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DISCRETE DUALITY FINITE VOLUME METHOD WITH TANGENTIAL
REDISTRIBUTION OF POINTS FOR SURFACES EVOLVING BY MEAN

CURVATURE

Lukáš Tomek1,∗ and Karol Mikula1

Abstract. We propose a new discrete duality finite volume method for solving mean curvature flow
of surfaces in R3. In the cotangent scheme, which is widely used discretization of Laplace–Beltrami
operator, a two-dimensional surface is usually approximated by a triangular mesh. In the cotangent
scheme the unknowns are the vertices of the triangulation. A finite volume around each vertex is
constructed as a surface patch bounded by a piecewise linear curve with nodes in the midpoints of
the neighbouring edges and a representative point of each adjacent triangle. The basic idea of our new
approach is to include the representative points into the numerical scheme as supplementary unknowns
and generalize discrete duality finite volume method from R2 to 2D surfaces embedded in R3. To
improve the quality of the mesh we use an area-oriented tangential redistribution of the grid points.
We derive the numerical scheme for both closed surfaces and surfaces with boundary, and present
numerical experiments. Surface evolution models are applied to construction of minimal surfaces with
given set of boundary curves.
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1. Introduction

The main goal of the paper is to derive a Discrete duality finite volume (DDFV) method for numerical
solution of the mean curvature flow of surfaces in R3

∂tϕ = 4gϕ
ϕ, (1.1)

where ϕ is a position vector of a point on the surface, ∂tϕ is the velocity of the point, h = 4gϕ
ϕ is the mean

curvature vector in the point ϕ and 4gϕ denotes the Laplace–Beltrami operator. We enrich the mean curvature
flow with suitable tangential velocity in order to redistribute the mesh points along the surface, which is crucial
for stability of numerical computations. The redistribution technique proposed for our DDFV method is based
on the area-oriented tangential redistribution. For the cotangent scheme it was developed in the paper [27] for
closed surfaces and it was also used for surfaces with boundary by Tomek et al. [43].
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Figure 1. Left panel: vertex-centered approach, unknowns at vertices of the primal mesh (blue)
and a dual cell (finite volume) associated to a vertex (grey). Right panel: cell-centered approach,
unknowns at centers of the primal mesh and a primal cell (green) (Color online).

The mean curvature flow (1.1) may be regarded as a sort of geometric heat equation. On the other hand, the
mean curvature flow is not really equivalent to a heat equation, since the Laplace–Beltrami operator evolves
with the surface itself.

The mean curvature flow was originally proposed as a model for description of the evolution of the interfaces
in multiphase physical models (see [33]). Since minimal surfaces (surfaces with zero mean curvature) are the
critical points for the mean curvature flow, one can use the mean curvature flow as a tool for constructing
minimal surfaces with given boundary curve. Such surfaces are used, e.g., in architecture (see [21, 36, 47]). The
problem of finding a minimal surface with given set of boundary curves is called the Plateau problem, named
after the Belgian physicist J.A.F. Plateau who made experimental studies of soap films (see [38]). Convergence of
discrete approximations of minimal surfaces was explored in [13,39,44]. Algorithms based on the mean curvature
flow have also been developed in the field of digital image processing because of the “regularizing effect” due to
its parabolic nature (see [1, 7, 26]).

Two basic approaches are used for solving manifold evolution problems (including mean curvature flow of
surfaces in R3), the Lagrangian approach that evolves the manifold directly (see [2,12,15,27]) and the Eulerian
(level set) approach that, in general, considers the n-dimensional manifold as a level set of a function of n+ 1
variables (see [7, 16,26,35,40]). This work follows the Lagrangian approach.

The numerical methods for solving the equation (1.1) are usually based on a finite element method (see
[2, 12, 14]) or a finite volume method (see [21, 25, 27]). In this work we deal with finite volume methods. Given
a (primal) mesh, finite volume methods for the equation (1.1) may be classified into two main distinct categories:
“vertex-centered” methods and “cell-centered” methods. Vertex-centered methods compute approximate values
of ϕ at the vertices of the primal mesh by integrating the time-discretized version of equation (1.1) on dual
cells (finite volumes) associated to the vertices of the primal mesh (Fig. 1, left). On the opposite, cell-centered
methods compute approximate values of ϕ at the centers of the cells of the primal mesh by integrating the
equation on the primal cells (Fig. 1, right). For a review of these methods, we refer to [17]. Regarding the
placement of cell centers, many choices are available. One can use the barycenter or circumceter of the triangle,
or apply quite recent approach called Hodge-optimized triangulations [32].

In the paper [9] the authors study a specific cell-centered method, the so-called diamond-cell method. A dia-
mond cell is a quadrilateral cell associated with an edge of the primal mesh and is obtained by joining the two
vertices of this edge with the centers of the two cells of the primal mesh which share this edge (Fig. 2). In finite
volume methods, the integral of4ϕ over the primal cell is rewritten using the divergence theorem to the integral
of ∇ϕ · ν over the boundary of the cell, ν denoting the outward normal to the boundary of the cell. Therefore
one needs an approximation of ∇ϕ on the edges of the primal mesh. The gradient ∇ϕ is approximated by the
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Figure 2. A diamond cell (red) associated to an edge of the primal mesh (blue) (Color online).

Figure 3. Discrete duality method, unknowns both in vertices and and cell centers of the
primal mesh (Color online).

mean value of the gradient over a diamond cell, which is defined with the help of the values of the function ϕ
at the centers and at the vertices of the primal cells. The discrete solution at the vertices of the primal mesh is
computed by an interpolation of its values at the centers of the neighbouring cells. The advantage of this scheme
is that it can be used on almost arbitrary two-dimensional grids and extends naturally to three dimensions.

In the papers [10, 11, 18] the authors develop a discrete duality finite volume (DDFV) method which is
a fusion of the vertex-centered and cell-centered approach. They start by adopting the diamond-mesh technique
to reconstruct the gradient ∇ϕ, but instead of interpolating the values of ϕ at the vertices of the primal mesh,
they consider these values as supplementary unknowns of the numerical scheme (Fig. 3). Therefore, they also
have to write an equivalent number of supplementary equations. These are obtained by integrating the equation,
not only on the cells of the primal mesh, but also on the cells of the dual mesh. In both integrations the same
approximation of the gradient ∇ϕ is used. Since the approximation of the gradient on a diamond cell uses the
values of ϕ in vertices as well as cell centers of the primal mesh, the final system of equations is coupled.

Note that even if the DDFV approach starts by fixing a primary mesh and constructing successively the dual
and diamond meshes, the diamond mesh can be interpreted as a central object since its choice fixes both primal
and dual meshes.

In this paper we present a DDFV method for surfaces embedded in R3. Contrarily to the standard setting
of heat-like parabolic equations, in our problem (1.1) the mesh evolves with the solution itself. It is therefore
reasonable to monitor the location of the cell centers at each time step. Our idea is to let the PDE itself
evolve the mesh centers rather than to make simple ad hoc choices like sticking to barycenter at each time
step. Another important motivation for a new finite volume method for the mean curvature flow rises from
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the fact that the finite volumes in the widely used vertex-centered method, the so-called cotangent scheme (see
[25]), are not defined uniquely, which leads to non-uniqueness of the definition of the mean curvature. This can
cause a serious problem, because the mean curvature is often used in further calculations (e.g. in tangential
redistribution techniques). The non-uniqueness is following: the “cell center” of a triangle (cell of the primal
mesh) used for the construction of the finite volume (cell of the dual mesh) can lie anywhere in the triangle
and the integral of the term 4gϕ

ϕ in (1.1) over the finite volume is the same. Since, in the discrete differential
geometry, the mean curvature vector is then approximated by dividing the integral by the area of the finite
volume (which is not defined uniquely), it leads to a nonunique value of the mean curvature depending on
the choice of the “cell center”. In our scheme we remove this non-uniqueness by including the cell centers to
unknowns of the numerical scheme.

To improve the quality of the discretization mesh, which is crucial for stability and precision of computation
in Lagrangian approach, various techniques for tangential redistribution of points have been developed for curves
evolving in two dimensions (see [3, 5, 20, 23, 29, 41, 46]), three dimensions (see [19, 28]) or on 2D surfaces (see
[6, 30,34]). A lot of work has been done for surfaces evolving in R3 (see [2, 22,31]).

The DDFV method for mean curvature flow of surfaces with no tangential redistribution was outlined in a
conference proceedings paper, see [42]. In this paper we provide a derivation of the scheme with all details and
develop a suitable tangential redistribution for DDFV method.

The text of this paper is organized in four main sections. In Section 2 we introduce the mathematical
model. Some parts of this section can be found in the papers [27, 42, 43] but to make the text self-content we
summarize the ideas also here. In the Section 3 we review well known cotangent scheme and give a motivation
for a new scheme. In the Section 4 we present a Discrete duality finite volume method with an area-oriented
tangential redistribution. Complete derivation of the numerical scheme is in Section 4.1 and discretization of the
tangential velocity is in Section 4.2. The Section 5 gives numerical experiments illustrating the basic properties
of the method and the effect of the tangential redistribution. Both experiments with closed surfaces as well as
surfaces with boundary are included. The method is applied to construction of several minimal surfaces with
given set of boundary curves. Some experiments from [42] are present also in this paper with the purpose of
comparison to the experiments with tangential redistribution.

2. Mathematical model

2.1. Manifold evolution

Let ϕ0 : X → Y be a smooth immersion of a m-dimensional Riemannian manifold (X, gX) into n-dimensional
Riemannian manifold (Y, gY ), m ≤ n. The evolution of X0 = ϕ0(X) is a one-parameter family of immersions
ϕ : X × [0, tf ]→ Y . Given a fixed point x ∈ X, the map x 7→ ϕ(x) = ϕ(x, .), is a smooth curve on Y . Let vt(x)
denote the vector tangential to the curve at the point ϕt(x) = ϕ(x, t) (see Fig. 4), where the map ϕt : X → Y
represents a selected immersion from the whole family of immersions. The map v : X× [0, tf ]→ TY , where TY
is the tangent bundle of Y , represents the velocity field of the evolution. Thus, the map ϕ is a solution of the
equation

∂tϕ = v. (2.1)

The evolution equation (2.1) is coupled with an initial condition ϕ(x, 0) = ϕ0(x) and, for a manifold X with
boundary, with a Dirichlet boundary condition

ϕ(x, t) = ϕ0(x), x ∈ ∂X, t ∈ [0, tf ], (2.2)

meaning the boundary is static. It is convenient to rewrite the velocity v in the form

∂tϕ = vN + vT , (2.3)

where vN and vT are the velocities of the evolution in the normal and tangential direction to the immersed
manifold Xt = ϕt(X) respectively (Fig. 4). Whereas the normal velocity vN has an effect on the position and
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Figure 4. Evolution of a manifold X in a manifold Y .

the shape of the immersed manifold Xt, the tangential velocity vT only moves the points along Xt. In the
discrete setting, the tangential velocity vT can be designed to control the distribution of the mesh vertices,
which becomes crucial in numerical computations. An inappropriate placement of the mesh vertices can lead to
unacceptable errors or even to a crash of the computation process.

2.2. Mean curvature flow

The special type of the evolution model (2.3) is the mean curvature flow of surfaces in R3. That means, X is
a two-dimensional manifold (possibly with boundary) and Y = R3 with standard Euclidean metric tensor gY
(i.e. gY (u, v) = u · v, with dot denoting the standard inner product of vectors u, v ∈ R3). The unknown ϕ(x, t)
is a position vector in R3 which satisfies the evolution model

∂tϕ = h, (2.4)
with ϕ(x, 0) = ϕ0(x), x ∈ X,

which means the flow is driven by the normal velocity field vN = h, where the quantity h(x, t) = H(x, t)N(x, t)
is called mean curvature vector, with H(x, t) and N(x, t) being respectively the mean curvature and the unit
normal2 of the surface Xt = ϕt(X) at the point x ∈ X, see Figure 5. The mean curvature at a given point is
the sum of the principal curvatures

H = κmax + κmin. (2.5)

In case of the closed surface, the model (2.4) leads to a shrinking of the volume enclosed by the surface.
For a surface with boundary, the model (2.4) is coupled with a Dirichlet boundary condition (2.2). The mean
curvature vector can be computed from the embedding ϕ using the formula (see e.g. [24])

h = 4gϕ
ϕ, (2.6)

where 4gϕ denotes the Laplace–Beltrami operator associated with the metric tensor gϕt = (ϕt)∗gY induced
by the immersion ϕt, where (ϕt)∗ denotes the pullback by ϕt. To simplify the notation we usually omit the
time index t if gϕt is a subscript (as in Laplace–Beltrami operator in (2.6)). Using (2.6) we can rewrite the

2The orientation of the normal does not matter in this paper, because we will use the formula (2.6) to calculate the mean
curvature vector and the mean curvature will be calculated as H = h ·N . However, one has to be careful when reading literature.
Depending on the author’s convention, the model (2.4) reads ∂tϕ = HN or ∂tϕ = −HN . If the outward normal is considered, the
model ∂tϕ = −HN is correct, so that the sphere (being a surface with constant positive mean curvature) shrinks under the mean
curvature flow.
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Figure 5. Evolution of a 2-dimensional manifold X in R3.

model (2.4) to the form

∂tϕ = 4gϕ
ϕ,

with ϕ(x, 0) = ϕ0(x), x ∈ X.
(2.7)

2.3. The area-oriented tangential redistribution

In our problem only the normal velocity of the evolution is given, v = HN . Thus we can enrich the model
(2.7) with a suitable tangential velocity vT

∂tϕ = 4gϕϕ+ vT (2.8)

in order to control the mesh quality of the discretized evolving manifold.
On the manifold X we have the metric gX and the measure ξ induced by gX . The metric tensor gϕt induces

another measure χϕt on X. These two measures are related by the following formula

dχϕt = Gtdξ, (2.9)

where the map Gt is called volume density of the immersion ϕt in general, and in case of evolving surfaces we
will call it area density. The area of a measurable set U ⊆ X is calculated as

χϕt(U) =
∫
U

dχϕt =
∫
U

Gtdξ. (2.10)

Specially, the global area of X measured by the measure χϕt is

At =
∫
X

dχϕt =
∫
X

Gtdξ. (2.11)

In the paper [27] the authors design an area-oriented tangential redistribution to control the relative area

χϕt(U)
At

(2.12)

of any subset U ⊆ X throughout the evolution. Since the subset U is arbitrary, controlling the relative areas
implies controlling the ratio

Gt(x)
At

, for almost all x ∈ X. (2.13)
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In order to investigate (and control) the evolution of the ratio (2.13) we need to calculate the time derivative
of the area density Gt and the total area At. According to Bauer et al. [4], the area density Gt satisfies the
following equation

∂tG = (−gY (vN , h) + divgϕ
wT )G, (2.14)

where wT is the tangential vector field on X and the operator divgϕ
represents the divergence on X associated to

the induced metric gϕ. The tangential vector field vT on Xt ⊂ Y is obtained as vT = ϕt∗wT , i.e. the pushforward
of wT along the map ϕt. From (2.14) we get the evolution equation for the global area

∂tA = −
∫
X

gY (vN , h)dχϕ +
∫
∂X

gϕ(wT , ν)dHχ, (2.15)

where Hχϕt is the (m − 1)-dimensional Hausdorff measure on ∂X induced by χϕt and ν is the outward unit
normal (with respect to gϕ) to the boundary ∂X. In case of a closed surface (∂X = ∅) the second integral
vanishes. In case of a manifold with static boundary, the component of the tangential velocity wT normal to
the boundary vanishes

gϕ(wT , ν)|∂X = 0, (2.16)

so for both cases the formula (2.15) reduces to

∂tA = −
∫
X

gY (vN , h)dχϕ. (2.17)

If we want to conserve the relative areas, we can require (see [27,46])

∂t

(
G

A

)
= 0. (2.18)

Using the formulas (2.14) and (2.17) in (2.18) we obtain the equation for divergence of the tangential velocity

divgϕ
wT = gY (vN , h)− 〈gY (vN , h)〉χϕ

, (2.19)

where 〈 . 〉χϕ
denotes the mean over X with respect to the measure χϕ, i.e.

〈gY (vN , h)〉χϕ =
1
A

∫
X

gY (vN , h)dχϕ. (2.20)

From a discrete point of view, the relative area conserving redistribution (2.19) might be convenient if we are
satisfied with the initial quality of the discretization of X (in sense of relative areas) and want to preserve the
relative areas of the polygons.

In many situations it is practical to have some sort of uniform discretization. For example, uniform mesh
is appropriate for surfaces with constant mean curvature, e.g. minimal surfaces (having zero mean curvature)
which will be constructed in this paper. In terms of area density, a uniform discretization satisfies

Gt(x)
At

−→
t→∞

C, for almost all x ∈ X, (2.21)

where C ∈ R+, i.e. the relative areas become constant over X as the time tends to infinity. The value of the
constant C can be computed easily. The equation (2.11) implies

∫
X
Gt

At dξ = 1, taking the limit t → ∞ gives
C
∫
X

dξ = 1 and therefore C = 1
ξ(X) , where ξ(X) =

∫
X

dξ is the total area of X computed with respect to the
measure ξ. The limit (2.21) holds, e.g., if the ratio G/A is a solution of the following equation (see [27,29])

∂t

(
G

A

)
=
(
C − G

A

)
ω, (2.22)
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where ω is a nonnegative constant controlling the speed of the redistribution. Combining (2.22) with (2.14) and
(2.17) one gets the formula for divergence of wT

divgϕ
wT = gY (vN , h)− 〈gY (vN , h)〉χϕ

+
(
C
A

G
− 1
)
ω. (2.23)

Note that since the condition (2.18) is a special case of (2.22) for ω = 0, the formula (2.19) for relative area
preserving redistribution can be achieved from (2.23) as a special case.

The conditions (2.19) and (2.23) do not determine wT uniquely. We assume that velocity field wT is a gradient
field

wtT = ∇gϕtψ
t, (2.24)

where ψt : X → R is a potential of the vector field wtT . Under this assumption, we get the following equation
for velocity potential ψt

4gϕ
ψ = gY (vN , h)− 〈gY (vN , h)〉χϕ

(2.25)

for the relative area preserving redistribution and

4gϕ
ψ = gY (vN , h)− 〈gY (vN , h)〉χϕ

+
(
C
A

G
− 1
)
ω (2.26)

for the asymptotically uniform redistribution. In order to guarantee the uniqueness of ψt, the equation (2.25)
or (2.26) is accompanied with an appropriate condition. We may prescribe the value of ψt in one selected point

ψt(p) = 0, p ∈ X. (2.27)

We could use ψt(p) = c with any c ∈ R, because the gradient wtT = ∇gϕtψ
t is independent of this choice.

The other possibility is to fix the mean value of ψt over X

〈ψt〉χϕt =
1
A

∫
X

ψt(x)dχϕt = 0. (2.28)

Additionally, for manifolds with (static) boundary, for which (2.16) holds, we have a boundary condition for
ψt. Since the velocity wT has the form (2.24), we have

gϕ(∇gϕ
ψ, ν)|∂X = 0, (2.29)

which is a natural Neumann boundary condition for ψt.

2.4. Elimination of a numerical tangential velocity

Our basic model is the mean curvature flow

∂tϕ = h. (2.30)

We can rewrite the model into the form

∂tϕ ·N = h ·N,
(∂tϕ · T1)T1 + (∂tϕ · T2)T2 = 0, (2.31)

where T1, T2 are vectors tangent to the surface and the vectors T1, T2, N form an orthonormal basis at each
point of the surface. From the analytical point of view, the forms (2.30) and (2.31) are equivalent, because

∂tϕ = (∂tϕ ·N)N +
2∑
i=1

(∂tϕ · Ti)Ti = (h ·N)N = HN = h.
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The difference seems to be only formal: in the equations (2.31) the normal and (zero) tangential velocity is
prescribed separately and in (2.30) we prescribe the total velocity vector ∂tϕ. However, the forms differ in the
discrete setting. The mean curvature vector h = HN is replaced by the Laplace–Beltrami operator h = 4ϕϕ
and after discretization, the vector 4ϕϕ does not necessarily point in the normal direction, due to distretization
errors. Using (2.31) we obtain

∂tϕ = (∂tϕ ·N)N +
2∑
i=1

(∂tϕ · Ti)Ti = (4ϕϕ ·N)N. (2.32)

In equation (2.32) the total velocity vector ∂tϕ necessarily points in the normal direction (regardless of
the discretization), because the vector 4ϕϕ is projected onto the normal. Therefore, any tangential motion is
prohibited. For a future reference in Section 4 we rewrite the model (2.32) by adding zero to the right-hand side

∂tϕ = 4ϕϕ−
(
4ϕϕ− (4ϕϕ ·N)N

)
= 4ϕϕ−

(
h− (h ·N)N

)
.

(2.33)

In the discrete setting, the term
(
h− (h ·N)N

)
represents the numerical tangential velocity (if it is present).

3. Cotangent scheme and motivation for a new method

In this section we outline a discretization of the model (2.8) by a finite volume technique. The Laplace–
Beltrami term is discerized by the broadly used cotangent scheme (see [25]).

To discretize the model (2.8) in the time domain, we apply a semi-implicit approach. The time derivative is
approximated by a finite difference, and the Laplace–Beltrami operator and the tangential velocity are taken
from the previous time step. If τ is the time step, N = tf/τ is the number of time steps, tn = nτ and
ϕn = ϕ(·, tn), we obtain

ϕn − ϕn−1

τ
= 4ϕn−1ϕn + vn−1

T (3.1)

for n = 1, . . . , N , where the symbol 4ϕn−1 denotes the Laplace–Beltrami operator from the previous time step
with respect to the metric gϕn−1 induced by ϕn−1.

The space discretization is performed using a finite volume method. We consider a triangulation X̄ of the
manifold X, which is a simplical complex homeomorphic to X. Corresponding homeomorphism ρ : X̄ → X
induces a triangular structure on X consisting of vertices xi = ρ(x̄i), i = 1, . . . , nF , edges ej , j = 1, . . . , nE and
triangles Tp, p = 1, . . . , nT , where x̄i, i = 1, . . . , nF are the vertices of the triangulation X̄.

The surface Xn = ϕn(X) is also endowed with a triangular structure induced by the map ϕn ◦ ρ (Fig. 6,
sketched by solid lines). We define an approximation of Xn using a new embedding ϕ̄n : X → R3. For a triangle
Ti,p with vertices xi, xi,p, xi,p+1 we set

ϕ̄n (x) = (1− λ− µ)Fni + λFni,p + µFni,p+1, x ∈ Ti,p, (3.2)

where Fni = ϕn(xi), Fni,p = ϕn(xi,p) and λ ∈ [0, 1], µ ∈ [0, 1 − λ] are the local coordinates of a point x ∈ Ti,p
(Fig. 7, right). The surface X̄n = ϕ̄n(X) is a polyhedral approximation of Xn (Fig. 6, sketched by dashed lines)
with vertices Fni = ϕn(xi) = ϕ̄n(xi), edges enj = ϕ̄n(ej) and triangular faces T np = ϕ̄n(Tp).

The finite volume mesh (Fig. 8, right) is constructed by the barycentric subdivision of X. The finite volume
(or covolume) Vi around a vertex xi is a region bounded by the piecewise linear curve joining the barycenters
bi,p of the neighbouring triangles and the midpoints ci,p of the edges leading to the neighbouring vertices xi,p,
p = 1, . . . ,mi where mi is the number of neighbours of the vertex xi,p (Fig. 7, left)3. The boundary edges of
the covolume Vi are denoted by σi,p,1, σi,p,2, and the outward unit normals by νi,p,1, νi,p,2 respectively. For the
sake of simplicity we omit the index i in most cases.

3The barycentric subdivision is effectively constructed on X̄n and “pulled back” to X. In absence of the embedding ϕ̄n : X → R3

and induced metric gϕ̄n = ϕ̄n∗gY (gY represents the standard Euclidean metric in R3), the notions as “piecewise linear curve” and
“barycenter” would not have any meaning.
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Figure 6. Triangulated surface from the point of view of the differential geometry (schematic
sketch).

Figure 7. Left panel: the finite volume Vi around the vertex xi. Right panel: the local coordi-
nates on a triangle Ti,p.

Figure 8. A discretization of the sphere S2 embedded in R3. Left panel: the triangulation
X̄n. Right panel: the triangulation X̄n and the boundaries ϕ̄n(∂Vi) of the finite volumes Vi, i =
1, . . . , nF .

To obtain the equation for Fni , i.e. the position of the i-th vertex in n-th time step, we take the equation
(3.1) with ϕn being replaced by its piecewise linear approximation ϕ̄n and integrate it over a finite volume Vi.
On the left-hand side we get

.

∫
Vi

ϕ̄n − ϕ̄n−1

τ
dχϕ̄n−1 ≈ An−1

i

Fni − F
n−1
i

τ
, (3.3)
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Figure 9. Path independence of the integral from ci,p to ci,p+1.

where χϕ̄n−1 is the measure on X induced by the metric tensor gϕn−1 and ϕ̄n(x) was approximated by its value
in the vertex xi, thus ϕ̄n(x) ≈ Fni for x ∈ Vi. The symbol Ani ≡ χϕ̄n−1(Vi) denotes the area of the finite volume
Vi. For the Laplace–Beltrami term on the right-hand side we have∫

Vi

4ϕ̄n−1 ϕ̄n dχϕ̄n−1 =
∫
∂Vi

gϕ̄n−1

(
∇ϕ̄n−1 ϕ̄n, νn−1

i

)
dHχϕ̄n−1

=
mi∑
p=1

∑
s=1,2

∫
σp,s

gϕ̄n−1

(
∇ϕ̄n−1 ϕ̄n, νn−1

p,s

)
dHχϕ̄n−1 , (3.4)

where ∇ϕ̄n−1 denotes the gradient with respect to the metric gϕ̄n−1 , νn−1
p,s is the outward unit normal to σn−1

p,s

and Hχϕ̄n−1 is the Hausdorff measure on ∂Vi induced by χϕ̄n−1 . Notice that since ϕ̄n is piecewise linear, the
gradient ∇ϕ̄n−1 ϕ̄n is constant on each Ti,p. For the tangential velocity term we use the following approximation∫

Vi

vn−1
T dχϕ̄n−1 ≈ An−1

i vn−1
T,i , (3.5)

where vn−1
T,i is the tangential velocity of the vertex Fn−1

i .

3.1. Path independence of the integral from ci,p to ci,p+1

We integrate 4ϕ̄n−1 ϕ̄n over a region Ω ⊂ Ti,p, such that σp,1, σp,2 ⊂ ∂Ω (see Fig. 9, left). Since the map ϕ̄n−1

is linear on Ti,p we have 4ϕ̄n−1 ϕ̄n = 0 and therefore (the index n is omitted)

0 =
∫
Ω

4ϕ̄ϕ̄dχϕ̄ =
∫
∂Ω

gϕ̄ (∇ϕ̄ϕ̄, ν) dHχ

=
∑
s=1,2

∫
σp,s

gϕ̄ (∇ϕ̄ϕ̄, νp,s) dHχ +
∫
σp

gϕ̄ (∇ϕ̄ϕ̄,−νp) dHχ,
(3.6)

where −νp is the outward unit normal on σp (Fig. 9, left). The relation (3.6) implies∑
s=1,2

∫
σp,s

gϕ̄ (∇ϕ̄ϕ̄, νp,s) dHχ =
∫
σp

gϕ̄ (∇ϕ̄ϕ̄, νp) dHχ, (3.7)

which means that we can replace the integration path σp,1 ∪ σp,2 by any other simple path connecting ci,p with
ci,p+1.

Consequently the integral (3.4) depends only on the position of the vertices xi, xi,p, xi,p+1 of the triangle Ti,p
and is independent of the exact shape of the path between the midpoints ci,p, ci,p+1. The point bi,p can be shifted
anywhere inside Ti,p and the integral remains untouched. In the DDFV method we reduce this non-uniqueness
by including the vertex Tni,p = ϕ̄n(bi,p) to unknowns.
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Figure 10. Notation around the vertex Fi.

3.2. Fully discrete formulation

If one calculates the integral in (3.4) (see, e.g., [25] or [43] for details), one obtains a system

an−1
i Fni +

mi∑
p=1

bn−1
i,p Fni,p = Fn−1

i + τvn−1
T,i (3.8)

for i = 1, . . . , nF and n = 1, . . . , N , where

an−1
i = 1 +

τ

2An−1
i

mi∑
p=1

(
cot θn−1

i,p,1 + cot θn−1
i,p,2

)
bn−1
i,p = − τ

2An−1
i

(
cot θn−1

i,p−1,1 + cot θn−1
i,p,2

) (3.9)

for p = 1, . . . ,mi, where by convention θn−1
i,0,1 = θn−1

i,mi,1
(see Fig. 10 for the notation of the angles and vertices).

A formula for the discrete tangential velocity vn−1
T,i is derived in [27,43]. In case of a surface with boundary, the

Dirichlet boundary condition (2.2) is realized trivially by replacing the corresponding equations in the system
(3.8) with

Fni = Fn−1
i for each Fni ∈ ∂X̄n. (3.10)

In some cases the tangential motion along boundary may be desirable but, for simplicity, we fix the boundary
points in this paper. The equations (3.8) (or (3.8) and (3.10) for surfaces with boundary) form a system of nF
linear equations for the unknowns Fni , i = 1, . . . , nF . The initial positions of the vertices F 0

i are given by the
initial condition, i.e. F 0

i = F 0(xi).

4. Discrete duality finite volume method

In this section we present a Discrete duality finite volume (DDFV) method for solving mean curvature flow
(model (2.8)). We provide the method with a suitable area-oriented tangential redistribution.
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Figure 11. The edges of the original mesh (blue lines) and the edges of the diamond mesh
(red lines) in the neighbourhood of the vertex Fi (Color online).

Figure 12. The discretization of the sphere S2 embedded in R3. Left panel: the triangular
mesh X̄n for the cotangent scheme. Right panel: the diamond mesh X̄n for the DDFV method.

4.1. Discretization of the mean curvature flow

To discretize the model (2.8) in the time domain we adopt the semi-implicit approach from Section 3, i.e. we
use the discretization (3.1). The space discretization is described in the following sections.

4.1.1. Diamond mesh

In our approach we modify the triangular mesh X̄n introduced in Section 3. We create a representative point
Tni of each triangle T ni (Fig. 11). The point Tni does not need to lie in the triangle, only its projection to the
hyperplane containing the triangle T ni does.

The vertices Fni , i = 1, . . . nF and Tni , i = 1, . . . nT will be referred to as F -vertices and T -vertices respectively.
Next, the triangular mesh is replaced by a diamond mesh which is constructed as follows. The edges of the
diamond mesh (see Figs. 11 and 12, right) are the line segments joining each F -vertex with all neighbouring
T -vertices (i.e. the representative points of the former neighbouring triangular faces). For a manifold with
boundary, the edges connecting boundary F -vertices are also included to the diamond mesh (Fig. 13, right).
The basic geometric object is a diamond cell, denoted by V D, which is a surface patch bounded by four edges
(Fig. 14). For a manifold with boundary, the boundary diamond cells V D are triangles with two F -vertices and
one T -vertex (Fig. 13, right).

The manifold X̄ and the homeomorphism ρ : X̄ → X are changed analogously. The homeomorphism ρ induces
a new structure on X with vertices xi, i = 1, . . . , nF and bi, i = 1, . . . , nT . For the embedding ϕ̄n : X → R3 of
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Figure 13. Left panel: the local coordinates on an inner diamond cell on X. Right panel:
a boundary diamond cell on X̄n.

Figure 14. The geometry of a diamond cell. Left panel: a diamond cell on the manifold X.
Right panel: ϕ̄-image of a diamond cell on X̄n.

a diamond cell V D with vertices x1, b1, x2, b2 we use a bilinear interpolation

ϕ̄n (x) = (1− λ)(1− µ)Fn1 + λµFn2 + λ(1− µ)Tn1 + (1− λ)µTn2 , x ∈ V D, (4.1)

where Tni = ϕn(bi), Fni = ϕn(xi) and λ, µ ∈ [0, 1] are the local coordinates of a point x ∈ V D (Fig. 13, left).
The quantities needed in following computations are denoted in Fig. 14 and will be defined properly later. The
center c of an inner diamond cell V D is defined by ϕ̄n(c) = 1

4 (Fn1 + Tn1 + Fn2 + Tn2 ) = S.
If V D is a boundary diamond cell with vertices x1, b1, x2 we use a linear interpolation

ϕ̄n (x) = (1− λ)Fn1 + µFn2 + (λ− µ)Tn1 , x ∈ V D, (4.2)

where λ ∈ [0, 1] and µ ∈ [0, λ]. We obtained (4.2) from (4.1) by replacing T2 with a point reflection of T1 with
respect to S = 1

2 (F1 + F2) (Fig. 13, right).

T2 = T1 + 2(S − T1) = F1 + F2 − T1. (4.3)

The resulting mesh consists of nV = nF + nT vertices and ndia diamond cells4. Our diamond mesh is
a generalization of 2D planar diamond mesh used in discrete duality finite volume method developed in [11]
(see also [10]) to 2D surfaces in R3.

Induced metric gϕ̄n and surface normal. In following we will need an expression for induced metric gϕ̄n =
(ϕ̄n)∗gY in the center of a diamond cell V D. The standard Euclidean metric tensor in R3 is

gY = dx⊗ dx+ dy ⊗ dy + dz ⊗ dz, (4.4)

where (x, y, z) are Cartesian coordinates in R3. The pull back of (4.4) from R3 by the map ϕ̄ reads (in the
matrix form)

gϕ̄n ↔ [gab(λ, µ)] =
(
‖(1− µ)u1 + µu2‖2 f(λ, µ)

f(λ, µ) ‖(1− λ)v1 + λv2‖2
)
, (4.5)

4In case of a closed manifold ndia = 3
2
nT . For a manifold with boundary ndia > 3

2
nT and ndia approaches 3

2
nT with refinement

of the mesh.
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Figure 15. A diamond cell in R3.

where u1 = T1 − F1, u2 = F2 − T2, v1 = T2 − F1, v2 = F2 − T1 (Fig. 15) and

f(λ, µ) = (1− λa)(1− µ)(u1 · v1) + λµ(u2 · v2) + λ(1− µ)(u1 · v2) + (1− λ)µ(u2 · v1).

In the center c which is a point with coordinates (λ, µ) =
(

1
2 ,

1
2

)
we have

gcϕ̄n ↔
[
gab
(

1
2 ,

1
2

)]
=

1
4

(
‖u1 + u2‖2 (u1 + u2) · (v1 + v2)

(u1 + u2) · (v1 + v2) ‖v1 + v2‖2
)
, (4.6)

which can be rewritten using the notation u = F2 − F1, v = T2 − T1 (Fig. 15) to the form

gcϕ̄n ↔
[
gab
(

1
2 ,

1
2

)]
=

1
4

(
‖u− v‖2 (u− v) · (u+ v)

(u− v) · (u+ v) ‖u+ v‖2
)
. (4.7)

For a future reference we state the expression for the surface normal in the middle of the diamond cell
(Fig. 15)

ND =
u× v
‖u× v‖

, with u = F2 − F1, v = T2 − T1. (4.8)

4.1.2. Finite volumes

Since we have two types of vertices: F - and T -vertices, we need two types of finite volumes over which we
will integrate the equation (3.1) to obtain the system of linear equations for unknowns Fni , i = 1, . . . nF and
Tni , i = 1, . . . nT .

Finite volume for F -vertex. A finite volume V Fi around a vertex xi is a region bounded by a curve joining
the neighbouring vertices bi,p and the centers ci,p of the diamond cells V Di,p, p = 1, . . . ,mi (for the notation see
Fig. 17, left, see also Fig. 16, left). The part of the boundary between bi,p−1 and bi,p is a curve γTi,p given by the
coordinate expression (by convention, xi is the origin of the local coordinate system on each V Di,p)

γTi,p : (λ(t), µ(t)) = (1− t, t), t ∈ [0, 1]. (4.9)

The area AF,ni = χϕ̄n(V Fi ) of a finite volume V Fi is approximated by the total area of 2mi triangles with
vertices Fni , S

n
i,p, T

n
i,p and Fni , T

n
i,p, S

n
i,p+1 (Fig. 17, right) for p = 1, . . . ,mi (by convention, Sni,mi+1 = Sni,1). These

triangles are used for visualisation in Figure 16 and throughout the whole section.
The surface normal NF

i in the vertex Fni is approximated by the normalized average of the surface normals
ND
i,p to the neighbouring diamond cells V Di,p (calculated using (4.8))

NF
i =

N̂F
i

‖N̂F
i ‖

, where N̂F
i =

1
mi

mi∑
p=1

ND
i,p. (4.10)

The normalization is necessary because the average N̂F
i is not a unit vector in general.
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Figure 16. Left panel: the diamond mesh with boundaries of the covolumes for F -vertices.
Right panel: the diamond mesh with boundaries of the covolumes for T -vertices.

Figure 17. Left panel: the finite volume V Fi around a vertex xi ∈ X. Right panel: the notation
in the neighbourhood of a vertex Fni = ϕ̄n(xi) ∈ X̄n.

Finite volume for T -vertex. We construct a finite volume V Ti (Figs. 18, left and 16, right) around the vertex
bi as a region bounded by the curves γFi,p, p = 1, 2, 3 given by the coordinate expression (by convention, the
point xi+1,p is the origin of the local coordinate system on each V Di,p)

γFi,p : (λ(t), µ(t)) = (1− t, 1− t), t ∈ [0, 1]. (4.11)

The area AT,ni = χϕ̄n(V Ti ) of the covolume V Ti is approximated by the total area of 6 triangles with vertices
Tni , F

n
i,p, S

n
i,p and Tni , S

n
i,p, F

n
i,p+1 (Fig. 18, right) for p = 1, 2, 3 (by convention, Fni,4 = Fni,1).

The surface normal NT
i in the vertex Ti is approximated analogously to (4.10) as

NT
i =

N̂T
i

‖N̂T
i ‖

, where N̂T
i =

1
3

3∑
p=1

ND
i,p. (4.12)

4.1.3. Integration over finite volumes

To obtain the equation for Fni we integrate (3.1) over V Fi , with ϕn being replaced by its piecewise bilinear
approximation ϕ̄n. By the same procedure as in the Section 3 we obtain (using analogues of (3.3), (3.4) and (3.5))
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Figure 18. Left panel: the finite volume V Ti around the vertex bi ∈ X. Right panel: the notation
around of the vertex Tni = ϕ̄n(bi) ∈ X̄n.

AF,n−1
i

Fni − F
n−1
i

τ
=

mi∑
p=1

∫
γT

i,p

gϕ̄n−1

(
∇ϕ̄n−1 ϕ̄n, νn−1

i,p

)
dHχϕ̄n−1 +AF,n−1

i vF,n−1
T,i , (4.13)

where νn−1
i,p is the outward unit normal to the covolume V Fi on the curve γTi,p and vF,n−1

T,i is a tangential velocity
of the vertex Fni . For a vertex Tni we integrate the formula (3.1) over V Ti and obtain formula analogous to
(4.13)

AT,n−1
i

Tni − T
n−1
i

τ
=

3∑
p=1

∫
γF

i,p

gϕ̄n−1

(
∇ϕ̄n−1 ϕ̄n, νn−1

i,p

)
dHχϕ̄n−1 +AT,n−1

i vT,n−1
T,i . (4.14)

The formulas (4.13) and (4.14) are analogous to the cotangent scheme but the computation of the integrals
on right-hand side will differ. We compute the integrals in the following sections (a non-interested reader can
easily skip to the Sect. 4.1.4). The computation of the tangential velocities vF,n−1

T,i and vT,n−1
T,i is in Section 4.2.

Calculation of the integral over γT
i,p. We approximate the value of the integral in (4.13) using the value in

the center ci,p. To simplify the notation we omit most of the indices i and n throughout this section.∫
γT

p

gϕ̄ (∇ϕ̄ϕ̄, νp) dHχ ≈
∣∣γTp ∣∣ gcp

ϕ̄

(
∇ϕ̄ϕ̄(cp), νFp

)
, (4.15)

where |γTp | = ‖Tp−1−Sp‖+‖Ti−Sp‖ is the approximate length of the curve γTp and νFp = νp(cp) is the outward
unit normal to ∂V Fi at the point cp. The tangent vector to γTp at point cp is γ̇Tp = −∂λ + ∂µ (see the definition
(4.9)). We obtain a formula for the normal νFp = (νFp )λ∂λ + (νFp )µ∂µ after using conditions gcp

ϕ̄ (γ̇Tp , ν
F
p ) = 0

(orthogonality), gcp

ϕ̄ (νFp , ν
F
p ) = 1 (normalization) and (νFp )λ, (νFp )µ > 0 (correct orientation) in the following

form

νFp =
‖v‖2 + u · v

‖v‖
√
‖u‖2‖v‖2 − (u · v)2

∂λ +
‖v‖2 − u · v

‖v‖
√
‖u‖2‖v‖2 − (u · v)2

∂µ, (4.16)

where u = Fi,p − Fi, v = Ti,p − Ti,p−1. Now we evaluate the derivatives of the embedding (4.1) in the center cp
of the diamond cell

∂λϕ̄(cp) =
1
2

(u− v), ∂µϕ̄(cp) =
1
2

(u+ v). (4.17)
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Let gab denote the components (4.6) of the metric gϕ̄ and gab the components of the inverse matrix. Then
∇ϕ̄ϕ̄ =

∑
a,c=1,2

gac(∂cϕ̄)∂a and νp =
∑
b=1,2

νbp∂b and their inner product is

gϕ̄ (∇ϕ̄ϕ̄, νp) =
∑

a,b,c=1,2

gabg
ac(∂cϕ̄)νbp =

∑
b,c=1,2

δcb(∂cϕ̄)νbp =
∑
b=1,2

νbp∂bϕ̄. (4.18)

Using (4.16)–(4.18) we calculate the integral (4.15) as follows∫
γT

p

gϕ̄ (∇ϕ̄ϕ̄, νp) dHχ =

∣∣γTp ∣∣
2
(
(νFp )λ(u− v) + (νFp )µ(u+ v)

)

=

∣∣γTp ∣∣
2
[(

(νFp )λ + (νFp )µ
)
u+

(
(νFp )µ − (νFp )λ

)
v
]

=

∣∣γTp ∣∣ ‖v‖√
‖u‖2‖v‖2 − (u · v)2

u−
∣∣γTp ∣∣u · v

‖v‖
√
‖u‖2‖v‖2 − (u · v)2

v

=

∣∣γTp ∣∣ dTp
2ADp

(Fi,p − Fi)−
∣∣γTp ∣∣
dTp

cotωp(Ti,p − Ti,p−1), (4.19)

where dTp = ‖Ti,p − Ti,p−1‖ is the euclidean distance between T -vertices of the diamond cell V Di,p. The area
ADp = 1

2

√
‖u‖2‖v‖2 − (u · v)2 = 1

2‖u × v‖ can be interpreted as the approximate measure of the diamond cell
calculated as the area of the quadrangle with vertices F ′1, T1, F ′2, T2 (Fig. 14, right) which we get by shifting
the line segment F1F2 in the direction of the vector u × v until it intersects the segment T1T2 and ωp is the
angle between F ′1F

′
2 and T1T2.

For a future reference in Section 4.2 we state a formula for the pushforward ϕ̄∗ν
F
p of the normal νFp . Push-

forwards of the basis vectors ∂λ, ∂µ read ϕ̄∗∂λ = ∂λϕ̄ = 1
2 (u− v) and ϕ̄∗∂µ = ∂µϕ̄ = 1

2 (u+ v), therefore

ϕ̄∗ν
F
p =

‖v‖√
‖u‖2‖v‖2 − (u · v)2

u− u · v
‖v‖
√
‖u‖2‖v‖2 − (u · v)2

v, (4.20)

where u = Fi,p − Fi and v = Ti,p − Ti,p−1.

Calculation of the integral over γF
i,p. The computation is analogous to previous section, therefore we skip

some details. The integral in (4.14) is approximated as (indices i, n omitted)∫
γF

p

gϕ̄ (∇ϕ̄ϕ̄, νp) dHχ ≈
∣∣γFp ∣∣ gcp

ϕ̄

(
∇ϕ̄ϕ̄(cp), νTp

)
, (4.21)

where |γFp | = ‖Fp − Sp‖+ ‖Fp+1 − Sp‖ is the approximate length of γFp and νTp = νp(cp). The formula for the
outward unit normal to V Ti at cp is

νTp = − ‖u‖2 + u · v
‖u‖
√
‖u‖2‖v‖2 − (u · v)2

∂λ +
‖u‖2 − u · v

‖u‖
√
‖u‖2‖v‖2 − (u · v)2

∂µ, (4.22)



DDFV METHOD FOR SURFACES EVOLVING BY MEAN CURVATURE 1815

where u = Fi,p − Fi,p+1, v = Ti,p − Ti. The integral over γFp follows

∫
γF

p

gϕ̄ (∇ϕ̄ϕ̄, νp) dHχ =

∣∣γFp ∣∣
2
[(

(νTp )µ − (νTp )λ
)
v +

(
(νTp )λ + (νTp )µ

)
u
]

=

∣∣γFp ∣∣ ‖u‖√
‖u‖2‖v‖2 − (u · v)2

v −
∣∣γFp ∣∣u · v

‖u‖
√
‖u‖2‖v‖2 − (u · v)2

u

=

∣∣γFp ∣∣ dFp
2ADp

(Ti,p − Ti)−
∣∣γFp ∣∣
dFp

cotωp(Fi,p − Fi,p+1), (4.23)

where dFp = ‖Fi,p+1 − Fi,p‖ is the euclidean distance between F -vertices of diamond cell V Di,p.

For a future reference in Section 4.2 we state a formula for the pushforward ϕ̄∗ν
T
p of the normal νTp

ϕ̄∗ν
T
p = − u · v

‖u‖
√
‖u‖2‖v‖2 − (u · v)2

u+
‖u‖√

‖u‖2‖v‖2 − (u · v)2
v, (4.24)

where u = Fi,p − Fi,p+1 and v = Ti,p − Ti.

Approximation of the Laplace–Beltrami operator and the mean curvature. To obtain the discretiza-
tion of the Laplace–Beltrami operator on a finite volume V Fi we sum the integrals (4.19) over p = 1, . . . ,mi and
reorder the sum (replace p by (p+ 1) in the term containing Ti,p−1). The final formula reads

∫
V F

i

4ϕ̄ϕ̄dχϕ̄ =
mi∑
p=1

∫
γT

i,p

gϕ̄ (∇ϕ̄ϕ̄, νi,p) dHχ

= −1
2

mi∑
p=1

∣∣γTi,p∣∣ dTi,p
ADi,p

Fi +
1
2

mi∑
p=1

∣∣γTi,p∣∣ dTi,p
ADi,p

Fi,p

−
mi∑
p=1

(∣∣γTi,p∣∣
dTi,p

cotωi,p −
∣∣γTi,p+1

∣∣
dTi,p+1

cotωi,p+1

)
Ti,p. (4.25)

Analogously we reorder (replace p by (p− 1) in the term containing Fi,p+1) the sum of integrals (4.23) over
p = 1, 2, 3 to obtain discretization on a finite volume V Ti

∫
V T

i

4ϕ̄ϕ̄dχϕ̄ =
3∑
p=1

∫
γF

i,p

gϕ̄ (∇ϕ̄ϕ̄, νi,p) dHχ

= −1
2

3∑
p=1

∣∣γFi,p∣∣ dFi,p
ADi,p

Ti +
1
2

3∑
p=1

∣∣γFi,p∣∣ dFi,p
ADi,p

Ti,p

−
3∑
p=1

(∣∣γFi,p∣∣
dFi,p

cotωi,p −
∣∣γFi,p−1

∣∣
dFi,p−1

cotωi,p−1

)
Fi,p. (4.26)
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The formulas (4.25) and (4.26) can be used to express the discrete mean curvature vectors hFi and hTi at
points Fi and Ti respectively. Since (2.6) holds, we have

hFi ≈
1
AFi

∫
V F

i

4ϕ̄ϕ̄dχϕ̄ =
1

2AFi

(
mi∑
p=1

qFFi,p (Fi,p − Fi)− 2
mi∑
p=1

qFTi,p (Ti,p − Ti,p−1)

)
, (4.27)

hTi ≈
1
ATi

∫
V T

i

4ϕ̄ϕ̄dχϕ̄ =
1

2ATi

(
3∑
p=1

qTTi,p (Ti,p − Ti)− 2
3∑
p=1

qTFi,p (Fi,p − Fi,p+1)

)
. (4.28)

The mean curvatures are approximated as

HF
i = hFi ·NF

i , HT
i = hTi ·NT

i , (4.29)

with NF
i and NT

i denoting the surface normals at the points Fi and Ti respectively, given by (4.10) and (4.12).
The average mean curvatures are computed as

H̄F
i =

1
A

nF∑
i=1

HF
i A

F
i , H̄T

i =
1
A

nT∑
i=1

HT
i A

T
i , (4.30)

then h̄Fi = H̄F
i N

F
i and h̄Ti = H̄T

i N
T
i . The total area A of the surface in (4.30) is given by

A =
nF∑
i=1

AFi =
nT∑
i=1

ATi . (4.31)

4.1.4. Final equations

Equations for F -vertices. We combine (4.13) with (4.25) to obtain the equations for F -vertices in the form

aF,n−1
i Fni +

mi∑
p=1

bF,n−1
i,p Fni,p +

mi∑
p=1

cF,n−1
i,p Tni,p = Fn−1

i + τvF,n−1
T,i (4.32)

for i = 1, . . . , nF and n = 1, . . . , N , where

aFi = 1 +
τ

2AFi

mi∑
p=1

qFFi,p

bFi,p = − τ

2AFi
qFFi,p

cFi,p =
τ

AFi

(
qFTi,p − qFTi,p+1

)
(4.33)

for p = 1, . . . ,mi, with qFTi,m+1 = qFTi,1 and where

qFFi,p =

∣∣γTi,p∣∣ dTi,p
ADi,p

, qFTi,p =

∣∣γTi,p∣∣
dTi,p

cotωi,p. (4.34)

To reduce complexity of the notation we omitted the time step index n in (4.33) and (4.34). All geometric
quantities in (4.33) and (4.34) are calculated from the (n− 1)-th time step. In case of a surface with boundary,
the Dirichlet boundary condition (2.2) is realized trivially by replacing the corresponding equations in (4.32)
with

Fni = Fn−1
i for each Fni ∈ ∂X̄n. (4.35)
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Equations for T -vertices. To obtain the equations for T -vertices we use (4.26) in (4.14). The resulting formula
is

aT,n−1
i Tni +

3∑
p=1

bT,n−1
i,p Tni,p +

3∑
p=1

cT,n−1
i,p Fni,p = Tn−1

i + τvT,n−1
T,i (4.36)

for i = 1, . . . , nT and n = 1, . . . , N , where

aTi = 1 +
τ

2ATi

3∑
p=1

qTTi,p

bTi,p = − τ

2ATi
qTTi,p

cTi,p =
τ

ATi

(
qTFi,p − qTFi,p−1

)
(4.37)

for p = 1, 2, 3, with qTFi,0 = qTFi,3 and where

qTTi,p =

∣∣γFi,p∣∣ dFi,p
ADi,p

, qTFi,p =

∣∣γFi,p∣∣
dFi,p

cotωi,p. (4.38)

We omitted the index n in (4.37) and (4.38). All geometric quantities in (4.37) and (4.38) are calculated from
the (n− 1)th time step.

If a neighbouring diamond cell V Di,p is a boundary diamond cell (Fig. 13, right), we perform a substitution
(see Eq. (4.3))

Tni,p = Fni,p + Fni,p+1 − Tni (4.39)

in equation (4.36). The area ADi,p is calculated as the area of the quadrangle with vertices Tni , Fi,p, T
n
i,p, F

n
i,p+1

with Tni,p constructed by (4.39). Notice that in case of the boundary diamond cell
∣∣γFi,p∣∣ = dFi,p holds, therefore

the formulas (4.38) can be simplified.
The formulas (4.32), (4.36) represent the system of nV = nF + nT linear equations for the unknowns Fni ,

i = 1, . . . , nF and Tni , i = 1, . . . , nT . The system is coupled with an initial condition F 0
i = ϕ0(xi) and T 0

i =
ϕ0(bi). If the initial positions of T -vertices are not provided, we can place T 0

i , i = 1, · · · , nT to barycenters or
use a procedure described on the page 4.2. The linear system can be represented by a matrix. For rows of the
matrix it holds

aF,n−1
i = 1−

mi∑
p=1

bF,n−1
i,p −

mi∑
p=1

cF,n−1
i,p , for i = 1, . . . , nF ,

aT,n−1
i = 1−

3∑
p=1

bT,n−1
i,p −

3∑
p=1

cT,n−1
i,p , for i = 1, . . . , nT .

For an appropriately chosen time step τ , we can guarantee the diagonal dominance of the matrix, which means∣∣∣aF,n−1
i

∣∣∣ ≥ mi∑
p=1

∣∣∣bF,n−1
i,p

∣∣∣+
mi∑
p=1

∣∣∣cF,n−1
i,p

∣∣∣ , for i = 1, . . . , nF , (4.40)

∣∣∣aT,n−1
i

∣∣∣ ≥ 3∑
p=1

∣∣∣bT,n−1
i,p

∣∣∣+
3∑
p=1

∣∣∣cT,n−1
i,p

∣∣∣ , for i = 1, . . . , nT . (4.41)

The diagonal dominance is a pleasant property of the matrix, since it enhances convergence of the iterative
methods for solving the linear system.
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Figure 19. Setting the initial position of a T -vertex. The green circle is the circumscribed
circle. The green arc is a sketch of the interpolation sphere (Color online).

Implementation note. In our scheme we need the cotangent of the angle ω for each diamond cell V D. From
(4.19) we see that we can compute the cotangent as

cotω =
u · v√

‖u‖2‖v‖2 − (u · v)2
, (4.42)

where u = F2 − F1, v = T2 − T1 with F1, T1, F2, T2 being the vertices of the diamond cell V D.

Initial condition for T -vertices. If we know the initial surface X0, then we can set both F 0
i , i = 1, . . . , nF

and T 0
i , i = 1, . . . , nT to lie on the surface X0. But in a common situation when just the initial triangulation

F 0
i , i = 1, . . . , nF is given, we have to set the initial positions T 0

i , i = 1, . . . , nT . One natural choice is to put
a vertex T 0

i to the barycenter of the corresponding triangle T 0
i . Another reasonable option is to set T 0

i with
respect to the shape of the surface in its neighbourhood.

The basic idea in our implementation is to set the initial position of the vertex Ti according to the mean
curvature in neighbouring F -vertices. Such setting can be achieved by the following procedure (Fig. 19).

(1) Place T 0
i to the barycenter Bi of the triangle with vertices F 0

i,1, F 0
i,2, F 0

i,3 which means

T 0
i = Bi = 1

3

(
F 0
i,1 + F 0

i,2 + F 0
i,3

)
.

(2) Calculate the mean curvature vectors hFi,p in the neighbouring vertices F 0
i,p, p = 1, 2, 3 using (4.27). Then

compute the average mean curvature vector 〈hFi 〉 = 1
3

(
hFi,1 + hFi,2 + hFi,3

)
.

(3) Find the circumcenter of the triangle by the formula Ci = (1− λ− µ)F 0
i,1 + λF 0

i,2 + µF 0
i,3, where

λ =
(‖u‖2 − u · v)‖v‖2

2(‖u‖2‖v‖2 − (u · v)2)
, µ =

(‖v‖2 − u · v)‖u‖2

2(‖u‖2‖v‖2 − (u · v)2)
,

where u = F 0
i,2 − F 0

i,1 and v = F 0
i,3 − F 0

i,1.
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Figure 20. Left panel: a boundary finite volume V Fi . Right panel: a boundary finite volume V Ti .

(4) Compute the normal Ni to the triangle as

Ni =
u× v
‖u× v‖

sgn
(
(u× v).〈hFi 〉

)
.

The sign function provides the correct orientation of the normal.
(5) Construct the interpolating sphere with the mean curvature equal to ‖〈hFi 〉‖. Since the mean curvature of

the sphere with radius r is H = 2/r (see Eq. (2.5)), the radius and the center are

ri =
2

‖〈hFi 〉‖
, Si = Ci +

√
r2 − ‖Ci − F 0

i,1‖2Ni.

(6) Project the barycenter Bi onto the sphere to get the initial position of T -vertex.

T 0
i = Si + r

Bi − Si
‖Bi − Si‖

·

4.2. Discretization of the tangential velocity

In this section we perform a discretization of the tangential velocity for the asymptotically uniform redis-
tribution (2.26). The relative area preserving redistribution (2.25) is easily obtained by setting ω = 0. With
appropriate modifications we adopt the technique developed in [27, 43]. To simplify the notation we omit the
time index in some equations. All quantities are taken from the (n− 1)th time step.

4.2.1. System of equations for ψF , ψT

Let ψF,ni = ψn(xi), i = 1, . . . nF and ψT,ni = ψn(bi), i = 1, . . . nT denote the values of ψ in F - and T -vertices
respectively. In this section we derive the system of linear equations for ψFi , ψ

T
i .

Applying the finite volume technique we integrate (2.26) over finite volumes V Fi and V Ti . Since we develop
a general discretization also for surfaces with boundary, we need to define what are boundary finite volumes.
A boundary finite volume V Fi is such that Fni ∈ ∂X̄n (Fig. 20, left), and a boundary finite volume V Ti is such
that at least two of the neighbours Fni,1, F

n
i,2, F

n
i,3 of Tni lie on ∂X̄n (Fig. 20, right).
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Integral of Laplace–Beltrami operator. We integrate the formula (2.26) over internal finite volumes and
on the left-hand side we have∫

V F
i

4ϕ̄ψ dχϕ̄ ≈
1
2

mi∑
p=1

qFFi,p (ψFi,p − ψFi ) +
mi∑
p=1

(qFTi,p+1 − qFTi,p )ψTi,p,

∫
V T

i

4ϕ̄ψ dχϕ̄ ≈
1
2

3∑
p=1

qTTi,p (ψTi,p − ψTi ) +
3∑
p=1

(qTFi,p−1 − qTFi,p )ψFi,p,

(4.43)

with coefficients qFFi,p , q
FT
i,p and qTTi,p , q

TF
i,p defined by (4.34) and (4.38) respectively. For a boundary finite volume

V Fi (Fig. 20, left) the integration gives

∫
V F

i

4ϕ̄ψdχϕ̄ =
∫

∂V F
i

gϕ̄(∇ϕ̄ψ, ν) dHχ =
∫

∂V F
i −(∂V F

i ∩∂X)

gϕ̄(∇ϕ̄ψ, ν) dHχ =
mi∑
p=1

∫
γT

i,p

gϕ̄(∇ϕ̄ψ, ν) dHχ =

≈
mi∑
p=1

[
1
2
qFFi,p (ψFi,p − ψFi )− qFTi,p (ψTi,p − ψTi,p−1)

]
,

where the integral over ∂Vi ∩ ∂X vanished due to Neumann boundary condition (2.29). Now we substitute
ψTi,0 = ψFi + ψFi,1 − ψTi,1 and ψTi,mi

= ψFi + ψFi,1 − ψTi,1 (see Eq. (4.3) and also Fig. 20, left) and obtain

∫
V F

i

4ϕ̄ψdχϕ̄ ≈

[
−1

2

mi∑
p=1

qFFi,p + (qFTi,1 − qFTi,mi
)

]
ψFi

+
[

1
2
qFFi,1 + qFTi,1

]
ψFi,1 +

1
2

mi−1∑
p=2

qFFi,p ψ
F
i,p +

[
1
2
qFFi,mi

− qFTi,mi

]
ψFi,mi

+
[
−2qFTi,1 + qFTi,2

]
ψTi,1 +

mi−2∑
p=2

(
−qFTi,p + qFTi,p+1

)
ψTi,p +

[
−qFTi,mi−1 + 2qFTi,mi

]
ψTi,mi−1. (4.44)

For a boundary finite volume V Ti (Fig. 20, right) the integration follows

∫
V T

i

4ϕ̄ψdχϕ̄ =
2∑
p=1

∫
γF

i,p

gϕ̄(∇ϕ̄ψ, ν) dHχ

≈
3∑
p=1

[
1
2
qTTi,p (ψTi,p − ψTi )− qTFi,p (ψFi,p − ψFi,p+1)

]
= − 1

2
(
qTTi,1 + qTTi,2

)
ψTi +

1
2
qTTi,1 ψ

T
i,1 +

1
2
qTTi,2 ψ

T
i,2

− qTFi,1 ψFi,1 +
(
qTFi,1 − qTFi,2

)
ψFi,2 + qTFi,2 ψ

F
i,3. (4.45)

The integral over γFi,3 vanished due to Neumann boundary condition (2.29).
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Integral of the right-hand side. Since the boundary of the surface is static, we have vN = 0 for boundary
vertices. We can use the following approximation of the first term on the right-hand side in (2.26)∫

V F
i

gY (vN , h)dχϕ̄ ≈ AFi gY (vN,i, hFi ) =
{
AFi (HF

i )2 if Fni /∈ ∂X̄n

0 if Fni ∈ ∂X̄n ,∫
V T

i

gY (vN , h)dχϕ̄ ≈ ATi gY (vN,i, hTi ) = ATi (HT
i )2,

(4.46)

and for the second term we have∫
V F

i

〈gY (vN , h)〉χϕ̄
dχϕ̄ ≈ AFi 〈gY (vN , h)〉χϕ̄

≈ AFi
A

∑
j,Fj /∈∂X̄

(HF
j )2AFj ,

∫
V T

i

〈gY (vN , h)〉χϕ̄dχϕ̄ ≈ ATi 〈gY (vN , h)〉χϕ̄ ≈
ATi
A

nT∑
j=1

(HT
j )2ATj .

(4.47)

For a proper approximation of the last term we introduce the angular size µi of a finite volume V Fi and
a reduced number of F -vertices n∗F as follows

µi =
αi
2π
, n∗F =

nF∑
i=1

µi. (4.48)

For an internal F -we define αi = 2π, resulting in µi = 1, and, for a boundary vertex, αi is the angle between
vectors

−−−→
FiFi,1 and

−−−−→
FiFi,mi

, see Figure 20. Now we need to approximate the area density GFi . Since the total
surface area A can be computed in two ways

A =
∫
X

dχϕ̄n−1 =
nF∑
i=1

χϕ̄n−1(V Fi ),

A =
∫
X

G(x, tn−1)dξ ≈
nF∑
i=1

GFi ξ(V
F
i ),

(4.49)

we have GFi =
χϕ̄n−1 (V F

i )

ξ(V F
i )

= AF
i

ξ(V F
i )

and analogously GTi = AT
i

ξ(V T
i )

. We do not have any conditions imposed on
the measure ξ. For the asymptotically uniform redistribution it is reasonable to set

ξ(V Fi ) = µi
ξ(X)
n∗F

=
µi
Cn∗F

, ξ(V Ti ) =
ξ(X)
nT

=
1

CnT
,

where we used that ξ(X) = 1
C holds (see the discussion below (2.21)). The approximation of the area density

follows

GFi =
Cn∗FA

F
i

µi
, GTi = CnTA

T
i .

Finally, the approximations of the integrals over the last term on the right-hand side of (2.26) are given by∫
V F

i

(
C
A

G
− 1
)
ωdχϕ̄ ≈ AFi

(
Aµi
n∗FA

F
i

− 1
)
ω,∫

V T
i

(
C
A

G
− 1
)
ωdχϕ̄ ≈ ATi

(
A

nTATi
− 1
)
ω.

(4.50)
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Final equations. Now we put the approximations (4.43)–(4.50) together to obtain the system of equations for
ψF,n−1
i , ψT,n−1

i . In following, the coefficients qFFi,p , q
FT
i,p and qTTi,p , q

TF
i,p are defined by (4.34) and (4.38) respectively.

Internal covolumes V F
i

âFi ψ
F
i +

mi∑
p=1

b̂Fi,pψ
F
i,p +

mi∑
p=1

ĉFi,pψ
T
i,p = (HF

i )2 − 1
A

∑
j,Fj /∈∂X̄

(HF
j )2AFj +

(
A

n∗FA
F
i

− 1
)
ω (4.51)

for i such that Fi is an internal vertex and where

âFi = − 1
2AFi

mi∑
p=1

qFFi,p , b̂Fi,p =
1

2AFi
qFFi,p , ĉFi,p =

1
AFi

(
−qFTi,p + qFTi,p+1

)
(4.52)

for p = 1, . . . ,mi.
Boundary covolumes V F

i

âFi ψ
F
i +

mi∑
p=1

b̂Fi,pψ
F
i,p +

mi−1∑
p=1

ĉFi,pψ
T
i,p = − 1

A

∑
j,Fj /∈∂X̄

H2
jA

F
j +

(
Aµi
n∗FAi

− 1
)
ω (4.53)

for i such that Fi is a boundary vertex and where

âFi =
1

2AFi

[
−

mi∑
p=1

qFFi,p + 2(qFTi,1 − qFTi,mi
)

]

b̂Fi,1 =
1

2AFi

(
qFFi,1 + 2qFTi,1

)
, b̂Fi,mi

=
1

2AFi

(
qFFi,mi

− 2qFTi,mi

)
,

b̂Fi,p =
1

2AFi
qFFi,p , p = 2, . . . ,mi − 1,

ĉFi,1 =
1
AFi

(
−2qFTi,1 + qFTi,2

)
, ĉFi,mi−1 =

1
AFi

(
−qFTi,mi−1 + 2qFTi,mi

)
,

ĉFi,p =
1
AFi

(
−qFTi,p + qFTi,p+1

)
, p = 2, . . . ,mi − 2.

(4.54)

Internal covolumes V T
i

âTi ψ
T
i +

3∑
p=1

b̂Ti,pψ
T
i,p +

3∑
p=1

ĉTi,pψ
F
i,p = (HT

i )2 − 1
A

nT∑
j=1

(HT
j )2ATj +

(
A

nTATi
− 1
)
ω (4.55)

for i such that V Ti is an internal finite volume and where

âTi = − 1
2ATi

3∑
p=1

qTTi,p , b̂Ti,p =
1

2ATi
qTTi,p , ĉTi,p =

1
ATi

(
qTFi,p−1 − qTFi,p

)
(4.56)

for p = 1, 2, 3.
Boundary covolumes V T

i

The equation (4.55) is valid, but the second sum runs only over p = 1, 2, and the coefficients (4.56) modify
to

âTi = − 1
2ATi

(
qTTi,1 + qTTi,2

)
, b̂Ti,p =

1
2ATi

qTTi,1 , p = 1, 2

ĉTi,1 = − 1
ATi

qTFi,1 , ĉTi,2 =
1
ATi

(
qTFi,1 − qTFi,2

)
, ĉTi,3 =

1
ATi

qTFi,2 .

(4.57)
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For closed surfaces there are no boundary covolumes (µi = 1, i = 1, . . . , nF and n∗F = nF ) and the equation
(4.51) modifies to

âFi ψ
F
i +

mi∑
p=1

b̂Fi,pψ
F
i,p +

mi∑
p=1

ĉFi,pψ
T
i,p = (HF

i )2 − 1
A

nF∑
j=1

(HF
j )2AFj +

(
A

nFAFi
− 1
)
ω (4.58)

for i = 1, . . . , nF . For closed surfaces the equation (4.55) holds for all i = 1, . . . , nT .

Uniqueness of the solution. The linear system of equations for unknowns ψFi , i = 1, . . . , nF and ψTi , i =
1, . . . , nT can be represented by a nV × nV matrix, nV = nF + nT . The kernel of the matrix contains a nV -
dimensional vector

(c1, . . . , c1︸ ︷︷ ︸
nF

, c2, . . . , c2︸ ︷︷ ︸
nT

), c1, c2 ∈ R, (4.59)

which means the solution of the system is not unique. The equations for V F1 , . . . , V FnF
are not linearly indepen-

dent, and the same is true for the equations for V T1 , . . . , V
T
nT

.
It would not be correct to apply (2.27) and fix the solution in one specific ψFi and one ψTj , e.g. ψFi = 2 and

ψTj = 5, since we do not know anything about the relationship between the values ψFi and ψFj .
Instead we will use (2.28) to fix the mean value of ψ over X. The mean value can be computed in two ways

〈ψ〉χϕ̄
=

1
A

∫
X

ψ(x)dχϕ̄
1.
≈ 1
A

nF∑
i=1

ψFi A
F
i ,

2.
≈ 1
A

nT∑
i=1

ψTi A
T
i .

We fix the mean value to 〈ψ〉χϕ̄
= 0, which means

nF∑
i=1

ψFi A
F
i = 0,

nT∑
i=1

ψTi A
T
i = 0. (4.60)

In practice we modify the system of linear equations by replacing the equations for V F1 and V T1 by (4.60).
Note that there is no possibility to guarantee the diagonal dominance (4.40) of the matrix of the linear system

for ψFi , i = 1, . . . , nF and ψTi , i = 1, . . . , nT . Therefore, for the iterative methods, the system for ψFi , ψ
T
i is

much more difficult to solve than the system for Fni and Tni .

4.2.2. Calculation of tangential velocity from ψF , ψT

To calculate the tangential velocities

vFT,i ≈
1
AFi

∫
Vi

vTdχϕ̄, vTT,i ≈
1
ATi

∫
Vi

vTdχϕ̄

from ψFi , ψ
T
i we use the following identity (see [14])∫

Vi

vn−1
T dχϕ̄n−1 = ϕ̄n−1

∗

(∫
∂Vi

ψn−1νn−1
i dHχϕ̄n−1

)
−
∫
Vi

ψn−1hn−1dχϕ̄n−1 , (4.61)

which can be approximated as follows∫
V F

i

vTdχϕ̄ ≈
mi∑
p=1

|γTi,p|ψDi,p(ϕ̄∗νFi,p)− ψFi hFi AFi , (4.62)

∫
V T

i

vTdχϕ̄ ≈
3∑
p=1

|γFi,p|ψDi,p(ϕ̄∗νTi,p)− ψTi hTi ATi , (4.63)
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where the normals ϕ̄∗νFi,p and ϕ̄∗ν
T
i,p are calculated by (4.20) and (4.24) respectively. The symbol ψDi,p denotes

the value of ψ in the middle of the neighbouring diamond cell V Di,p. For an internal diamond cell V D with vertices
F1, F2, T1, T2 we compute the value ψD as

ψD =
1
4
(
ψF1 + ψF2 + ψT1 + ψT2

)
, (4.64)

and in case of a boundary diamond cell ψD = 1
2

(
ψF1 + ψF2

)
.

5. Numerical experiments

In this section we test the numerical scheme in several numerical experiments. We perform experiments
with both closed surfaces and surfaces with boundary, and compare the evolution with no redistribution to
evolution with area-oriented redistribution. As in Section 3, we use the BiCGStab (BiConjugate Gradient
Stabilized) method (see [45]) to solve systems of linear equations for both position vectors Fni , i = 1, . . . , nF ;
Tni , i = 1, . . . , nT and velocity potential ψF,n−1

i , i = 1, . . . , nF ; ψT,n−1
i , i = 1, . . . , nT .

5.1. Closed surfaces

First we test the performance of the method on closed surfaces. If the initial condition X0 is a unit sphere,
then the surface Xt evolving by mean curvature flow (2.7) is a shrinking sphere with radius

r(t) =
√

1− 4t. (5.1)

The knowledge of the exact solution allows us to calculate the time-space L2 error as follows (taking into
account both errors of F - and T -vertices)

L2 error =

[
N∑
n=1

(
nF∑
i=1

(
‖Fni ‖ − r(tn)

)2AFi
2

+
nT∑
i=1

(
‖Tni ‖ − r(tn)

)2ATi
2

)
τ

] 1
2

. (5.2)

We also study the experimental order of convergence (EOC) of the method calculated as follows

EOC = log2

(
L2 errorh
L2 errorh/2

)
, (5.3)

where L2 errorh is the L2 error for a mesh with characteristic edge length h.
We use a discretization of the sphere based on the division of the regular icosahedron. The diamond mesh

(see Fig. 21) was created by modifying a triangular mesh as we described in Section 4.1.1. The initial positions
of T -vertices were set using the procedure described before in Section 4.2.

The final time was set to tf = 0.08. We adopt a standard coupling for parabolic problems τ ∼ h2 (with h
denoting a characteristic edge length).

The method was tested both with no tangential redistribution and with asymptotically uniform redistribution
with ω = 1, 10 and 100. The results are presented in Tables 1–4. In the tables, “FT -iter” and “ψ-iter” are
the total numbers (summed over all time steps) of iterations of the BiCGStab method needed to solve the
systems for position vectors Fni , i = 1, . . . , nF ; Tni , i = 1, . . . , nT and velocity potential ψF,n−1

i , i = 1, . . . , nF ;
ψT,n−1
i , i = 1, . . . , nT , respectively. The average values per time step are denoted by 〈FT -iter〉 and 〈ψ-iter〉. The

experimental order of convergence (EOC) is computed by the formula (5.3). Similarly as in cotangent scheme,
we observe higher computational demands (number of iterations of BiCGStab) for solving the system for ψ
compared to solving the system for position vectors. This is due to the properties of the system matrices, see
the note at the end of the Sect. 4.2.1).
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Figure 21. The discretization of the unit sphere with diamond mesh displayed, from left to
right: nV = 122, 482, 1922, 7682.

Table 1. The L2 EOC for the case with no redistribution.

nV nF nT τ N L2 error FT -iter 〈FT -iter〉 EOC

122 42 80 0.04 2 1.43e-02 8 4.00
482 162 320 0.01 8 3.35e-03 37 4.63 2.10
1922 642 1280 0.0025 32 8.07e-04 146 4.56 2.05
7682 2562 5120 0.000625 128 1.95e-04 419 3.27 2.05
30 722 10 242 20 480 0.00015625 512 4.64e-05 1216 2.38 2.07

Table 2. The L2 EOC for the case with asymptotically uniform redistribution, ω = 1.

nV τ N L2 error FT -iter 〈FT -iter〉 ψ-iter 〈ψ-iter〉 EOC

122 0.04 2 3.40e-02 9 4.50 78 39.00
482 0.01 8 9.08e-03 40 5.00 704 88.00 1.90
1922 0.0025 32 2.30e-03 147 4.59 6408 200.25 1.98
7682 0.000625 128 5.78e-04 512 4.00 37 199 290.62 2.00
30 722 0.00015625 512 1.44e-04 1745 3.41 241 137 470.97 2.00

Table 3. The L2 EOC for the case with asymptotically uniform redistribution, ω = 10.

nV τ N L2 error FT -iter 〈FT -iter〉 ψ-iter 〈ψ-iter〉 EOC

122 0.04 2 3.41e-02 9 4.50 94 47.00
482 0.01 8 9.10e-03 42 5.25 736 92.00 1.91
1922 0.0025 32 2.31e-03 162 5.06 6897 215.53 1.98
7682 0.000625 128 5.78e-04 604 4.72 47 494 371.05 2.00
30 722 0.00015625 512 1.45e-04 2048 4.00 41 9643 819.62 2.00

Table 4. The L2 EOC for the case with asymptotically uniform redistribution, ω = 100.

nV τ N L2 error FT -iter 〈FT -iter〉 ψ-iter 〈ψ-iter〉 EOC

122 0.04 2 3.77e-02 9 4.50 72 36.00
482 0.01 8 9.24e-03 47 5.88 774 96.75 2.03
1922 0.0025 32 2.33e-03 168 5.25 6407 200.22 1.99
7682 0.000625 128 5.84e-04 593 4.63 51 861 405.16 2.00
30 722 0.00015625 512 1.46e-04 2095 4.09 468 117 914.29 2.00
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Table 5. The H1 error and EOC for the case with no redistribution compared with cotangent
scheme.

nV nF nT τ N H1
DDFV error EOC H1

COT error EOC

122 42 80 0.04 2 1.57e-02 3.09e-02
482 162 320 0.01 8 3.34e-03 2.23 1.61e-02 0.94
1922 642 1280 0.0025 32 1.23e-03 1.44 8.65e-03 0.90
7682 2562 5120 0.000625 128 4.94e-04 1.32 4.44e-03 0.96
30 722 10 242 20 480 0.00015625 512 1.92e-04 1.36 2.24e-03 0.99

Table 6. The error and EOC of the surface normals for the case with no redistribution com-
pared with cotangent scheme.

nV nF nT τ N NDDFV error EOC NCOT error EOC

122 42 80 0.04 2 1.11E-02 2.19e-02
482 162 320 0.01 8 2.36E-03 2.23 1.14e-02 0.94
1922 642 1280 0.0025 32 8.71E-04 1.44 6.12e-03 0.90
7682 2562 5120 0.000625 128 3.50E-04 1.32 3.14e-03 0.96
30 722 10 242 20 480 0.00015625 512 1.36E-04 1.36 1.58e-03 0.99

Looking at the tables, we see that the experimental order of convergence of DDFV method is equal to 2
in all presented cases when using the coupling τ ∼ h2. Comparing the L2 errors we see that the tangential
redistribution introduces an extra error. The L2 error increases with increasing ω, which is a behaviour present
also in cotangent scheme). However, the method still converges with no loss of the convergence rate in all cases.
For the case with no redistribution we compute also the time-space H1 (energy) error defined as

H1 error =

 tf∫
0

∫
X

3∑
i,j=1

g
(
∇gεi,∇gεj

)
dχϕ

 dt


1
2

, (5.4)

where we denoted ε = ϕ̄− ϕ. After discretization we obtain quite complicated formula

H1
DDFV error =[
N∑
n=1

(
ndia∑
i=1

(
4−

2
(
‖U‖2 ‖V ×N(S)‖2 − 2(U · V )(U ×N(S))(V ×N(S)) + ‖V ‖2 ‖U ×N(S)‖2

)
‖U‖2 ‖V ‖2 − (U · V )2

)
ÂDi

)
τ

] 1
2

,

where U = 1
2 (u− v), V = 1

2 (u+ v) with u, v defined in (4.8) and N(S) = N(Sni , t
n) being the exact surface

normal in the center Sni of the diamond cell V D,ni and ÂDi denotes the area of the diamond cell. Additionally, we
study the time-space error of surface normals. which is also a quantity related to first derivative of the solution
(similarly as gradient in H1 norm). We use following formula

NDDFV error =

[
N∑
n=1

(
ndia∑
i=1

‖ND,n
i −N(Sni , t

n)‖2ÂDi

)
τ

] 1
2

, (5.5)

where ND,n
i denotes the surface normal in the center Sni of the diamond cell V D,ni . We compare these errors to

the cotangent scheme in Tables 5 and 6 respectively.



DDFV METHOD FOR SURFACES EVOLVING BY MEAN CURVATURE 1827

In the calculation of errors we evaluate the gradients and normals on the diamond cells in the case of DDFV
method, and on the mesh triangles in the cotangent scheme, since these are the basic discretization objects
for the schemes. For the cotangent scheme we used meshes with nF vertices and nT triangles, while the initial
triangulation was constructed using the initial condition F 0

i , i = 1, . . . , nF from DDFV method. The H1
COT and

NCOT errors are computed as follows

H1
COT error =[

N∑
n=1

(
nT∑
i=1

(
4−

2
(
‖u‖2 ‖v ×N(T )‖2 − 2(u · v)(u×N(T ))(v ×N(T )) + ‖v‖2 ‖u×N(T )‖2

)
‖u‖2 ‖v‖2 − (u · v)2

)
ATi

)
τ

] 1
2

,

NCOT error =

[
N∑
n=1

(
nT∑
i=1

‖NT,n
i −N(Tni , t

n)‖2ATi

)
τ

] 1
2

,

where NT,n
i denotes the surface normal to the triangle T ni , N(T ) = N(Tni , t

n) is the corresponding exact surface
normal at barycenter Tni , ATi denotes the triangle area and u = Fni,p−Fni , v = Fni,p+1−Fni . In Table 5 we observe
that DDFV method gives higher EOC in H1 norm and Table 6 shows also higher EOC in the computation of
surface normals compared to the cotangent scheme.

The second example is the mean curvature flow of a bumpy sphere with the initial condition X0 (see Fig. 22)
parametrized as

x(θ, φ) = (1 + 0.25 cos 5θ sin 5φ) cos θ cosφ,
y(θ, φ) = (1 + 0.25 cos 5θ sin 5φ) cos θ sinφ,
z(θ, φ) = 1.15 sin θ,

where θ ∈ [−π/2, π/2] and φ ∈ [0, 2π].
The parameters were set to tf = 0.08, τ = 0.000625. We performed both experiment with no tangential

redistribution and with asymptotically uniform tangential redistribution with ω = 100, see Figure 23. In the
case with no redistribution we observe a contraction of the mesh (smaller areas of finite volumes) in the regions
with relatively high initial curvature (on the hills and in the holes of the bumpy sphere). The right column of
Figure 23 shows that the tangential redistribution prevents the mesh contraction.

To study the evolution of the uniformity of the mesh we introduce the relative standard deviation (RSD) of
the covolume areas

RSDF,n =

√√√√ 1
n∗F

nF∑
i=1

(
AF,ni n∗F
An

− µi

)2

, RSDT,n =

√√√√ 1
nT

nT∑
i=1

(
AT,ni nT
An

− 1

)2

, (5.6)

with RSDF,n and RSDT,n measuring the uniformity of the areas of covolumes corresponding to F - and T -
vertices, respectively. If the mesh is uniform, i.e. AF,ni = An

n∗F
µi and AT,ni = An

nT
, then both RSDF,n = 0 and

RSDT,n = 0. The relative standard deviations RSDF,n and RSDT,n grow with increasing nonuniformity.
The last example in this section is a volume preserving mean curvature flow of a cymling-like shape with

nV = 7682, nF = 2562 and nT = 5120 (Fig. 24, top). The volume preserving mean curvature flow is a variation of
MCF given by ∂tϕ = 4gϕ

ϕ−h̄, where h̄ = H̄N and H̄ is the average mean curvature over X, which is calculated
as H̄ = 1

A

∫
X
Hdχϕ. Addition of the term −h̄ to the standard mean curvature flow ensures preservation of the

volume enclosed by the surface. The right-hand side of (4.32) changes to Fn−1
i − τH̄F,n−1

i NF,n−1
i + τvF,n−1

T,i

and the formula (4.36) changes analogously. The right-hand side of equation (4.58) modifies to((
HF
i

)2 − h̄Fi · hFi )− 1
A

nF∑
j=1

((
HF
j

)2 − h̄Fj · hFj )AFj +
(

A

nFAFi
− 1
)
ω (5.7)
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Figure 22. A discretization of the bumpy sphere with nV = 7682, nF = 2562 and nT = 5120.
Edges of various meshes are displayed. From the top left, diamond mesh, F -covolumes mesh,
T -covolumes mesh, both F - and T -covolumes meshes.

and analogously for T -vertices. The initial condition X0 is parametrized as

x(θ, φ) =
(

0.15 cos 4θ +
0.5 sin 8φ√

2π
e−50 θ2

+ 0.85
)

cos θ cosφ,

y(θ, φ) =
(

0.15 cos 4θ +
0.5 sin 8φ√

2π
e−50 θ2

+ 0.85
)

cos θ sinφ,

z(θ, φ) = 0.5
(

0.15 cos 4θ +
0.5 sin 8φ√

2π
e−50 θ2

+ 0.85
)

sin θ,

(5.8)

where θ ∈ [−π/2, π/2] and φ ∈ [0, 2π]. The final time and time step were set to tf = 0.1875 and τ = 0.000625
respectively.

We did experiments with no redistribution and with asymptotically uniform redistribution with ω = 0, 1, 10
and 100. The evolving surfaces are plotted in Figure 24. As in the experiment above, with no redistribution
included we observe a mesh contraction in highly curved regions. However, in this experiment the contraction
is much more devastating. Figure 25, left shows the contraction of the mesh in detail. The computation did not
crash yet but leads to obviously wrong results. In case of the evolution with asymptotically uniform redistribution
we obtain substantially better results. The evolution of RSD of the covolume areas is plotted in Figure 26. In
the case with no redistribution RSD grows due to shrinking covolumes. The case ω = 0 corresponds to the
relative area preserving redistribution, therefore RSD remains approximately constant. For ω = 1, 10, 100 we
observe faster uniformisation of the mesh with higher ω.
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Figure 23. The mean curvature flow of a bumpy sphere. Left column: the case with no tangen-
tial redistribution. Right column: the evolution with asymptotically uniform tangential redis-
tribution with ω = 100. The selected time steps are n = 0, 20, 50, 128.



1830 L. TOMEK AND K. MIKULA

Figure 24. The volume preserving mean curvature flow of a cymling-like shape with nV =
7682, nF = 2562 and nT = 5120. Both F - and T -finite volume meshes are displayed. Left col-
umn: the case with no tangential redistribution. Right column: the evolution with asymptotically
uniform tangential redistribution with ω = 100. The selected time steps are n = 0, 10, 50, 300.
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Figure 25. Detail of the mesh of the evolved cymling-like shape in time step n = 300. Left
panel: the case with no tangential redistribution. Right panel: the case with asymptotically
uniform tangential redistribution.

Figure 26. The evolution of relative standard deviation (RSD) of the covolume areas for
the evolution of cymling-like shape. The solid lines correspond to RSDF,n and dashed lines
correspond to RSDT,n.

5.2. Surfaces with boundary

In this section we use the mean curvature flow to construct approximations of several minimal surfaces with
given set of boundary curves. The first experiment is a cylinder evolving to a catenoid. The distance between
unit boundary circles is set to 1.11. We use a discretization with nV = 600, nF = 216 and nT = 384, see
Figure 27.

The evolution with tf = 0.5 and τ = 0.0025 and no tangential redistribution is shown in Figure 28. The
results seem satisfying, however, at much later time steps we can observe an unwanted tangential motion of
T -vertices and a degeneration of the diamond mesh (Fig. 29). To describe this behaviour quantitatively we
compute the average tangential and normal speeds of vertices throughout the evolution. The normal speed of
a F -vertex can be calculated as

‖vFN,i‖ = vFi ·NF
i , with vFi =

Fni − F
n−1
i

τ
, (5.9)
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Figure 27. The discretized cylinder with nV = 600, nF = 216 and nT = 384. Left panel:
diamond mesh and finite volume mesh for T -vertices. Right panel: finite volume meshes for
both F - and T -vertices.

Figure 28. The evolution of a cylinder to catenoid. The selected time steps are n = 0, 40, 100, 200.

where NF
i is an approximate normal to the surface at the vertex Fi computed by (4.10). The tangential speed

of a F -vertex can be calculated as
‖vFT,i‖ = ‖vFi − (vFi ·NF

i )NF
i ‖. (5.10)

The computation for T -vertices is analogous. The average tangential and normal speeds of both F - and
T -vertices are plotted in Figure 30. We can see that there are nonzero average tangential speeds 〈vFT 〉, 〈vTT 〉
which are initially about 2–3 orders of magnitude lower than the average normal speeds 〈vFN 〉, 〈vTN 〉. The normal
speeds initially tend to zero as expected (the catenoid is a minimal surface and minimal surfaces are stationary
solutions of the mean curvature flow. Therefore when time tends to infinity, the velocity should vanish). In
contrast, the average tangential speeds do not, which results in the degeneration of the diamond cells (Fig. 29).
As the evolution proceeds and the normal speeds decrease, the nondecreasing 〈vTT 〉 becomes dominant and
eventually causes the crash of the computation process.

A numerical tangential velocity is not uncommon and it is also present in the cotangent scheme. Due to
distretization errors, the discretized normal velocity vector vN = 4ϕϕ does not necessarily point in the normal
direction and a numerical tangential velocity appears, see Section 2.4. We eliminate the numerical tangential
motion in the following section.

Elimination of the numerical tangential velocity. In Section 2.4 we prepared a tool for elimination of
the numerical tangential velocity. We discretize the model (2.33) in time domain adopting the semi-implicit
approach which gives

ϕn −4ϕn−1ϕn = ϕn−1 − τ
(
hn−1 − (hn−1 ·Nn−1)Nn−1

)
.
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Figure 29. A degeneration of the diamond mesh. The selected time steps are n = 580, 640.

Figure 30. The average speed of vertices during the evolution of a cylinder using the DDFV
method. In the figure 〈vFN 〉, 〈vTN 〉 denote the average normal and 〈vFT 〉, 〈vTT 〉 the average tan-
gential speeds of F - and T -vertices respectively.

After the space discretization analogous to Section 4.1 we obtain the equation for F -vertices

aF,n−1
i Fni +

mi∑
p=1

bF,n−1
i,p Fni,p +

mi∑
p=1

cF,n−1
i,p Tni,p = Fn−1

i − τ
(
hF,n−1
i −

(
hF,n−1
i ·NF,n−1

i

)
NF,n−1
i

)
(5.11)

for i = 1, . . . , nF , where hF,n−1
i is computed by formula (4.27) and coefficients aF,n−1

i , bF,n−1
i,p , cF,n−1

i,p are defined
in (4.33). For T -vertices we have a formula analogous to (5.11). Note that the system differs from the system
(4.32), (4.36) in the right-hand side only.

Experiments with eliminated numerical tangential velocity. In all experiments in the rest of the section
we eliminated the numerical tangential velocity using the technique presented above.

Figure 31 shows the experiment with cylinder evolving to the catenoid (with no tangential redistribution).
We do not observe any degeneration of the mesh.

The average tangential and normal speeds of both F and T -vertices are plotted in Figure 32. We can see that
there is still some nonzero tangential velocity 〈vFT 〉, 〈vTT 〉 (caused by the semi-implicit time discretization) but,
what is crucial, it gradually vanishes during the evolution.
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Figure 31. The evolution of a cylinder. The selected time steps are n = 0, 40, 200, 640.

Figure 32. The average speed of vertices during the evolution of the cylinder using the DDFV
method with eliminated tangential velocity.

The second experiment is a hemisphere with radius equal to 1 and with nV = 401, nF = 145, nT = 256
evolving into the unit disk. The final time and time step were set to tf = 1.5 and τ = 0.0025 respectively.
We performed experiments with both no tangential redistribution and with asymptotically uniform tangential
redistribution with ω = 10. The evolution is plotted in Figure 33 with top view of the final state in Figure 34.

Figure 33. The evolution of a hemisphere. First row: the evolution with no tangential redis-
tribution. Second row: the evolution with asymptotically uniform tangential redistribution with
ω = 10. The selected time steps are n = 0, 20, 80, 600.
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Figure 34. Comparison of the meshes in final time step n = 600. Left panel: no redistribution.
Right panel: asymptotically uniform redistribution with ω = 10.

Figure 35. The evolution of relative standard deviation of the covolume areas during the
evolution of the hemisphere. The solid lines correspond to RSDF,n and dashed lines to RSDT,n.

In the case with no redistribution we observe a typical contraction of the mesh cells in the middle of the
surface. The evolution of the relative standard deviation (RSD) of the covolume areas is plotted in Figure 35.

The third experiment is the evolution of a surface with a sinusoidal boundary curve Γ parametrized as
Γ(u) =

(
cosu, sinu, 0.2 sin 6u

)
,

where u ∈ [0, 2π]. The initial condition X0 is parametrized as

x(r, φ) = r cosφ,
y(r, φ) = r sinφ,
z(r, φ) = 0.2

(
r8(sin 6φ+ 1)− 1

)
,

where φ ∈ [0, 2π] and r ∈ [0, 1]. We use a discretization with nV = 2353, nF = 817 and nT = 1536 (see
Fig. 36). We set to tf = 1.0 and τ = 0.0025. We performed experiments with both no redistribution and with
asymptotically uniform redistribution with ω = 100. The final minimal surface (n = 400) is shown in Figure 37.
The difference in uniformity of the mesh is evident particularly in the regions near the top waves of the boundary
curve Γ. The mesh cells near the boundary are more elongated in case with no redistribution.

In the last example we construct a minimal surface with topology of the Costa’s surface (see [8]). The initial
condition with nV = 4124, nF = 1438 and nT = 2686 is plotted in Figure 38.
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Figure 36. The initial condition of a surface with sinusoidal boundary. Left panel: the diamond
mesh, right panel: edges of finite volumes for F - and T -vertices.

Figure 37. The evolved surface with sinusoidal boundary in time step n = 400. Left column:
the case with no tangential redistribution. Right column: the case with asymptotically uniform
redsitribution with ω = 100. First row: the diamond mesh, second row: the mesh of F -covolumes
and third row: depicts the mesh of T -covolumes.
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Figure 38. Initial condition for construction of the “Costa’s surface”.

Figure 39. Constructed “Costa’s surface” from several viewing angles. Left column: the case
with no tangential redistribution. Right column: the case with asymptotically uniform redsitri-
bution with ω = 5.
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Figure 40. The evolution of relative standard deviation (RSD) of the covolume areas during
construction of “Costa’s surface”. The solid lines correspond to RSDF,n and the dashed lines
correspond to RSDT,n.

The boundary Γ = ∂X0 consists of three curves Γ = Γ1 ∪ Γ2 ∪ Γ3, where

Γ1(u) = (4 cosu, 4 sinu, 0),
Γ2(u) = (2.25 cosu, 1.5 sinu,−1.5),
Γ3(u) = (1.5 cosu, 2.25 sinu, 1.5),

(5.12)

with u ∈ (0, 2π) for all curves. The parameters were set to tf = 1.5, τ = 0.01 and ω = 5. In Figure 39 we see the
final approximation of the minimal surface. In case with no redistribution we observe worse quality of the mesh
in regions of higher initial curvature (ridges of the initial surface). The evolution of RSD is plotted in Figure 40.

6. Conclusions

In this paper we derived a Discrete duality finite volume (DDFV) method for solving the mean curvature
flow of surfaces in R3. Our method removes the non-uniqueness of the finite volumes described in section the
introduction. We added a suitable tangential velocity to the model in order to redistribute the mesh points
along the surface in order to improve the quality of the mesh. We applied the mean curvature flow equipped
with the area-oriented tangential redistribution to the problem of finding a minimal surface with given set of
boundary curves. Approximations of several minimal surfaces were computed.

There are many issues left for a further research. It could be useful to extend the model by suitable advection
term and use the DDFV method in applications (e.g. image processing). A tangential redistribution controlling
also the shape of mesh cells (not only the areas) and incorporation of mesh topology changing operations (to
eliminate high-valency vertices) could also improve the performance of the method in some cases. In a further
perspective, it would be interesting, not to impose the choice of triangulations as the basic tool of representing
discrete surfaces within the DDFV approach, but extend the method to general polygonal meshes.
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[43] L. Tomek, M. Remeš́ıková and K. Mikula, Computing minimal surfaces by mean curvature flow with area-oriented tangential
redistribution. Acta Math. Univ. Comenianae 87 (2018) 55–72.

[44] T. Tsuchiya, Discrete solution of the plateau problem and its convergence. Math. Comput. 49 (1987) 157–157.

[45] H.A. van der Vorst, Bi-cgstab: a fast and smoothly converging variant of bi-cg for the solution of nonsymmetric linear systems.
SIAM J. Sci. Stat. Comput. 13 (1992) 631–644.
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