algorithm:

Refinement algorithm: Start with T 0. Then for everyk
let Σ+ be the set of those triangles, which have to be di-
vided (Σ+ = T k in case of uniform refinement). Then one
bisection step is given by:

while Σ+ 6= ∅ do

bisect all
T ∈ Σ+ as described above, obtain
the intermediate triangulation

ˆT k (possibly non-conforming)
let now Σ+ be the set of those
triangles with a non-conforming
node.

endwhile
T k+1 := ˆT k

Figure 3 shows an exampleT 0 −→ T 1 with initial
Σ+ := T 0.

The crucial point is the question whether the algorithm
terminates and generates a sequence of triangulationsT k

which has the property of shape regularity with a constant
independent ofk. This question is answered by the following
Proposition 1.

Proposition 1 The above algorithm stops in a finite number
of steps,T k+1 is conforming and the sequence{T k}k is
shape regular independent ofk.

Proof: The proof is very simple and can be found for in-
stance in [5].

Remark :Note that there is no compatibility condition for
the initial position of the refinement edges of neighbouring
triangles. A good choice would be the longest edge of each
triangle.

3.2 Local coarsening

We choose the bisection method to generate the starting tri-
angulationT0 because a triangulation which was derived by
a successive application of bisection steps can be derefined
very easily.

We make the following definitions:

Definition:

i.) A simplex T ∈ T has levell if T was obtained after
l refinement steps.

ii.) A simplex T is said to havelocally finest level if the
levels of all neighbours are less than or equal to the
level of T .

iii.) Let T ∈ T and letT ′ be the father ofT . A vertex
P of T which was inserted while bisectingT ′ is called
the coarsening nodeof T .

iv.) Let K be an edge of the triangulationT andK ′ the
“father”–edge ofK with midpointQ. SetM := {T ∈
T |T ∩ K ′ 6= ∅}. If Q is the coarsening node for all
T ∈M thenM is called aresolvable patch.

Figure 4 shows a resolvable patch and the coarsened
patch.

If M is a resolvable patch, then allT ∈ M can be
coarsened without interfering withT ′ ∈ T outside ofM .
Therefore resolvable patches are the configurations which we
allow to be coarsened. This guarantees that the coarsening
process stays local.

We may write the coarsening algorithm in the following
form:

Coarsening algorithm: Let Ti be a triangulation obtained
by refinement and coarsening steps. LetΣ− ⊂ Ti be the
set of triangles to be derefined. Then one coarsening step
consists of:
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Fig. 5. Original and noisy initial image

Fig. 6. Solution and grid after 4 time–scale steps

Fig. 7. Solution and grid after 8 time–scale steps

Fig. 8. Image after 8 time–scale steps, adaptive calculation
(left), calculation on a uniform grid (right)
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Fig. 9. Original and noisy initial image

Fig. 10. Solution and grid after 3 time–scale steps

Fig. 11. Solution and grid after 6 time–scale steps

Fig. 12. Image after 6 time–scale steps, adaptive cal-
culation (left), calculation on a uniform grid (right)
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Fig. 13. Original and noisy initial image

for each T ∈ Σ− do
if T belongs to a resolvable
patch M

if T ′ ∈ Σ− for all T ′ ∈M
derefine M , see
Fig. 4

endif
endif

enddo

Since we only derefine resolvable patches the question
arises whether there are “enough” resolvable patches in an
arbitrary triangulation. In [10] it is shown that under reason-
able assumptions on the distribution of the refinement edges
for T 0 triangles of locally finest levels always belong to
resolvable patches.

In particular we have the following result (see [10]):

Proposition 2 Let the refinement edges inT 0 be choosen
as the longest edges in each triangle. Then, ifT ∈ T k for
k ∈ IN has locally finest level,T belongs to a resolvable
patch.

By Proposition 2 it is clear that by successive application of
the coarsening algorithm it is always possible to go back to
the macro triangulation.

3.3 Coarsening criterion and adaptive method

As the local behaviour of∇u determines the evolution pro-
cess and is an indicator for edges, the coarsening criterion
is based on this value. More precisely, letε > 0 be a given
tolerance. Fori a time–scale step anduih the correspond-
ing numerical solution on the gridTi we allow all triangles
T ∈ Ti to be coarsened, if

hT |∇uih| ≤ ε on T. (3.1)

Note that sinceuih is piecewise linear,∇uih is constant on
each triangle.

Thus we have the following adaptive scheme to approx-
imate (0.1–0.3):

Fig. 15. Image after 9 time–scale steps, adaptive calculation (left), calcula-
tion on a uniform grid (right)

Let T0, u0 be given.

for i = 1, 2, . . . n do
set up the matrix M + σA(11)
compute uch ∈ Vh(Ti) solving (2.5)
set up the matrix M + τA(g(|∇uch|))
compute uih ∈ Vh(Ti) solving (2.4)
set Σ− := {T ∈ Ti | hT |∇uih| ≤ ε on T}
derefine Ti according to Σ− to
obtain Ti+1

enddo

4 Discussion on numerical experiments

In this section, we present some examples with an initial
imageu0 which is derived from an original image ˆu0 by
adding some noise:

u0(x) = (1 +δψ(x))û0(x),

with δ ∈ [0, 1] andψ a (pseudo) random function with values
in [0, 1].

Throughout this section we useg(s) =
1

1 + s2
andf ≡ 0.

The first example consists of 4 simple patterns which
are perturbed by 60% noise, i.e.δ = 0.6. Figure 5 shows
the original image and the noisy one, which are given on
a 257× 257 mesh that is, the initial gridT0 consists of
66049 nodes. The following parameters were used for the
computation:

τ = 0.01, σ = 0.001, ε = 0.07

for the coarsening criterion in 3.1.

Figures 6–7 show the solution after 4 and 8 time–scale
steps together with the corresponding grids. A comparison
of the solution obtained by the adaptive procedures and by a
calculation on the fixed initial grid after 8 time–scale steps
is given in Fig. 8. The corresponding CPU–times on a SGI
workstation are reported in Table 1. Table 2 shows the de-
crease of the number of unknowns during the time evolution.

Thesecond exampleis less academic. The initial picture
is given on a 513× 513 mesh (see Fig. 9).
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Fig. 14. Solutions and grids after 5 and 9 time–scale
steps

Table 2. Decrease of unknowns, Example 1

time step 1. 2. 3. 4. 5. 6. 7. 8.
] unknowns 66049 65539 61490 41939 12225 8943 8002 7797

Table 1. Comparison of CPU time for adaptive/fixed mesh strategies, Ex-
ample 1

SGI RS 4400
adaptive 152 sec

fixed mesh 418 sec

Table 3. Comparison of CPU time for adaptive/fixed mesh strategy, Exam-
ple 2

SGI RS 4400
adaptive 570 sec

fixed mesh 1875 sec

We used the parameters

τ = 0.004, σ = 0.002, ε = 0.07, δ = 0.6.

The results are shown in Figs. 10 and 11 after 3 and 6
time–scale steps respectively. Clearly some fine details of
the image are lost, however, the essential information of the
image is kept during the time evolution.

Figure 12 shows a comparison of the results obtained
by the adaptive strategy and a calculation on a fixed mesh.
Again the results are quite similar. The reduction of the
computational effort is reported in Tables 3–4.

Thethird example is quite a hard numerical test problem
due to a lot of fine details. As before, Fig. 13 shows the
original and noisy initial image, Fig. 14 the result of the
computation after 5 resp. 9 time–scale steps and Fig. 15 the
comparison with the numerical solution on a fixed mesh.

This computation is performed with

τ = 0.004, σ = 0.002, ε = 0.085, δ = 0.6.

Table 4. Decrease of unknowns, Example 2

time step 1. 2. 3. 4. 5. 6.
] unknowns 263169 250919 134729 69152 51891 44439

Table 5. Comparison of CPU time for adaptive/fixed mesh strategy, Exam-
ple 3

SGI RS 4400
adaptive 312 sec

fixed mesh 875 sec

5 Conclusions

We introduced a coarsening finite element strategy for the
modified Perona–Malik model in image processing. The
techniques stems from a general adaptive finite element ap-
proach for time dependent problems. This coarsening strat-
egy is capable of improving the efficiency of image smooth-
ing by nonlinear diffusion considerably. It was shown that
the number of unknowns decreases rapidly even after only
a few smoothing steps.
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