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Abstract—In this paper, we describe methods designed to
segment objects from 3D cell nuclei and cell membrane images
and we point out several possible applications in analysis of the
zebrafish cell image data. We show how we can segment the
cell nuclei, the inner boundaries of the cells, the outer boundary
of an organism and the intercellular borders. We also present
a method for detection of approximate nuclei centers that is a
necessary preliminary step for the segmentation. All methods
that we mention are based on numerical solution of partial
differential equations. We describe all mathematical models and
we sketch the principles of the time and space discretization. The
explanation of all methods is accompanied by illustrations and
suggestions of applications in biology.

I. INTRODUCTION

The main goal of this paper is to propose several PDE
methods designed to extract objects from 3D zebrafish cell
images. Our research was motivated by the idea of bringing
in a set of reliable techniques that would enable us to analyze
the cell images – determine the number of cells, evaluate their
shapes, measure some important quantities like the surface or
volume, detect various cell structures, evaluate the global and
local characteristics of the whole organism, e.g. the density
of cells or location of cell divisions. Such analysis could be
further extended to comparison of different individuals or to
analysis of 4D data, i.e. the time evolution of an organism.

The images that we are dealing with represent the evolution
of the zebrafish embryo and they were obtained by a confocal
microscope that scanned simultaneously the cell nuclei and
cell membrane channel. All images are three-dimensional, they
are represented by the grey-level scale and they usually contain
several hundreds to several thousands of cells – a number that
would be impossible to analyze manually, especially if we
have to deal with long time series representing various stages
of embryogenesis. An example of the data is shown in Fig. 1.

The presented types of images can be used to extract various
objects – individual cells, cell structures (at later stages of
embryogenesis) or the surface of the organism. In this paper,
we describe methods for segmentation of the cell nuclei, the
inner cell boundaries, the so called intercellular skeleton (the
cell contact surface) and the embryo surface. The segmentation
methods, in order to start from an appropriate initial condition,

Fig. 1. Zebrafish embryo image in a 2D slice view. Left, the image of cell
nuclei, right, the cell membranes.

require the approximate positions of all cells. Therefore, before
explaining the segmentation algorithms, we present a method
for detection of approximate cell nuclei centers [7].

The center detection technique is represented by a level
set equation for advective motion in normal direction with
curvature term. The segmentation of the cell nuclei, the
inner cell boundaries and the embryo surface is realized by
an advection-diffusion type model, the so called generalized
subjective surface equation [6], [10], [11], [13], [15]. The
intercellular borders are segmented by an advective version
of the generalized subjective surface model. The velocity field
in this equation is given by the gradient of the signed distance
function to the inner cell borders that is computed by solving
the time relaxed eikonal equation [2]. These methods compose
a powerful set of cell image analysis techniques and they
have been extensively tested and successfully applied, cf e.g.
[1]–[3], [7], [9], [10], [15]. Since the numerous experiments
pointed out also some practical difficulties and possibilities of
efficiency improvement, we decided to modify the numerical
approaches described in the cited works. The schemes pre-
sented in this paper are based on the following principles. The
time discretization of the time relaxed eikonal equation and the
advective subjective surface model is explicit while the center
detection equation and generalized subjective surface model,
since they contain nonlinear curvature terms, are discretized
by the semi-implicit approach. As for the space discretiza-



tion, the advective term in the subjective surface models is
approximated by applying the upwind principle. The center
detection equation and the eikonal equation contain the term
that represents motion of level sets in normal direction. Here
we apply the Rouy-Tourin scheme [12]. The discretization of
the curvature terms is based on the finite volume technique.

II. THE CELL IMAGE PROCESSING ALGORITHMS

In this section, we describe the mathematical models, we
explain the principles of their numerical approximation and
we present some illustrative examples. Let us note that before
any of the methods can be applied, the images have to be
preprocessed by some denoising algorithm since a certain level
of noise is always present due to the limits of the staining
and scanning techniques. For our purposes, we applied the
geodesic mean curvature flow method [4], [5], [8] that was
chosen from several PDE methods after thorough testing, cf
[9]. From now on, we will use the notation u0

Nf
: Ω → R,

where Ω is a 3D rectangular domain, for the intensity function
representing the filtered nuclei image and u0

Mf
for the filtered

membrane image.

A. The discretization notation

Before we start explaining the algorithms, we establish some
common notation. All equations are discretized uniformly
in time and space, with τC , hC , τS , hS , τD, hD and τA,
hA being the time and space steps for the center detection,
generalized subjective surface segmentation, computation of
the distance function and advective subjective surface segmen-
tation, respectively. The space discretization is based on the
finite volume principle where the volumes of the mesh Th are
indetified with the voxels of the 3D image and any volume
Vijk, i = 1 . . . N1, j = 1 . . . N2, k = 1 . . . N3, is represented
by a cube with side length corresponding to the space step.
Let cijk be the barycenter of Vijk. For all volumes Vijk, we
define three index sets:

• Nijk = {(p, q, r); p, q, r ∈ {−1, 0, 1}, |p|+ |q|+ |r| = 1}
• Pijk = {(p, q, r); p, q, r ∈ {−1, 0, 1}, |p|+ |q|+ |r| = 2}
• Iijk = {(1, 0, 0), (0, 1, 0), (0, 0, 1)}

For any (p, q, r) ∈ Nijk, the faces of the finite volume Vijk

are denoted by epqrijk with normal νpqrijk and barycenter xpqr
ijk .

For (p, q, r) ∈ Pijk, ypqrijk denotes the midpoints of the voxel
edges. The approximate value of the model solution u in cijk
at time step n is denoted by un

ijk, the values of u at xpqr
ijk

and ypqrijk at time step n− 1 are denoted by (omitting the time
index) upqr

ijk , (p, q, r) belonging to the corresponding index set.
The described mesh is sketched in Fig. 2.

B. Cell nuclei center detection

The center detection process is represented by the equation
[7]

ut − δ|∇u| − µ|∇u|∇ ·
(

∇u

|∇u|

)
= 0 (1)

coupled with the zero Neumann boundary condition and the
initial condition u0 = u0

Nf
, solved in the domain Ω× [0, TC ].

Fig. 2. The finite volume mesh.

Fig. 3. The nuclei center detection process. Top left, 2D slice of the
nuclei image. Top middle, the corresponding intensity function. Top right,
intensity function of the filtered data. Bottom left and middle, the intensity
function after 5 and 15 steps of the evolution given by (1). Bottom right, the
corresponding centers constructed after 5 time steps (optimal stopping time)
of the evolution.

This model represents the advective level set motion in normal
direction regularized by curvature, i.e. the motion with the
velocity V = δ+µk where δ and µ are constants and k is the
mean curvature. The evolving level sets are the image intensity
level sets corresponding to the objects in the nuclei image.
During this evolution, all level sets are shrinking and finally
they disappear, while the level sets with a relatively small
diameter representing the noise structures disappear quickly
and the ones with larger diameter corresponding to cell nuclei
are observable in a much longer time scale. In other words,
we can observe decreasing of the number of the local maxima
of u that is stabilized when the spurious structures disappear.
At this point, we stop the process and the positions of local
maxima of u will represent the approximate cell nuclei centers
(see Fig. 3).

In order to discretize (1) in time, we apply the semi-implicit
approach that guarantees the unconditional stability of the
curvature term. We get

un − un−1

τC
− δ|∇un−1| − µ|∇un−1|∇ ·

(
∇un

|∇un−1|

)
= 0 .

(2)
After, applying the finite volume technique, we integrate (2)



over Vijk. We obtain∫
Vijk

un − un−1

τC
dx−

∫
Vijk

δ|∇un−1| dx (3)

−
∫

Vijk

µ|∇un−1|∇ ·
(

∇un

|∇un−1|

)
dx = 0 ,

where the time derivative term can be approximated by∫
Vijk

un − un−1

τC
dx ≈ h3

C

un
ijk − un−1

ijk

τC
· (4)

The second term contains the absolute value of the gradient
|∇un−1| that can be discretized by the Rouy-Tourin scheme
[12]. Let us define for any (p, q, r) ∈ Nijk

Dpqr
ijk =

(
min

(
un−1
i+p,j+q,k+r − un−1

ijk , 0
))2

(5)

and further for any (p, q, r) ∈ Iijk

Mpqr
ijk = max

(
D−p,−q,−r

ijk , Dp,q,r
ijk

)
. (6)

Then we get the approximation

|∇un−1| ≈ 1

hC

√
M100

ijk +M010
ijk +M001

ijk . (7)

In order to approximate the integral of the curvature term in
(3), we first approximate the values of un−1 in the midpoints
ypqrijk , (p, q, r) ∈ Pijk, of the voxel edges

upq0
ijk = (un−1

ijk + un−1
i+p,j,k + un−1

i,j+q,k + un−1
i+p,j+q,k)/4 ,

up0r
ijk = (un−1

ijk + un−1
i+p,j,k + un−1

i,j,k+r + un−1
i+p,j,k+r)/4 , (8)

u0qr
ijk = (un−1

ijk + un−1
i,j+q,k + un−1

i,j,k+r + un−1
i,j+q,k+r)/4.

Now we denote by ∇pqrun−1
ijk the approximation of the gra-

dient in the barycenter xpqr
ijk of the face epqrijk , (p, q, r) ∈ Nijk,

of the voxel Vijk. Using this notation, we can define

∇p00un−1
ijk =(

p(un−1
i+p,j,k − un−1

ijk )

hC
,
up10
ijk − up,−1,0

ijk

hC
,
up01
ijk − up,0,−1

ijk

hC

)
(9)

and analogously we define the approximations ∇0q0un−1
ijk ,

∇00run−1
ijk . Finally we set

Qpqr;n−1
ijk = |∇pqrun−1

ijk |, Q̄n−1
ijk =

1

6

∑
Nijk

|∇pqrun−1
ijk |.

(10)
This leads to the following approximation∫

Vijk

µ|∇un−1|∇ ·
(

∇un

|∇un−1|

)
dx ≈

µQ̄n−1
ijk

∑
Nijk

∫
epqr
ijk

∇un

|∇un−1|
νpqrijk dγ ≈ (11)

µhCQ̄
n−1
ijk

∑
Nijk

un
i+p,j+q,k+r − un

ijk

Qpqr;n−1
ijk

·

At the end, let us note that in practical implementations
the terms Qpqr;n−1

ijk , Q̄n−1
ijk are replaced by their regular-

ized equivalents Qpqr;n−1
ε,ijk =

√
ε2 + |∇pqrun−1

ijk |2, Q̄n−1
ε,ijk =√

ε2 + 1
6

∑
Nijk

|∇pqrun−1
ijk |2.

C. Generalized subjective surface segmentation

This segmentation technique can be used to segment the
cell nuclei, the inner cell boundaries and the embryo surface.
The process is represented by the following model [6], [10],
[13], [15]

ut − wa∇g · ∇u− wdg|∇u|∇ ·
(

∇u

|∇u|

)
= 0 , (12)

solved in Ω × [0, Ts], where u is the evolving function and
we consider the zero Dirichlet boundary condition on ∂Ω. The
constants wa and wd are the coefficients (weights) of advection
and diffusion. The function g is the so called edge detector
and it is of the form

g(s) =
1

1 +Ks2
, K ≥ 0. (13)

It is applied to the gradient of the filtered image additionally
smoothed by the Gaussian kernel with a small variance σ
(g = g(|∇u0

σ|), u0
σ = Gσ ∗u0

Nf
in case of nuclei segmentation

and u0
σ = Gσ ∗ u0

Mf
in case of cell boundary and embryo

surface segmentation). The essential property of this function
is that its negative gradient points towards the edges in the
image. In some applications, the efficiency of the method
can be improved if we set g(s) = f

(
1/(1 +Ks2)

)
where

f is an appropriate function that preserves the edge detecting
properties.

The construction of the initial condition depends on the
object that we want to segment. In case of the nuclei segmen-
tation, we use a function whose compact support is localized
in the neighborhood of the approximate nucleus center and
it covers the whole nucleus. In case of inner cell boundary
segmentation, the compact support of the function should be
situated inside the cell. If we want to segment the embryo
surface, the compact support should cover the whole embryo
or its part that is visible in the image, see [1] for details.

The time discretization of (12) is again semi-implicit

un − un−1

τS
−wa∇g ·∇un−1−wdg|∇un−1|∇· ∇un

|∇un−1|
= 0 .

(14)
After integrating (14) over Vijk, the integral of the time
derivative term is approximated according to (4). In order to
discretize the other to terms, recalling (8) and (9) we define

gijk = g

1

6

∑
Nijk

|∇pqru0
σ;ijk|

 .

The advection term is approximated by the upwind principle.
For all (p, q, r) ∈ Iijk, we define the differences

Dpqr
ijk g = (gi+p,j+q,k+r − gi−p,j−q,k−r)/(2hS). (15)



Fig. 4. Cell nuclei segmentation. Top, 2D slice of data with the initial
segmentation function and the corresponding segmentation results (isosurface
I = 128 of the segmentation function). Bottom, the cell image (nuclei
and membranes superimposed) with the segmented nuclei. Parameter values
g(s) = Gρ∗1/(1+Ks2)6, K = 1000, ρ = 0.0001, wa = 10.0, wd = 2.0,
τS = 0.1, hS = 1.0, ε = 10−3.

Dpqr−
ijk u =

(
un−1
ijk − un−1

i−p,j−q,k−r

)
/hS ,

Dpqr+
ijk u =

(
un−1
ijk − un−1

i+p,j+q,k+r

)
/hS (16)

and we get∫
Vijk

wa∇g · ∇u dx ≈ wah
3
S

∑
Iijk

(
max

(
Dpqr

ijk g, 0
)
Dpqr−

ijk u

+min
(
Dpqr

ijk g, 0
)
Dpqr+

ijk u
)

(17)

The diffusion term is approximated similarly as in the case of
the center detection problem, using the notation (10)∫

Vijk

wd g|∇un−1|∇ ·
(

∇un

|∇un−1|

)
dx ≈ (18)

wdgijkhSQ̄
n−1
ijk

∑
Nijk

un
i+p,j+q,k+r − un

ijk

Qpqr;n−1
ijk

·

The segmentation that we have described has various inter-
esting applications in the analysis of cell images, cf [1], [14].
The segmentation of any object can be used to determine its
volume, surface or evaluate the shape. Moreover, the nuclei
segmentation can be used for correction of the center detection,
the cell boundary segmentation can be useful in detection
of cell divisions. The embryo segmentation together with the
center detection can give us the information about the local
and global density of cells.

To complete the method description, we provide several
illustrative examples displayed in Fig. 4, 5 and 6.

D. Extraction of the intercellular skeleton
The intercellular borders correspond to the ridges of the

signed distance function to the segmented inner cell bound-
aries. The distance function can be computed by numerical
solution of the time relaxed eikonal equation

dt + |∇d| = 1. (19)

The equation is solved in the domain Ω × [0, TD] and it is
coupled with a Dirichlet type condition

d(x, t) = 0, x ∈ Ω0 ⊂ Ω (20)

Fig. 5. Segmentation of the inner cell boundaries. From the left: 2D slice
of the cell nuclei image with detected centers, 2D slice of the cell membrane
image with an isosurface of the initial segmentation function, segmentation
results, 2D slice of the segmentation results. Parameters g(s) = 1/(1+Ks2),
K = 1000, wa = 10.0, wd = 0.2, τS = 0.1, hS = 1.0, ε = 10−3.

Fig. 6. Embryo surface segmentation and the local cell density. Top left,
2D slice of the segmented embryo surface. Top right, the corresponding
distribution of local cell density. Bottom left, segmented surface of the embryo
in 3D view. Bottom right, the volume rendering of the local cell density with
recongnizable structures. Brighter colors correspond to higher local density.
Parameters g(s) = 1/(1 + Ks2), K = 1000, wa = 10.0, wd = 2.0,
τS = 0.1, hS = 1.0, ε = 10−3.

where Ω0 is the set of curves representing the inner cell bor-
ders. Due to the character of the level set function representing
the segmentation result, we can recognize the inner and outer
parts of the cell. In order to construct the signed distance
function d±, we set d± = −d inside the cell and d± = d
outside.

The time discretization of (19) is explicit and the space
discretization is based on the approximation of the center
detection model (1) since it has the same structure (if we set
δ = −1 and the curvature term is replaced by a constant
f = 1). The Rouy-Tourin discretization leads to

dnijk = dn−1
ijk + τD − τD

hD

√
M100

ijk +M010
ijk +M001

ijk . (21)

The efficiency of this method can be further improved. In
[2], a fixing strategy that significantly reduces the CPU time
was proposed. This technique takes advantage of the fact that
the updates generated by (21) gradually approach a steady
state and it updates only the points where the steady state
has not been reached yet. We can also realize that we do not
necessarily need the exact value of the distance function. What
we need is the correct position of the ridges of d± and the



Fig. 7. A detail of the inner cell boundary segmentation (left) with the
corresponding segmented intercellular skeleton (right). Parameters τD = 0.3̄,
τA = 0.03, hD = hA = 1.0.

correct orientation of the vector field generated by the gradient
of d±. This is achieved as soon as all values are non-trivially
updated by (21) [2].

The ridges of d± are segmented by a simple variant of the
generalized subjecctive surface model

ut +∇g · ∇u = 0 (22)

where (x, t) ∈ Ω×[0, TA] and g(x) = (d±(x, TD))
p according

to [16] or g(x) = −1/
(
1 +K (d±(x, TD))

p) with K > 0,
p > 0 as in [13], [10]. The unknown function u is initialized by
a piecewise constant profile localized around the approximate
cell center. Then it is evolved by (22). The intercellular
skeleton is represented by a chosen isosurface of the union of
the segmentation results corresponding to the individual cells.
For the cells that are in the outer cell layers of the embryo,
there is no ridge to stop the evolution of the function u in
the parts where there are no neighboring cells. In this case,
we use the segmented surface of the embryo to complete the
missing boundary.

The equation (22) is discretized using the explicit time
approach and the upwind strategy given by (15) and (17). We
can write

un
ijk = un−1

ijk − τA
hA

∑
Iijk

(
max

(
Dpqr

ijk g, 0
)
Dpqr−

ijk u

+ min
(
Dpqr

ijk g, 0
)
Dpqr+

ijk u
)
. (23)

The intercellular skeleton can be used to determine the
area of the cell contact surface. Further, we can evaluate the
cell shapes and according to the shape detect specific groups
or layers of cells. Having at disposal both inner and outer
boundaries of the cells, we can determine the volume occupied
by the cell membranes etc. Some examples are shown in Fig.
7, 8.

III. CONCLUSION

We described a set of methods designed to segment objects
from 3D cell nuclei and cell membrane images. Based on the
results, we can conclude that the presented set of methods
represents a powerful tool for the analysis of cell images.
We mentioned several useful applications that can be further
extended within the scope of our future research.
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Fig. 8. Differentiated cell layers detected automatically according to the cell
shape. The main criterion was the flatness or elongation of the cell and the
orientation of the longest side of its bounding box with respect to the normal
to the embryo surface.
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