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The quantitative and systematic analysis of embryonic cell dynamics from in vivo
3D+time image datasets is a major challenge at the forefront of developmental
biology. Despite recent breakthroughs in the microscopy imaging of living systems,
producing an accurate cell lineage tree for any developing organism remains
a difficult task. We present here the BioEmergences workflow integrating all
reconstruction steps from image acquisition and processing to the interactive
visualization of reconstructed data. Original mathematical methods and algorithms
underlie image filtering, nucleus center detection, nucleus and membrane segmentation,
and cell tracking. They are demonstrated on zebrafish, ascidian and sea urchin
embryos with stained nuclei and membranes. Subsequent validation and annotations
are carried out using Mov-IT, a custom-made graphical interface. Compared to
eight other software tools, our workflow achieved the best lineage score. Delivered
in standalone or web service mode, BioEmergences and Mov-IT offer a unique
set of tools for in silico experimental embryology.
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C ELLS are the necessary level of integration of biological
processes1 and multicellular organization is best described
by the cell lineage tree deployed in space and time. Thus

the quantitative investigation of cell behavior based on lineage
branches annotated with relevant measurements at the individual
cell level is the indispensable basis for reconstructing the multilevel
dynamics of developing organisms.2 Accurate and precise data
about cell positions, trajectories, divisions, nucleus and cell shapes
can be derived from the automated processing of 3D+time images.
Contributions in the field point to the necessary co-optimization of
4D multimodal imaging techniques and algorithmic image processing
workflows.3–5 Ideally, going from the microscopy data to the
interactive visualization of the cell lineage tree and segmented shapes
should be automated, easily manageable, and fast enough to allow a
quantitative comparison of individuals.6

In recent years, decisive breakthroughs were made in the
microscopy imaging of living systems, thanks to progress
in fluorescent protein engineering7–9 and microscopy imaging
techniques, including multiphoton laser scanning microscopy
(MLSM) and selective plane illumination microscopy (SPIM).10

Concomitantly, image processing methods for cell segmentation, cell
tracking, and the analysis of new types of quantitative data have
diversified and improved.3–5, 11–13 The huge data flow produced by
3D+time imaging of live specimens has also greatly benefited from
faster computer hardware and computing grid architectures able to
cope with high-dimensional datasets.14 Finally, computer-aided data
analysis and visualization software have completed the toolbox of
quantitative developmental biology.15

Successful applications are still rare, however, and producing
an accurate cell lineage tree for any developing organism remains
a difficult challenge. In 2006, the automated reconstruction of
the nematode cell lineage from confocal images established the
first standard,16 although it did not yield reliable results beyond
the 194-cell stage. Later, reconstructions were attempted on more
complex organisms, such as the zebrafish embryo imaged by digital
scanned laser light-sheet fluorescence microscopy (DSLM),17 or
Drosophila imaged by MLSM during gastrulation,18 but they did not
provide long-term accurate single cell tracking either. A concurrent
work4 on semi-automated cell lineage reconstruction from harmonic
generation imaging of non-labeled zebrafish embryos provided six
digital specimens with precise nucleus and membrane segmentation,
yet was limited to the first 10 divisions of the egg cell. Most recently,
Amat et al.5 delivered a standalone software for the reconstruction
of cell lineages from Drosophila embryos with fluorescently stained
nuclei. Their method, also tested on developing mouse and zebrafish
embryos, is well suited for the low background and high temporal
resolution of SPIM data. Among all the state-of-the-art algorithmic
image processing strategies, whether commercial or open-source
software, the latter is the only one offering 3D+time cell tracking with
detection of mitotic events to reconstruct the branching dynamics of
cell lineage. Altogether, the growing number of solutions available
today confirms that the automated reconstruction of cell trajectories
and cell shapes, together with their interactive visualization, is at the
cutting edge of developmental biology. Obviously, the performance
achieved so far in terms of accuracy, scalability, as well as ease of
operation, leaves plenty of room for improvement. There are still a
great number of methods to explore, and more to invent in the fields
of image processing and machine vision.

We deliver here an original image processing workflow,
BioEmergences, in the form of standalone software. While optimized
for MLSM data and fast cell movements in gastrulating zebrafish
embryos, it generally performs well on 3D+time imaging data without
heavy requirements in terms of spatial and temporal resolution,

or signal-to-noise ratio. In addition to the reconstruction of
the cell lineage branching process, the BioEmergences workflow
includes segmentation algorithms for cell nucleus and membrane
shapes. These are based on the “subjective surface” method,
which can complete cell contours from heterogeneous fluorescent
membrane staining.19 The standalone version of the workflow can
be operated through a graphical user interface, and its output data
is connected to Mov-IT, a custom-made interactive visualization
software. Alternatively, our web service offers users customized
assistance and fast processing on computer clusters or on the European
Grid Infrastructure (EGI), together with the possibility to explore a
large parameter space for the optimization of results (see Methods to
request access).

We demonstrate the reconstruction and analysis of six digital
embryos from three different species. All the data obtained, raw
and reconstructed, is made available to the community. The
BioEmergences workflow is compared with eight other software tools
from four different providers on the basis of “gold standard” datasets
obtained by manual validation and correction of cell lineages. It scores
best in all three tested categories: nucleus center detection, linkage
and mitosis detection. Thus the combined BioEmergences/Mov-IT
platform can contribute to the definition of standard procedures for
the reconstruction of lineage trees from 4D in vivo data. The
validation, annotation and analysis tools provided here support
detailed, large-scale cell clonal analysis and characterization of cell
behavior along the lineage tree. This leads the way to the creation
of benchmarks for a new type of interdisciplinary and quantitative
integrative biology.

Results
Overview of the BioEmergences workflow. The phenomenological
reconstruction of embryonic cell lineage starts from multimodal 4D
data, typically comprising at least one channel for the fluorescent
signals emitted by cell nuclei, and possibly another one for cell
membranes. While nuclear staining is essential for cell tracking,
membrane staining is necessary to assess cell morphology and
neighborhood topology. We deliver the first public version of the
standalone BioEmergences workflow, with graphical user interface,
able to launch a succession of algorithmic steps on two-channel
raw data (Fig. 1 and Methods). Image filtering, nucleus center
detection, membrane shape segmentation, and cell tracking methods
were all designed and tuned to deal with the inherent noise and
incompleteness of 4D imaging data generated by MLSM (Fig. 2).
The BioEmergences standalone pipeline produces reconstructed
data that can be directly displayed by the interactive visualization
software, Mov-IT (Methods). By superimposing reconstructed data
on raw data, Mov-IT adds visual inferences to create an “augmented
phenomenology”. This allows the user to control data quality, measure
the error rate, easily correct cell detection and tracking errors, and
investigate the clonal history of cells and their behavior.

The automated tracking of cells from 4D image datasets
across whole living embryos involves a difficult trade-off between
interdependent variables: signal-to-noise ratio, spatial and temporal
resolution, imaging depth, and cell survival. Microscopy techniques
for in vivo and in toto imaging of developing organisms are evolving
rapidly. In particular, the combination of two-photon excitation
fluorescence (2PEF) for deep-tissue imaging over extended periods
of time20, 21 with parallelized microscopy based on SPIM/DSLM is
a promising approach,22 although it is not yet widely available for
routine time-lapse imaging in developmental biology.

We explored here the coupling of two femtosecond lasers with
two upright laser-scanning microscopes (Supplementary Fig. 1). Our
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methods are illustrated on 6-hour spatiotemporal sequences covering
the cleavage and gastrulation periods in Danio rerio (Dr1 and Dr2)
and Phallusia mammillata (Pm1 and Pm2), and the cleavage stages in
Paracentrotus lividus (Pl1 and Pl2) (Fig. 2, Supplementary Movies 1,
2 and 3). The ascidian and echinoderm embryos were imaged in
toto, allowing the reconstruction of the complete cell lineage across
entire specimens. The subvolume imaged in the developing zebrafish
contained up to 9,500 cells, adding the difficulties of high nucleus
density and noise increase along the imaging depth. The user can
choose between a standalone version, easily deployed on a personal
computer but limited in terms of scalability, and a web service with
user support, made to rapidly process large datasets through parallel
implementation on our computer clusters and the EGI (Supplementary
Note 1 on computational speed). The latter is especially powerful
for optimizing the choice of algorithm parameters under expert
supervision. The comparison of the BioEmergences workflow
with other available strategies demonstrates the performance and
usefulness of our tools.

Image processing steps. The BioEmergences automated image
processing workflow (Fig. 1) is delivered as a standalone code that
can be executed from the command line and, in part, from a graphical
user interface. It starts by filtering the images and detecting the
cell centers from local maxima, then performs a tracking of the
cells’ trajectories, with optional segmentation of the shapes of nuclei
and membranes, producing in the end a digital specimen in output
(Methods, Supplementary Movies 4, 5 and 6).

Filtering and nucleus center detection algorithms based on
multiscale image analysis23 and partial differential equations (PDEs)
are particularly useful for datasets that contain a high density of
nuclei, as observed in the zebrafish by the end of gastrulation and
beyond. Starting from raw images (Fig. 3a), an initial image filtering
step removes noise through geodesic mean curvature flow (GMCF)24

relying on a nonlinear geometrical PDE that can simultaneously
smooth and sharpen the image.25 Next, the position of each nucleus
is found by a flux-based level set center detection (FBLS) method
(Fig. 3b).26 It identifies objects with “humps” in the image intensity
function, and places nuclear centers at local maxima. This is
done through a nonlinear advection-diffusion equation that moves
each level set of image intensity by a constant normal velocity and
curvature.

Alternatively, we also provide a module performing well with
a low density of nuclei and highly contrasted images. Based on
a difference of Gaussians (DoG) convolution filter, it is able to
simultaneously smooth the image and keep the most salient features.
In the web service implementation of the workflow, parameters of
the Gaussians are interactively selected upon visual inspection of the
resulting centers.

In an optional step, both nucleus and membrane geometries are
automatically found by shape segmentation (Fig. 3c-e) using the
subjective surface (SubSurf) technique initialized with the previously
detected cell centers.27–29 The numerical discretization of GMCF,
FBLS and SubSurf is based on the co-volume method30 and its
parallel implementation.19 The SubSurf method was also used to
segment the global volume of imaged embryonic tissue, useful to
estimate the average cell density and its evolution through time
(Fig. 3f-h). Finally, our original cell tracking algorithm inputs the list
of approximate centers of cell nuclei and outputs their lineage in space
and time following a three-step strategy. The first step initializes the
lineage links by a nearest-neighbor heuristic method. The second step
uses simulated annealing,31 a variant of the Metropolis algorithm, to
progressively enforce a set of constraints reflecting a priori biological
knowledge. This is achieved by repeated random trials of link

modification, and validation of possible changes according to a cost
function, based on a weighted sum of contributing terms, and a
“temperature” parameter. The last step uses simulated annealing
to link childless and motherless cells to the tree in an acceptable
way, leaving open the possibility to make a posteriori changes in the
detected nuclei.

Visualization and validation. After processing, each step of the
reconstruction can be interactively visualized and analyzed with the
Mov-IT software. Developed to address the needs of biologists
investigating the potential of in silico embryology based on 3D+time
microscopy imaging, Mov-IT allows easy validation and correction
of nucleus detection and cell lineage by superimposing reconstructed
data on raw data. To this aim, it provides a complete set of tools
including 3D volume rendering, 2D orthoslice views, cell lineage, and
segmentation display.

The Mov-IT software was used to validate the reconstruction
of our six specimens’ cell lineage trees. The sea urchin (Pl1,2)
and ascidian (Pm1,2) datasets were extensively checked and curated,
producing quasi error-free digital specimens (gold standards) over an
average of 30,000 temporal links. The fish datasets (Dr1,2) were only
partly checked because of their large number of cells. More than
80,000 tracking links and 1200 cell divisions were validated and, when
necessary, corrected in the dataset Dr1 chosen to establish our standard
validation protocol (Fig. 4a-d, Methods, Supplementary Movies 7, 8
and 9).

The performance of our automated workflow on dataset Dr1
was evaluated on three processing outputs: nuclear center detection,
linkage (by tracking cells one time step in the past), and mitosis
detection. For each output, three success or error percentages were
calculated: a sensitivity (representing the rate of true positives), a
false detection rate (representing false positives), and a false negative
rate. Finally, the product of center detection sensitivity and linkage
sensitivity produced a global lineage score (Methods, Supplementary
Table 1 and Supplementary Fig. 2). On average over four windows
of 21 time steps distributed in the first 360 time steps of dataset
Dr1 (1h30 out of 6h40 of imaging from prior gastrulation to the 1
somite stage), the average linkage sensitivity of BioEmergences was
97.89%, meaning that only 2.11% of the cells were missed or not
correctly tracked between time steps. False positive nuclei were a
negligible source of tracking errors (0.21%). False trajectories, in
which tracking jumped from one cell to another between two time
steps were observed in a very small number of cases, too (1.03%). The
performance on small organisms, sea urchin and ascidian, was close
to the gold standards for the best part of the images. Cell detection
and tracking was occasionally poorer, depending on the image quality,
essentially the signal-to-noise ratio, which degraded with imaging
depth.

The relevance and usefulness of the BioEmergences
reconstruction workflow are demonstrated by comparing its outputs
with those obtained on the same dataset Dr1 using state-of-the-art
commercial and open-source software. Eight image processing
tools from four different providers were deemed suitable to handle
gigabytes of time-lapse data. Their performance was tested on the
detection of nuclear centers, links and cell divisions in several time
intervals (Fig. 5, Methods and Supplementary Table 1). Based on
measures of true positive rates, called “sensitivity”, and false positive
rates, our methods produced the best results in every category. In
particular, BioEmergences had the lowest rate of false linkage at 1%
(Fig. 5h, column e). It also obtained an average mitosis sensitivity
of 67% against 13% for Amat et al. and 0% for the rest (Fig. 5h,
column c), meaning that the other tools were actually not designed to
join lineage branches through the detection of divisions. Our software
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and Amat et al.’s software were the only ones allowing the linkage of
one mother cell at time step t to two daughter cells at time step t +1.
In essence, mitosis detection is a special task that only two packages
among the nine that we tested were able to solve. Typically, it is at
the time of anaphase and telophase that an algorithm can detect two
separate nuclei, and as soon as it does it must also link them back to
their mother. If this is not accomplished, the lineage tree will lack a
junction. Even when a mitotic event is missed, most methods are still
able to correctly track the resulting two cells, but these cells will not
be properly annotated as daughters (Movie 10).

Overall, our workflow reached an average “lineage score” of
96% (the product of center sensitivity and linkage sensitivity), while
Amat et al. had 83% and all other tools remained below 50%
(Fig. 5h, column g). Behind these average values, there was also a
noticeable degradation of performance at later developmental stages
in all systems except BioEmergences (Fig. 5g).

Analysis of cell fate and proliferation in digital specimens. The
cell lineage tree is the cornerstone of a detailed understanding of
morphogenetic processes (Supplementary Note 2 on in silico fate
mapping). Digital specimens, such as the examples presented here,
constitute a unique source of in-depth knowledge into embryonic
patterning and the individuation of morphogenetic fields (Fig. 6). In
the zebrafish embryo, cells from the epiblast, hypoblast or epithelial
enveloping layer were distinguished according to their position and
behavior,32 and selected in the digital specimen with the Mov-IT
tool. The selected cell populations were tracked, either backward
or forward, revealing their relative movements with resolution at the
cellular level during gastrulation stages (Fig. 6a,b and Supplementary
Movie 11). The more stereotyped cell lineage of the tunicate
Phallusia mammillata allowed us to transpose the state-of-the-art fate
map established at the 110-cell stage.33 Cells were marked in the
digital specimen according to their presumptive fate (Fig. 6c,d and
Supplementary Movie 12). The propagation of the 110-cell stage
fate map along the cell lineage revealed the patterning of all the
morphogenetic fields with a temporal resolution in the minute range.
In the sea urchin embryo at cleavage stages, the cell membrane
channel was used to mark cells according to their volume. This
led to the identification of the three cell populations: micromeres,
macromeres, and mesomeres, organized along the vegetal-animal
axis, with further segregation of macromeres into Vg1 and Vg2
subtypes, and micromeres into small and large subtypes34 (Fig. 6e,f
and Supplementary Movie 13). The propagation of colors along the
cell lineage showed that, despite limited cell dispersion, the cellular
organization in the sea urchin embryo varied from one embryo to
another.

The Mov-IT interface was also designed for fast import of
processed data files in order to perform a systematic analysis of
cell and tissue properties (Mov-IT tutorial). This is illustrated by
the analysis of the evolution of cell proliferation and cell density
in our sea urchin, ascidian and zebrafish specimens (Supplementary
Fig. 3). Further statistical analysis and measurements are expected
to contribute in a feedback loop to theoretical models and numerical
simulations (Supplementary Fig. 4).

Discussion
The BioEmergences reconstruction pipeline, accessible through a
simple graphical user interface, was designed to run as quickly and
efficiently as possible from the acquisition of microscopy images to
the display of cell lineage and cell segmentation aligned with raw data.
While the standalone version was crafted for convenient processing
of small datasets on a laptop computer, there is no size limit on

the data that can be uploaded to the BioEmergences web service
through iRODS, an open-source data management software, and the
OpenMOLE engine14 for data processing on the EGI.

The concept of “augmented phenomenology”, coined to describe
the overlay of raw and reconstructed data required for validation,
correction and analysis, is fully exploited using the custom-made
Mov-IT software. This tool serves in particular to demonstrate that
the reconstructed cell lineages meet the best standards of precision
and accuracy. So far, cell lineage data can only be validated by eye
inspection or by comparison with available gold standards, which
are established manually and cross-checked by at least two experts.
Corrected datasets are considered error-free as long as experts do not
dispute this conclusion. Although gold standards themselves depend
on what the eye can achieve, it is generally accepted that automated
image processing software is still on average less effective than human
vision. Our cross-software comparison method based on a set of
validated events (cell positions, temporal links, divisions) is a step
in the direction of standardized validation and comparison protocols.
All the results led to the conclusion that the BioEmergences workflow
achieved the best performance on standard data produced by MLSM
imaging with a temporal resolution chosen to explore either a small
specimen (sea urchin or tunicate embryo) or up to one third of the
zebrafish gastrula. The software provided by Amat et al. was the next
best, but its performance dropped faster than BioEmergences with the
increase in cell density and tissue thickness.

The cell tracking pipeline delivered here should be useful for
a large variety of model organisms that have adequate optical
properties to allow the acquisition of 3D+time datasets, including a
channel for stained nuclei. The requirements in terms of spatial and
temporal resolution and signal-to-noise ratio are easily fulfilled with
commercial microscopy setups, either MLSM or SPIM. However, the
accuracy of cell lineage reconstruction depends to a great extent on the
quality of the data. Biologists who try for the first time the automated
processing of their time-lapse images might have to adjust their
staining and imaging scheme to increase the quantity of information
collected, especially across tissue depth. Image processing outcome
also depends on the selection of algorithm parameters. This might
require a few trials in the standalone version, if the default parameters
do not already lead to satisfactory results. The web service version,
on the other hand, offers the advantage of fast processing on a
grid infrastructure, allowing the concurrent execution of hundreds
of parameter combinations that can be easily explored by the user
through Mov-IT, as done for the DoG center detection method.

The detection of cell nuclei is a critical step, as it is used not
only for cell tracking but also for nucleus and membrane shape
segmentation, which must be performed on validated nuclei to
avoid major errors but is computationally expensive. Although the
standalone software performs well on a few selected cells, full-scale
shape segmentation can be achieved in a reasonable amount time
only on a computing cluster such as the one accessible through the
BioEmergences web service. Segmentation output can also be verified
with Mov-IT, but its quantitative validation remains an issue.35

The public availability of the BioEmergences platform and its
application to the embryogenesis of model organisms is intended to
open the path to in silico embryology based on digital specimens.
We illustrate this ambition with fate-map studies. The possibility of
constructing complete fate maps in digital specimens, as we achieved
for the tunicate embryos, is a revolution in the field. Finally, while
delivering here a standalone software, we also expect to initiate
through the web service option a synergistic effort of the scientific
community toward further validation, correction and annotation of
digital specimens.
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Methods
Embryo staining and mounting. Wild-type Danio rerio (zebrafish) embryos
were injected at the one-cell stage with 200 pg H2B-mCherry and 200 pg
eGFP-HRAS mRNA prepared from PCS2+ constructs.36, 37 Although
mCherry was not as bright as eGFP and bleached more through imaging, this
color combination was the best compromise for a proper staining of cell
membranes and further segmentation. Injected embryos were raised at 28.5◦C
for the next 3 hours. Embryos were mounted in a 3 cm Petri dish with a glass
coverslip bottom, sealing a hole of 0.5 mm at the dish center, where a Teflon
tore (ALPHAnov) with a hole of 780 µm received the dechorionated embryo.
The embryo was maintained and properly oriented by infiltrating around it
0.5% low-melting-point agarose (Sigma) in embryo medium.38 Temperature
control in the room resulted in about 26◦C under the objective, slightly
slowing down development with respect to the standard 28.5◦C developmental
table32 (Supplementary Table 2). After the imaging procedure, the embryo
morphology was checked under the dissecting binocular and the animal was
raised for at least 24 hours to assess morphological defects. Embryo survival
depended on total imaging duration, average laser power, and image
acquisition frequency (time step ∆t). The zebrafish datasets Dr1 and Dr2 were
imaged through a standardized procedure with ∆t <150 s allowing up to 120
sections per time point with an average laser power of 80 mW delivered to the
sample for more than 10 hours without detectable photodamage. Lowering the
laser power to less than 60 mW and increasing ∆t up to 3.5 min allowed
imaging embryos for more than 20 hours, then raising them to adulthood.
These conditions were used to obtain up to 320 sections at a 400 Hz line scan
rate (bidirectional scanning), or 200 Hz to improve signal-to-noise ratio.

Oocytes from Phallusia mammillata (ascidian) were dechorionated and
injected as described39 with 1mg/ml H2B-eGFP mRNA prior fertilization.
Membrane staining was obtained through continuous bathing in artificial
sea-water containing FM 4-64 (Life Technologies) at a concentration of
1.6 µg/ml. Embryos were deposited in a hole made in 1% agarose in filtered
sea water at the center of a 3 cm Petri dish.

Oocytes from Paracentrotus lividus (sea urchin) were prepared and
injected as described40 with 150 µg/ml H2B-mCherry and 150 µg/ml
eGFP-HRAS synthetic mRNA. Embryos were either maintained between
slide and coverslip covered with protamin41 or embedded in 0.25%
low-melting-point agarose sea water at the center of a 3 cm Petri dish.

Image acquisition. Imaging was performed with Leica DM5000 and
DM6000 upright microscopes SP5 MLSM, equipped with an Olympus
20/0.95NA W dipping lens objective or a Leica 20/1NA W dipping lens
objective. Axial resolution at the sample surface (1.5 µm) was estimated by
recording 3D images of 0.1 or 1 µm fluorescent polystyrene beads
(Invitrogen) embedded in 1% agarose. For the zebrafish specimen Dr1, the
field size was 700 × 700 m in x, y and 142 µm in z, with a voxel size of
1.37 × 1.37 × 1.37 µm and a time step of 67 sec. For the zebrafish Dr2, the
field size was 775 × 775 µm in x, y and 164 µm in z, a cubic voxel of edge
1.51 µm and a time step 153 sec. For the ascidian Pm1, these dimensions were
384 × 384 µm in x, y, 165 µm in z, voxel 0.75 × 0.75 × 1.5 µm and time step
180 sec. For the ascidian Pm2: 353 × 353 µm in x, y, 188 µm in z, voxel
0.69 × 0.69 × 1.39 µm, and time step 180 sec. For the sea urchin Pl1:
280 × 280 µm in x, y, 86 µm in z, voxel 0.55 × 0.55 × 1.09 µm and time step
207 sec. For the sea urchin Pl2: 266 × 266 µm in x, y, 82 µm in z, voxel
0.52 × 0.52 × 1.05 µm and time step 180 sec. For two-color acquisition,
simultaneous 2-photon excitation42 at two different wavelengths (1030 nm
and 980 nm) was performed with pulsed laser beams (T-pulse 20, Amplitude
Systèmes and Ti-Sapphire femtosecond oscillator Mai Tai HP, Newport
Spectra physics, respectively). Details of the optical bench are provided in
Supplementary Fig. 1. Raw-data movies were made with the Amira software
(Mercury Computer Systems).

Image processing algorithms. Explanation of the parameters and their useful
range, along with the specific values used to process datasets Dr1-2, Pm1-2,
and Pl1-2, are all provided in Supplementary Table 3. Filtering by geodesic
mean curvature flow (GMCF) relied on the following partial differential
equation (PDE):25, 43, 44

∂t u = |∇u|∇·
(

g(|∇Gσ ∗u|) ∇u
|∇u|

)
. (1)

It was accompanied by the initial condition u(0,x) = u0
N(x), or

u(0,x) = u0
M(x), where u0

N(x) and u0
M(x) are the image intensities of the nuclei

and the membranes, respectively, depending on which channel was filtered. In
the GMCF model, the mean curvature motion of the level sets of image
intensity is influenced by the edge indicator function
g(s) = 1/(1+Ks2),K ≥ 0, applied to the image intensity gradient
pre-smoothed by convolution with a Gaussian kernel Gσ of small variance σ .
Details of the numerical method for solving Eq. (1) and its (parallel) computer
implementation are given in.25, 43

Center detection by flux-based level set (FBLS) defined the nuclei as the
local maxima of a smoothed version of the original image. Our algorithm was
based on the following PDE:26

∂t u+δ |∇u|= µ|∇u|∇·
(

∇u
|∇u|

)
. (2)

where the initial condition was given by the intensity function of the filtered
nucleus image u f

N . Eq. (2) represents the level-set formulation for the motion
of isosurfaces of solution u by a normal velocity V = δ +µk, where δ and µ

are constants and k is the mean curvature. Due to the shrinking and smoothing
of all level sets, the function u f

N was simplified, and we observed a decrease in
the number of spatial positions of local maxima, which could be used as
approximate nuclear center positions. Details of the numerical solution to
Eq. (2) can be found in.26, 43

Alternatively, smoothing and center detection could be achieved by
difference of Gaussians (DoG), a convolution of the image with two
Gaussians of different standard deviations, here 1.5-2.5 µm and 12-16 µm
respectively. Their difference was calculated and the gray values above a
threshold between 1 and 10% were selected. This allowed to simultaneously
smooth the image and keep the most significant objects. We ran multiple
simulations combining different possible values of standard deviations and
thresholds. Optimal values were visually chosen with Mov-IT by interactively
checking the detection results.

Nucleus and membrane segmentation extracted the shapes of cell nuclei
and/or membranes by evolving an initial segmentation function based on the
subjective surface (SubSurf) equation:27

∂t u−wc∇g ·∇u = wd g
√

ε2 + |∇u|2 ∇·

(
∇u√

ε2 + |∇u|2

)
, (3)

where g = g(|∇Gσ ∗u f
N |) for nucleus shapes, g = g(|∇Gσ ∗u f

M |) for
membrane shapes, and ε , wc, wd are parameters. A detailed description of the
role of these parameters, with explicit and semi-implicit numerical schemes,
along with a discussion of the computational results is given in.28, 29 The same
Eq. (3) is also used for the overall embryo shape segmentation.29

Our cell tracking algorithm uses simulated annealing (SimAnn). It takes
in input the list of approximate centers of cell nuclei detected at each time
step, and produces in output a lineage “forest”, a graph equal to the union of
several disjoint trees, in which each cell present at the first time step was the
root of a lineage tree. A graph is composed of a set of edges, or “links”, each
of them connecting a nucleus center at time t to a nucleus center at time t +1.
The algorithm was implemented by an automated three-stage process:

First, edges between centers at consecutive time steps were initialized
using a nearest-neighbor heuristic method. This created a set of links that
were not necessarily biologically plausible.

Second, simulated annealing,31 a variant of the Metropolis algorithm,45

was used to progressively enforce a set of predefined constraints summarizing
together a certain number of biological requirements on the lineage forest,
most notably: each cell beyond the first time step should come from a single
cell at a previous time step; each cell should have a single “mother” (a
corresponding center at t−1); no cell should have more than two “daughters”
(corresponding centers at t +1); no cell should disappear (there is no cell
death at these developmental stages in the chosen species—an assumption
invalid in other cases, such as mammalian preimplantation embryos);
divisions should not occur too frequently; cell displacements should be
bounded; and so on. At the start, a finite set of allowed link modifications and
a cost function F measuring the departure from the constraints were defined.
Then, the algorithm relied on random link visits, and acceptance or rejection
of a potential link change based on its cost. More precisely, F was the
weighted sum of local contributions, each addressing one of the a priori
biological requirements. The cost function weights were selected after some
initial trials of the algorithm and visual inspection of the resulting lineages,
then recorded in a configuration file and kept constant during computation.
This second stage consisted of repeatedly selecting and tentatively modifying
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a link at random from the list of permitted moves, then evaluating the
resulting change through the cost function. In case of cost decrease, the
candidate change was systematically accepted, while in case of cost increase,
it was accepted with a probability proportional to exp(−∆F/T ), where T is a
“temperature” parameter that was progressively lowered (“annealed”) over
time so that fewer and fewer breaches to the constraints were accepted. The
temperature decrease schedule was linear with time. The cost function also
included terms to penalize deformations, to favor symmetry in the behaviour
of sister cells, to add noise-countering inertia, to bound speed, and to account
for division times.

Third, the final goal was to minimize false-positive and false-negative
errors in the nuclear detection steps. This was achieved by looking at the
whole biological coherence of the lineage tree and identifying lineage gaps or
cells that lived only a few time steps. The algorithm could then delete the
centers of short branches or introduce “virtual centers” to regain continuity.
To find a best solution, it used simulated annealing again. A parallel
implementation was written, which partitioned space-time into different
“cylinders” that were run on different processors, then merged the results.

Validation protocol. Obtaining a complete “gold standard” annotated
reference, even for small animals such as the ascidian and sea urchin embryos,
was possible only with considerable human effort. The Phallusia and
Paracentrotus datasets, Pm1-2 and Pl1-2, were almost completely checked
and curated. Cell tracking accuracy depended on the imaging depth, along
which the signal-to-noise ratio degraded. Due to the decrease in image quality
with depth, there remained a few errors for which there was no solution, even
through manual expertise. We curated around 25,000 temporal links in Pl1,
22,000 in Pl2, 30,000 in Pm1 and 40,000 in Pm2. All divisions were also fully
annotated. The four digital embryos produced were validated by two
independent experts.

In the case of the zebrafish, however, a complete gold standard was almost
impossible due to a number of cell samples of the order of several million.
Our gold standard for the Danio dataset Dr1 was obtained by a large-scale
curation strategy: i) All detected nuclear centers were completely annotated
inside 54 spatial boxes of average size 340 µm × 70 µm × 140 µm in x, y, z,
over 10 time steps starting at various sample times t0 ∈ {1, 20, 100, 200, 300,
350}. By this method, 25,123 links were manually checked, comprising 3,262
links for t0 = 1 (from t = 1 to t = 10), 2,735 for t0 = 20 (from t = 20 to
t = 29), 3,005 for t0 = 100, 8,736 for t0 = 200, 5,474 for t0 = 300, and 1,911
for t0 = 350.This strategy insured even sampling throughout the image data
both in time and space (Fig. 4). ii) As part of the investigation of the zebrafish
fate map, several cell clones were manually validated and when required
corrected along with the whole dataset, corresponding to 50,503 additional
curated temporal links and the corresponding curated nuclei. iii) An entire
layer of epithelial cells was completely curated at one specific time, t = 4.
iv) In addition, a large number of links were randomly checked, bringing the
total to 80,428. v) Finally, more than 600 mitoses were checked.

Accuracy estimation protocol. Taking the consistent and representative gold
standard of dataset Dr1 as a basis, we were able to automatically identify and
count various error types in the reconstructed embryos (Supplementary
Table 1). This produced numbers of true positives (TP), false positives (FP)
and false negatives (FN), which were used as a performance metric for
BioEmergences and other software tools. The accuracy of a given processing
workflow was evaluated on three outputs: nuclear center detection, linkage
(tracking cells one time step in the past), and mitosis detection.

By definition, the sum of TP and FN centers was equal to the total
number of centers in the gold standard. This relationship did not hold,
however, for TP and FN links or divisions because counting those events was
restricted to the subset of TP centers. For links, FN was equal to the sum of
“wrong links” (WL) and “missing links” (ML). This is because WL, which
connect a cell to a wrong target, contributed both to FP (by creating new links
that do not exist) and to FN (by missing the correct links), while ML, which
correspond to a cell without any link, contributed only to FN.

Then, for each output, three types of success and error percentages were
measured: a “sensitivity”, equal to TP/(TP+FN), a “false detection rate”,
equal to FP/(TP+FP), and a “false negative rate”, equal to FN/(TP+FN).
Finally, a “global lineage score” was calculated as the product of center
detection sensitivity and linkage sensitivity. The rationale for this formula is
that linkage alone could appear successful even if many centers were missing,
therefore it should be weighted by the actual proportion of detected centers.

Software performance and comparison. We identified eight state-of-the-art
tools most relevant for our benchmark comparison: Icy (Spot Tracking,
http://icy.bioimageanalysis.org), Imaris (Autoregressive Motion Expert,
Autoregressive Motion, Brownian Motion, and Connected Component,
http://www.bitplane.com/imaris/imaris), Volocity (Shortest Path and
Trajectory Variation, http://cellularimaging.perkinelmer.com/downloads), and
the last method published by Amat et al.5, 46 For each software tool, if a
command line mode was available, we ran several reconstructions using
different sets of parameters and selected the most advantageous one. For
example, in the case of Amat et al., we found that an optimal configuration
was backgroundThreshold = 16 and persistanceSegmentationTau = 0. If the
software provided only a visualization interface, we produced the best
reconstruction by visual inspection based on a few parameter variations.

We used dataset Dr1 in input to all methods, preprocessed through our
filtering algorithm (GMCF, 5 iterations). The nucleus detection and tracking
outputs were compared to our gold standard data. To assess nucleus detection,
we explored the neighborhood of validated centers by looking for other
detected centers at a distance of 0.2 to 0.6 times the average internuclear
distance. The number of correct links was estimated by inspecting the subset
of detected nuclei labeled as true positives that also possessed a link in the
gold standard, and counting the correct links from t to t−1. Mitosis detection
was also assessed within the set of true positive nuclei. All measurements
were made over four separate windows of 21 time steps each: from t = 0 to
t = 20 (corresponding to 4.36 ± 0.18 hpf), from t = 100 to t = 120 (6.22 hpf),
from t = 200 to t = 220 (8.08 hpf), and from t = 300 to t = 320 (9.95 hpf).
The final sensitivity, false detection and false negative rates were averaged
over these four intervals. Detailed scores are shown in Supplementary Table 1.

Datasets and software. The standalone BioEmergences workflow, the
visualization tool Mov-IT and the six in vivo 3D+time image datasets are
provided online at http://bioemergences.iscpif.fr/bioemergences/
openworkflow-datasets.php. For each specimen, we provide the 4D raw-data
images and the corresponding reconstructed embryo. The parameters used to
process these datasets are provided in Supplementary Table 3.

Our BioEmergences platform is also available as a web service at
http://bioemergences.iscpif.fr/workflow/, which offers users customized
assistance in addition to fast processing. The online workflow architecture
relies on iRODS, an open-source data management software, and the
OpenMOLE engine,14 a middleware platform facilitating the experimental
exploration of complex systems models on a computing cluster, which
leverages the power of the EGI. Interested users are invited to request access
to these resources by sending an email to nadine.peyrieras@inaf.cnrs-gif.fr.
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Figures
Figure 1 | The BioEmergences reconstruction workflow. From top to bottom: successive steps starting from embryo preparation and
leading to the reconstructed data, all readily available for display and analysis by the interactive visualization tool Mov-IT. Each processing
step is described in greater detail in the Methods. We propose two alternative nuclear center detection methods. Either output can be used for
shape segmentation and/or cell tracking.

Figure 2 | Reconstructing early embryogenesis from time-lapse optical sectioning. (a-d) Danio rerio dataset Dr1, animal pole (AP)
view; (a,b) sphere stage, volume cut at 68 µm of the AP to visualize deep cells; (c,d) 1-somite stage (1s), volume cut at 76 µm of the AP, pcp:
prechordal plate, ysl: yolk syncytial layer, nk: neural keel. (e-h) Phallusia mammillata dataset Pm1, vegetal view, circum notochord side up;
(e,f) gastrula stage; (g,h) tailbud stage. (i-l) Paracentrotus lividus dataset Pl1, lateral view, animal pole up; (i,j) 57-cell stage; (k,l) blastula
stage. (a,c,e,g,i,k) 3D raw data visualization (with Amira software), hours post fertilization (hpf) indicated top right, developmental stage
indicated bottom left, scale bars 50 µm. (a,c,i,k) Nuclear staining from H2B-mCherry mRNA injection (in orange), membrane staining from
eGFP-HRAS mRNA injection (in green). (e,g) Nuclear staining from H2B-eGFP mRNA injection (in blue-green). (b,d,f,h,j,l) Reconstructed
embryo visualized with the Mov-IT tool, corresponding to a,c,e,g,i,k respectively. Each cell is represented by a dot with a vector showing
its path over the next time steps (15 for the zebrafish data, 9 for the ascidian and sea urchin data). Color code indicates cell displacement
orientation.

Figure 3 | Chain of PDE-based algorithms for the 3D segmentation of embryonic cells. Results from the zebrafish dataset Dr1. Scale
bars in µm (100 in a,b,f,g; 10 in c,d,e). (a) Raw data image; single z section at 67 µm depth (orientation as in Fig. 2d), magnification in inset.
(b) Nucleus center detection by the FBLS method, after filtering by GMCF; approximate centers (cyan cubes) superimposed on raw data (gray
levels, same orthoslice as Fig. 3a). Magnification in insets: left inset at depth 67 µm; right inset located one section deeper, showing that several
centers not displayed at 67 µm were in fact correctly detected and visible below the chosen plane (white arrowheads); remaining centers can be
found on other planes using the Mov-IT interactive visualization tool. (c) Nucleus segmentation by SubSurf method; left panels: an interphase
nucleus; right panels: a metaphase nucleus; top panels: initial segmentation (pink contour) superimposed on raw data (gray levels); bottom
panels: final segmentation (orange contours) superimposed on the same raw data. (d) Nucleus segmentation by SubSurf method; top panel:
three nuclear contours superimposed on two raw-data orthoslices; bottom panel: 3D rendering of the segmented nuclei on a single orthoslice.
(e) Membrane segmentation by SubSurf method; top panel: one cell membrane contour superimposed on two-raw data orthoslices; bottom
panel: 3D rendering of the segmented membrane shape on a single orthoslice. (f) 3D rendering of segmented cell shapes. (g) Embryo shape
segmentation; local cell density increasing from blue to red (same orthoslice as Fig. 3a). (h) Total cell number (blue curve) and cell density
(brown curve) as a function of time; arrow indicates the end of gastrulation correlating with a plateau in cell density.

Figure 4 | Visualization and validation of the lineage tree reconstruction (zebrafish dataset Dr1). Results from the zebrafish dataset Dr1.
All screenshots taken from the Mov-IT visualization interface, then tagged. (a) Cell division illustrated by three snapshots; time in hours post
fertilization (hpf) indicated top right; cell centers (cyan cubes) and cell paths (cyan lines) superimposed on two raw-data orthoslices showing
the membranes (gray levels). (b) Flat representation of the cell lineage tree for three cell clones over 17 consecutive time steps: each cell is
represented by a series of cyan squares, linked according to the cell’s clonal history; the cell dividing in Fig. 4a is circled. (c,d) Nucleus center
detection and 10-step tracking (short white lines) in a subpopulation of cells chosen at 11.61 hpf. Mov-IT visualization in “checking mode”
displaying correct nuclei in green and false positives in red; (c) all detected nuclei; (d) validated nuclei only.

Figure 5 | Comparative performance of nine software tools on zebrafish dataset Dr1. The BioEmergences workflow presented here (red)
was evaluated alongside Imaris (four shades of blue), Icy (yellow), Volocity (two shades of green) and Amat et al. 2014 (pink). Measurements
were made by comparing the outcome of three reconstruction methods: nucleus detection, cell tracking (linkage) and mitosis detection, to a
set of validated events (positions, trajectories, divisions) registered in a “gold standard”. This was done inside four time intervals centered
in 4.36 hpf, 6.22 hpf, 8.08 hpf and 9.95 hpf. (a) Sensitivity of nuclear center detection, representing the rate of true positive (TP) centers.
(b) Sensitivity of linkage, representing the rate of TP links (restricted to the subset of TP centers that possessed a validated link). (c) Sensitivity
of mitosis detection, representing the rate of TP divisions (restricted to the subset of TP centers). (d-f) Rates of false positive (FP) centers,
links and divisions (only two software tools applicable to the latter). (g) Global lineage score, equal to the linkage sensitivity times the center
detection sensitivity: all methods except BioEmergences deteriorate noticeably at later developmental stages. (h) Average rates calculated over
the four time intervals: each column displays the mean heights of one of the previous seven charts. BioEmergences obtained the best results
in every category: highest values in a-c and g (success rates), lowest values in d-f (failure rates). Formulas can be seen in Methods, detailed
values in Supplementary Table 1.

Figure 6 | Automated fate map propagation. Cells were manually selected according to their identity or fate, using the interactive
visualization tool Mov-IT. Developmental stages indicated bottom left, developmental times in hpf, top right. All scale bars 50 µm. (a,b) Three
cell populations in Danio rerio specimen Dr1, animal pole view; (a) sphere stage, ventral (anterior) up, enveloping layer cells in cyan, epiblast
cells in blue; (b) 1-somite stage, same color code plus hypoblast cells in yellow. (c,d) Fate map in Phallusia mammillata specimen Pm1,
vegetal view, circum notochord up, color code as in;33 (c) gastrula stage; (d) tailbud stage with automated propagation along the cell lineage of
the fate map shown in Fig. 6c. (e,f) Cell populations in Paracentrotus lividus specimen Pl1, lateral view, animal pole up; small micromeres in
dark purple, large micromeres in light purple; mesomeres in cyan. (e) 32-cell stage, macromeres in red; (f) blastula stage, Veg1 cell population
in red, Veg2 cell population in yellow.
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