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Abstract. We present a morphological multi-scale method for
image sequence processing, which results in a truly coupled
spatio-temporal anisotropic diffusion. The aim of the method
is not to smooth the level-sets of single frames but to de-
noise the whole sequence while retaining geometric features
such as spatial edges and highly accelerated motions. This
is obtained by an anisotropic spatio-temporal level-set evo-
lution, where the additional artificial time variable serves as
the multi-scale parameter. The diffusion tensor of the evolu-
tion depends on the morphology of the sequence, given by
spatial curvatures of the level-sets and the curvature of trajec-
tories (= acceleration) in sequence-time. We discuss different
regularization techniques and describe an operator splitting
technique for solving the problem. Finally we compare the
new method with existing multi-scale image sequence pro-
cessing methodologies.

1 Introduction

During the last decade scale-space methods have proven to be
useful in image processing, including image denoising, edge
enhancement and shape recovery from noisy data [1, 25, 33,
38]. A given image is thereby considered as initial data to
some suitable evolution problem. The artificial time param-
eter acts as the scale parameter, which guides the user from
noisy fine scale representations to enhanced and coarse scale
representations of the original image.

Within many applications not only single images but
whole image sequences are of particular interest. The ob-
served time period thereby ranges from a few seconds to
days, months and years. In medical image processing recent
acquisition hardware such as ultrasound (US), magnetic res-
onance imaging (MRI) and computed tomography imaging
(CT) enable for an observation of e.g. the human heart during
a cardiac cycle, the flow of a tracer through blood vessels, or
the growth of tumors. These image sequences and especially
ultrasound data are characterized by high frequent noise typ-
ically due to measurement errors of the underlying imaging

device. The particular interest in medical applications is un-
derstanding of growth and flow phenomena of tissue and the
quantitative volume change in time (e.g. blood volume in the
heart). Thus one often is interested in the extraction of certain
level-surfaces from the data which bound volumes or separate
regions of interest. Moreover the extraction of the velocities
describing the motion of the level-sets in the sequence, the so
called optical flow, is desired.

The aim of this paper is to discuss a new anisotropic
morphological method for the denoising of image sequences.
The presented model takes the curvature of level-sets in
space into account as presented in an previous paper [28],
and hence is capable of preserving edges and corners on
the level-sets. Moreover the method takes into account the
velocity in whose direction the level-sets move within the
image sequence and finally the acceleration of the level-
sets which characterizes this motion in sequence-time. Let
us emphasize that the resulting evolution is a truly coupled
anisotropic spatio-temporal smoothing process which treats
the image sequence as a unit and not as a compilation of sin-
gle frames.

The paper is organized as follows: First, in Sect. 2 we
discuss some background work on image processing, image
sequence processing and the optical flow problem. In Sect. 3
we review an anisotropic level-set diffusion model for the
processing of single frames. This further motivates the mod-
eling of the final evolution. Before we give a detailed descrip-
tion of the new model in Sect. 5, we will have to discuss the
extraction of motion velocities from given image sequences
in Sect. 4. In Sect. 6 we discuss the robust evaluation of cur-
vatures on level-sets and the discretization by finite elements.
Before we draw conclusions in Sect. 8, we would like to com-
pare the new method with existing image sequence process-
ing methodology in Sect. 7. In the Appendix we give further
details on the spatio-temporal discretization.

2 Related work

Scale Space methods in image processing define an evolution
operator E(t) which acts on initial data u0 and delivers a scale



198 K. Mikula et. al.

of representations {E(t)u0}t≥0. The time parameter t serves
as the scale parameter that guides from fine scales on the ini-
tial data (t = 0) to successively coarser and smoother scales.
Throughout this paper we will always denote the multi-scale
parameter by t whereas – to avoid any confusion – for the
sequence-time parameter we will use s, which represents time
in the image-sequence data.

The simplest linear image processing model given by the
heat equation ∂tu −∆u = 0 with the noisy image u0 as ini-
tial data leads to smooth images but also destroys edges in the
image, indicated by high gradients. The proposal of Perona
and Malik [24] and the modification of Cattè et al. [7] avoids
this drawback considering an evolution problem

∂tu −div (G(|∇uσ |)∇u)= 0 ,

where the diffusion coefficient depends on the magnitude of
the gradient of a (regularized) version of the actual image u.
Here, uσ = Kσ ∗ u is the convolution of the image with
a Gaussian kernel Kσ of variance σ > 0. In contrast to the
original Perona/Malik model (σ = 0) the regularization turns
this model into a mathematically well posed problem and
moreover it avoids the detection and accentuation of artificial
edges which are due to noise. A suitable choice for the dif-
fusion coefficient is G(s) = (1+ s2/λ2)−1 for some λ > 0. At
least formally, decreasing the diffusion coefficient in areas of
high gradients then results in a backward diffusion and thus
an enhancement of edges, whereas areas of low gradients are
smoothed in an isotropic way. The method was improved by
Weickert [37] who took anisotropic diffusion into account.
Thereby the diffusion is of original Perona/Malik respec-
tively Cattè et al. type in directions of the image gradient
(i.e. orthogonal to level-sets) and of linear type in directions
tangential to level-sets. This leads to an additional smooth-
ing tangential smoothing of level-sets and enables to amplify
intensities or correlations along level-sets. In [26] Preusser
and Rumpf applied this type of anisotropic diffusion to visu-
alize arbitrary vector fields. Convergence of a finite element
method and finite volume methods were shown by Kačur and
Mikula [18] and Mikula and Ramarosy [22]. Furthermore
adaptivity was considered in [5, 19, 27].

In the axiomatic work of Alvarez et al. [1] general non-
linear evolution equations were derived from a set of axioms.
Including the axiom of gray value invariance (i.e. the model is
supposed to be invariant under monotone transformations of
the gray value) lead to a curvature evolution model. Curvature
motion has been studied intensively in geometry and physics,
where interfaces are driven by surface tension [4, 34]. Al-
ready in the basic model for mean curvature motion

∂tu −|∇u|div (∇u/|∇u|)= 0 ,

singularities in the evolution may occur. In this setting exis-
tence of viscosity solutions has been shown independently by
Evans and Spruck [13] and Chen et al. [8]. Anisotropic cur-
vature motion has for instance been studied by Belletini and
Paolini [6]. Moreover Sapiro proposed a modification of the
mean curvature motion model which takes into account the
image gradient magnitude [31].

The detection of motion in image sequences, also known
as the optical flow problem, is one of the fundamental tasks
in computer vision and image processing. For two dimen-

sional (2D) images it has been studied extensively in the
past [2, 3, 12, 23, 30]. The velocity of a level-set splits up into
a component normal to the level-set and a component tangen-
tial to it. The extraction of the tangential velocity is in general
not well posed [30]. Thus, one has to restrict the set of pos-
sible solution velocities and instead work with the apparent
velocity [15], which arises from locally constant translations
in space. As an alternative one might ask for regularizations in
terms of elastic stresses or viscous fluid effects [9–11, 14, 17,
20, 35], which is computationally expensive and mostly pays
off in cases of large deformations in between frames of the
sequence, which we rule out in our applications considered
here.

The image processing models discussed above do not im-
mediately apply to image sequence processing. Since there
is no coupling between successive frames of the sequence
in any of the approaches, it is only possible to process the
sequence as a collection of steady-images. Still this lacks
a correlation of the smoothed versions of the single frames.
Therefore modifications of the standard image processing
methods have to be taken into account, which introduce
a coupling between the frames of the sequence in terms of
the velocity or acceleration of the sequence. In the 2D movie
multi-scale analysis [1, 15] an evolution equation was derived
from a set of axioms, which depends on the curvature (given
in terms of the eigenvalues and eigenvectors of the shape-
operator S, cf. Sect. 3) of level-sets and the acceleration of the
motion:

∂tu −|∇u|F(t, S, accel) .

This forms the base for the approaches presented by Sarti
et al. in [32] and Mikula et al. in [21]. In Sect. 7 the lat-
ter will be compared to the method being presented in this
paper.

3 Review of anisotropic level-set diffusion in
steady-image processing

In this section we will briefly review an anisotropic level-set
diffusion model which was originally presented in [28]. As
common for level-set models, we deal simultaneously with
all level-sets. Although in certain applications our interest is
focused on one specific implicit surface, possibly in advance
converted from a parametric to an implicit representation.

Let us denote by u0 : Ω → R the gray value function of
the initial image with inscribed level-sets

Mc
0 := {x ∈ Ω | u0(x) = c} .

We assume u0 and the set of corresponding implicit sur-
faces {Mc

0}c to be noisy and ask for a family of successively
smoothed images {u(t, ·) | t ∈R+

0 } where u(t, ·) : Ω →R and
u(0, ·) = u0(·). Throughout this paper Ω will always be the
unit square or cube [0, 1]d, d = 2, 3. The variable t serves as
the scale parameter. Thereby, for each gray value c a family
of surfaces {Mc

t }t∈R+
0

is generated, with Mc
(t=0) = Mc

0. Here
we assume u(·, ·) to be sufficiently smooth and ∇u(t, x) �= 0
for all (t, x) ∈ R+

0 ×Ω. Indeed, due to the implicit function
theorem the corresponding sets Mc

t then are actually smooth
surfaces.
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3.1 The shape operator

Since our goal is a morphological multi-scale model, we
need a characterization of the level-set geometry on im-
ages. To this end let us consider the normal to a level-set
N(x) := ∇u

|∇u| of some image u. We denote the tangent space
by TxM := (span{N(x)})⊥. We compute the Jacobian of the
normal

DN = (Id− N ⊗ N)
D2u

|∇u|
on R3 and consider the restriction

S := DN(Id − N ⊗ N)

on the tangent space TxM. S is a symmetric mapping and
on the tangent space TxM it coincides with the Shape Op-
erator STxM. Therefore S is characterized by the eigenval-
ues {κ1, κ2, 0} and the eigenvectors {v1, v2, N}. The eigenval-
ues κi correspond to the principal curvatures of the level-set
and the eigenvectors vi are the principal directions of curva-
ture. Thus, the geometry of the level-set is determined by S
via its eigenvalues and eigenvectors.

3.2 The anisotropic level-set model

We consider the following type of nonlinear boundary
and initial value problem on Ω: Given an initial image
u0 : Ω → R find a family of images {u(t, ·) : Ω →R}t∈R+
which obey the following anisotropic evolution equation

∂tu −|∇u|div
(

aσ
TxM

∇u

|∇u|
)

= 0 in R+×Ω ,

aσ
TxM

∂u

∂ν
= 0 on R+×∂Ω ,

u(0, ·) = u0(·) in Ω , (1)

where ν denotes the outer normal to Ω. The anisotropic geo-
metric level-set diffusion model should depend on the geom-
etry of the level-sets. Thus it is natural to base the definition
of the diffusion coefficient aσ

TxM on a regularized version Sσ

of the shape operator S. We assume this regularized version
diagonalizes with respect to the basis {v1,σ , v2,σ , Nσ } having
eigenvalues {κ1,σ , κ2,σ , 0}. We then consider the scalar func-
tion G(s) := (1 + s2/λ2)−1 from the basic image processing
models now acting on Sσ . In matrix representation we thus
obtain

aσ
TxM := aσ

TxM(Sσ ) = BT
σ


G(κ1,σ )

G(κ2,σ )
0


 Bσ ,

where Bσ = (v1,σ , v2,σ , Nσ )T , i.e. the basis transformation
from the regularized frame of principal directions and the nor-
mal {v1,σ , v2,σ , Nσ } onto the canonical basis {e1, e2, e3}.

Let us recall that in the function G the parameter λ acts
as a steering parameter for the detection of edges. For larger
values of λ, more features on a level-set will be regarded as
edges. In the standard Perona Malik model the value λ is ex-
actly the switch between forward and backward diffusion.

Remark 1. Although we have based this short review on 3D
images and therefore level-sets which are 2D-surfaces, we
will present examples of 2D-image-sequences in later sec-
tions. The definition of the diffusion tensor of the anisotropic
diffusion tensor for 2D images then obviously has the form
BT

σ diag{G(κσ), 0}Bσ , where κσ is the regularized curvature
of the level-lines.

4 Extracting motion velocities from image sequences

Let us from now on assume, we are concerned with an image
sequence. At first, we consider a continuous family of im-
ages on some time interval [0, T ] each image again defined on
Ω = [0, 1]d, d = 2, 3, which we will denote by

u : Q → R , (s, x) 	→ u(s, x) ,

- where Q denotes the sequence-time/space cylinder Q :=
[0, T ]×Ω. Here and in the following s always denotes the
sequence-time parameter and x as before spatial coordinates.
Again the perspective of level-sets will play a central role in
our model. As before we denote

Mc(s) = {x ∈ Ω | u(s, x) = c},

N(x, s) = ∇u(s, x)

|∇u(s, x)| if |∇u(s, x)| �= 0 ,

the level-set of u(s, x) to level-value c ∈ R respectively the
normal to this level-set, which now depend on the sequence-
time s. Hence we have families of level-sets {Mc(s)}c∈R
which change in sequence-time. Assuming there is some cor-
respondence between consecutive images in the sequence
(i.e. the sequence is continuous in sequence-time), it will
be an essential part of the new model, to extract the under-
lying motion, which influences the observed image inten-
sity. Before proceeding to the description of the new time-
space coupled smoothing model, we therefore will briefly
focus on the extraction of these motion-velocities from the
image-sequence. A more detailed discussion can be found
in [29].

Suppose

v : Q →Rd , (s, x) 	→ v(s, x)

is the velocity field generating the motion in space and time.
Therefore a single motion trajectory is described by x(s)
with

∂sx(s) = v(s, x(s)) .

It is obvious that this optical flow problem – the extraction of
v from the image data – is an ill posed problem: Any tangen-
tial motion, that only moves one level-set within itself cannot
be captured by the process. Nevertheless following two as-
sumptions will allow us to derive a formula for the so called
apparent velocity:

(A1) Intensities are preserved along motion trajectories:

u(s0, x(s0)) = u(s0 + τ, x(s0 + τ))

− s0 ≤ τ ≤ T − s0 .
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This assumption is reasonable since it is related to the
invariance of the image acquisition device, which usu-
ally measures physical quantities. If this physical quan-
tity moves in time, so does the corresponding image
intensity.

(A2) Locally the underlying motion is a translation:

N(s0, x(s0)) = N(s0 + τ, x(s0 + τ))

− s0 ≤ τ ≤ T − s0 .

This assumption is of course fulfilled, assuming the
scenery consists of solid objects moving in space.

Differentiating these assumptions with respect to τ and eval-
uating at τ = 0, we get the following two expressions for
v = vn N +vtg

vn = v · N = − ∂su

|∇u| if |∇u| �= 0 , (2)

vtg = −S−1∂s N . (3)

Equation (2) is an expression for the normal component
vn N = v · NN of the velocity. For equation (3) we remember
that the Shape Operator S operates on the tangent space TxM
and ∂s N ∈ TxM. Adding the two parts we obtain the apparent
velocity

vapp := vn +vtg = −
(

∂su

|∇u| N + S−1∂s N

)
. (4)

In 2D this formula was already obtained by Guichard [15, 16]
although he did not explicitly express it in terms of the in-
trinsic Shape Operator. From (3) we again see the limitations
of the tangential motion capturing, because it involves the in-
verse of the Shape Operator, which of course may not exist.

Fig. 1. From an image sequence, taken by an ultrasound device, and showing the left ventricle of the human heart during one cardiac cycle we have extracted
the velocities of the underlying motion. From top left to bottom right for successive frames of the sequence one iso-surface of the muscle of the heart is
depicted. The coloring codes the normal velocity going inward (red) or outward (blue). Since the tissue of the heart’s muscle does not allow for tangential
movements it is sufficient to consider the normal velocity in this application

Clearly our assumption impose restrictions on the types of
motion fields, which can be extracted. Especially in case of
large deformations the optical flow field can be very compli-
cated. We restrict our motion analysis to small deformations
between the successive frames of the sequence. For these con-
figurations our assumptions enable to approximate the motion
fields. Moreover, in many physical applications it will be suf-
ficient to have the normal velocity vn, if the observed process
gives reason that vtg = 0. For example in porous medium
flow we already know from the physical model, that the flow
will be in direction of the pressure gradient, which in sim-
ple settings will be the normal to the level-sets. Also in the
situation depicted in Fig. 1 we conclude that the normal vel-
ocity is sufficient to characterize the motion since the tissue of
the human heart will not allow for tangential motions. There
we have depicted the extraction of motion velocities from an
image sequence showing one ventricle of the human heart
during a cardiac cycle. Moreover Fig. 2 shows the extraction
of the velocity from an artificial data set, in which ellipsoidal
level-sets change their half-axes in time.

Given the apparent velocity we can furthermore compute
the acceleration of the motion, which is equivalent to the cur-
vature of the apparent trajectory, resulting from the apparent
velocity (cf. [15, 16])

accel(s, x) := ∂τvapp(s + τ, x(s + τ))

∣∣∣
τ=0

= ∂svapp + (∇vapp) vapp . (5)

In Fig. 1 we have depicted the extraction of motion vel-
ocities from an image sequence showing one ventricle of the
human heart during a cardiac cycle.
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Fig. 2. As a test case we extract the motion from the evolution of ellipsoidal level-sets with oscillating half axes. I.e. we consider the image sequence
φ(s, x1, x2, x3) := x2

1/a(s)+ x2
2/b(s)+ x2

3 , where a(s) := 4s − (1− s), b(s) := s −4(1− s) for s ∈ [0, 1]. We have depicted the results of the velocity com-
putation on the same level-set (iso-surface) in different frames of the sequence. In the upper row a color ramp from blue (moving inward) to red (moving
outward) indicates the normal component of the velocity. In the lower row the color ramp from blue to red indicates the absolute value of the tangential
component of the velocity

5 Coupled spatio-temporal anisotropic level-set diffusion
in image sequence processing

We are now equipped to formulate the new coupled spatio-
temporal anisotropic level-set diffusion model. We would like
to combine the good edge and corner preserving behavior of
the model reviewed in Sect. 3 with an anisotropic smooth-
ing in sequence-time in direction of the apparent velocity.
To this end let us denote the sequence-time/space gradi-
ent by ∇(s,x) := (∂s,∇) and the corresponding divergence by
div(s,x) := ∂s +∇.

Given a noisy image sequence u0 : Q → R, we write
down the following spatio-temporal level-set problem:

Find u : R+ × Q → R such that in R+ × Q:

∂tu −|∇(s,x)u|div(s,x)

(
Aσ ∇(s,x)u

|∇(s,x)u|
)

= 0 . (6)

We impose the initial condition

u(0, ·, ·) = u0(·, ·) in Q →R ,

and furthermore one of the following boundary conditions

∇(s,x)u · ν(s,x) = 0 on R+ × ∂Q , (BC1)

∇u(t, s, ·) · ν = 0 on ∂Ω

u(·, 0, ·) = u(·, T, ·) in R+ and Ω ,

}
(BC2)

where ν(s,x) denotes the outer normal to the sequence-
time/space cube Q and ν denotes the outer normal to ∂Ω.
The two different boundary conditions have the following
meaning. In (BC1) we prescribe generally natural boundary
conditions to the whole sequence, i.e. we have no flux across

the spatial boundary of the single frames and moreover no
flux at the beginning and the end of the sequence. It may
be more convenient to impose natural boundary conditions
in space and periodicity in sequence-time which is stated in
(BC2).

Again the variable t in the problem acts as the scale pa-
rameter and we again emphasize that we make a distinction
between t and s; s denoting the sequence-time parameter. The
definition of the problem indeed increased the dimension of
the data by one, which results in 4D respectively 5D problems
for 2D respectively 3D image data. In the following sections
we will describe how to solve these 4D respectively 5D prob-
lems with moderate effort.

It remains to define the diffusion tensor Aσ for the new
model. Denoting the tensor product by v⊗w := (viwj)ij , we
consider the normalized sequence-time/space velocity vec-
tors V σ := (1, vσ

app)/|(1, vσ
app)| based on regularized apparent

velocities vσ
app, and the diffusion coefficient already known

from the steady image model to build

Aσ = aσ
v V σ ⊗ V σ +

(
0 0

0 aσ
TxM(Sσ )

)
,

with aσ
v = G(|accelσ |). The function G(s) = (1 + s2/λ2)

again is the well known function from image processing
(cf. Sect. 3). With this definition of the diffusion tensor we
indeed prescribe a behavior of the evolution that is edge pre-
serving in space but also smoothing the sequence nonlinearly
in direction of V σ . If the acceleration is high the diffusion
will be decreased via the function G. This leads to a good
preservation of highly curved motion trajectories (i.e. highly
accelerated motion) as shown in Fig. 3.

In general the decomposition in the definition of Aσ is
not orthogonal. Only if the complete apparent velocity vapp
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Fig. 3. We show the evolution of single trajectories under the new coupled
anisotropic evolution. From a noisy image sequence showing a ball bounc-
ing at some invisible boundary, marked by the red line in the image (top
left) we have extracted two motion trajectories (top right). Clearly the vel-
ocity is disturbed much and does not at all reflect the underlying motion.
In the bottom row we see the same extracted trajectories from the fifth and
ninth scale step of the evolution. Clearly the non-accelerated motion has
been smoothed much, whereas the rapid velocity change in the middle of
the sequence has been preserved very well

Fig. 4. From a sequence whose frames are piece-wise constant in space,
we show the evolution of one single frame. The sequence shows a square
bouncing at some invisible object (top left) and we have depicted the third
(top right) and the sixth (bottom left) scale step of the evolution. From
the magnified section around the square (bottom right) we clearly see, that
the coupled diffusion smooths the data across successive slices in direction
of the velocity (here diagonally from bottom left to top right). Although
the single frames therefore may loose sharpness of edges perpendicular to
the velocity, the diffusion makes the whole movie smoother. Obviously, the
effect is weaker if the sequence-step-width ∆s is smaller since then the
pixel/voxel offset between slices is smaller

Fig. 5. From a sample data set showing an object bouncing at some solid
object, which here is depicted with a red line, we show the coupled multi-
scale evolution (cf. Fig. 3). The image data is the continuous function
u0(s) = |x − d(s)|1 to which noise was added, where d(s) is the moving
center of the object. The right column shows successive frames of the
noisy sequence, whereas the left column shows the same frames after the
third scale step of the evolution. We have extracted the sets {u(s, x) ≤ 0.2}
and drawn them in black color. The computations were performed on
a 129×129 grid
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Fig. 6. From the 3D ultrasound image-sequence (cf. Fig. 1) we have ex-
tracted a 2D image sequence showing a slice through the three-dimensional
volume. From top to bottom successive frames of the sequence are depicted.
The left column shows the original noisy data, whereas the right column
shows the result of the new coupled diffusion model after the third scale
step

vanishes, the diffusion tensor reduces to a diagonal ma-
trix. Therefore in general we actually have a coupled dif-
fusion, with a mixed spatio-temporal diffusion component
G(|accelσ |)V σ ⊗ V σ . This can be observed from the example
shown in Fig. 4, where we see a diffusion across the sharp
edge of the square in direction of the underlying velocity.

Figure 5 shows the evolution of a noisy sample data set
under the coupled diffusion model. The image-sequence con-
sists of a continuous function whose level-sets were disturbed
randomly in normal direction. The application to real data is
shown in Fig. 6 where we have extracted one slice of the 3D
echocardiographical heart image sequence (cf. Fig. 1).

Remark 2. Here and in the sequel we have denoted regular-
ized quantities (like Sσ , vσ

app, accelσ ) with a superscript σ . We
emphasize that we do not distinguish between regularized ge-
ometrical quantities and quantities based on regularized data,
although they in general do not coincide. In the next section
we will focus on the type of regularization we choose in our
applications.

6 Discretization and numerical solution

Up to now we have considered image-sequences to be suffi-
ciently smooth in space and time Q. Since in the applications
image-sequences arise as a finite sequence of single images
(the frames) consisting of arrays of pixels or voxels, we will
discretize the model in an appropriate way. For each single
frame, we interpret the pixel/voxel values as nodal values
on a uniform quadrilateral respectively hexahedral mesh C
covering the whole spatial domain Ω. Moreover since typ-
ically the time offset ∆s between successive frames is con-
stant in image sequences, we introduce an equidistant lattice
in the sequence-time direction. In any coordinate direction,
we consider the data to be piece-wise multi-linear, meaning
piece-wise linear in sequence-time and piece-wise bilinear re-
spectively trilinear in space. To simplify the notation, we will
always denote discrete quantities by upper case letters to dis-
tinguish them from their continuous correspondence in lower
case letters.

6.1 Shape operator and apparent velocity on discrete data

The model presented above makes extensive use of regular-
ized geometric quantities such as the shape operator Sσ and
the apparent velocity vσ

app. It is obvious that on noisy image-
sequence data a regularization is necessary, but also the defin-
ition of these quantities involving higher order derivatives on
images which are usually piece-wise constant or rarely given
as bilinear respectively trilinear data is not clear. We will
therefore in the following focus on these regularized geomet-
ric quantities.

For the regularization of the underlying images we have
different methods at hand:
– The simplest non-morphological regularization method,

which is quite standard in image processing is the convo-
lution of the image with a Gaussian kernel. Thereby one
solves a short time step of the heat equation

∂tφ−∆φ = 0 on Q ,
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with the given image u as initial value to the problem.
– The morphological analogue of the Gaussian convolution

is the mean curvature evolution, which lets all level-sets
simultaneously evolve in direction of their normal with
a speed according to their mean curvature. The corres-
ponding level-set evolution would be

∂tφ−|∇φ|div
( ∇φ

|∇φ|
)

= 0 on Q ,

again with the given image u as initial value for this
parabolic problem.

Both approaches implemented numerically regularize the
data, but we are still left with the problem of defining higher
order derivatives on piece-wise multi-linear image data.
A better approach would be the one used in [28]:
– For each (s, x) ∈ Ω take Bσ (s, x) to be some neighbor-

hood of (s, x). Furthermore let P be some polynomial
space of degree greater than one. Now compute the local
L2 projection φ of the image data onto P , i.e. solve∫

Bσ (s,x)

(u(r, y)−φ(r, y)) q(r, y) dr dy = 0 ∀q ∈ P .

Finally the Shape operator can be computed from the
derivatives of the projection.

This last approach is consistent, but also computational very
expensive, since a lot of integrations and inversions of small
linear systems have to be performed. In the sequel we will
therefore describe a third regularization variant (cf. [22])
which is based on convolutions with symmetric smoothing
kernels Kσ ∈ C∞, but additionally uses the convolution prop-
erty for any derivative Dα

Dα (Kσ ∗u) (s, x) = Dα

∫
Kσ (r, y)u(s − r, x − y) dr dy

= Kσ ∗ Dαu(s, x) = Dα
x Kσ ∗u(s, x) .

Since for computations it is essential to have kernels with
compact support, we choose

Kσ (s, x) = 1

Z
e
(
|x|2+s2

)
/
(
|x|2−s2−σ2

)

having support in Bσ (s, x) around (s, x). The constant Z is
chosen such that

∫
Kσ = 1. We replace the convolution as

usual with a weighted summation

(Dα Kσ ∗u)(s, x) =
∫

Bσ

Dα Kσ (r, y)u(s − r, x − y) dr dy

=
∑

E⊂Bσ

u(sE)

∫
E

Dα Kσ (r, y) dy

over the values of u at the center sE of the involved elem-
ents E. The weights are thus obtained by integrating the
derivatives of Kσ over the elements E ⊂ Bσ (s, x) and there-
fore can be precomputed in advance. Thus we are now
equipped with weights for the computation of the derivatives
∂s,∇, D2, on discrete data represented by piece-wise multi-
linear functions on the elements of the sequence-time/space
grid.

In the above formulas for the computation of vapp we have
assumed that ∇u �= 0 and moreover we have made use of the
inverse of the shape operator (Sσ )−1. In general we cannot
guarantee that ∇u �= 0 during the evolution even if the initial
data fulfills this assumption (cf. [13]). We therefore have to
further regularize the problem by substituting

| · | � | · |ε :=
√

| · |2 + ε2

as proposed by Evans and Spruck in [13]. Moreover in areas
where the image is flat at least in one direction (i.e. κi,σ = 0
for some i), we replace the inverse (Sσ )−1 by the pseudo-
inverse (Sσ )†, by inverting Sσ only on span{vi,σ |κi,σ �= 0} and
extending it trivially again to TxM. These are the areas, where
we cannot expect the tangent part vtg of the velocity to contain
any information, since the image is flat.

Finally, we obtain the following formulas for the Shape
operator Sσ , the apparent velocity vσ

app and the acceleration
accelσ :

Nσ (s, x) = ∇Kσ ∗u

|∇Kσ ∗u|ε (s, x) ,

Sσ (s, x) = 1

|∇Kσ ∗u|ε
(

D2 Kσ ∗u −

Nσ ⊗ (D2 Kσ ∗u)Nσ
)
(s, x) ,

vσ
app(s, x) = −

(
∂s Kσ ∗u

|∇Kσ ∗u|ε Nσ +

(Sσ )†(∂s Kσ ∗ Nσ )

)
(s, x) ,

accelσ (s, x) =
(
(∂s Kσ ∗vapp)+

(∇Kσ ∗vapp)vapp

)
(s, x) .

6.2 An operator splitting scheme

The coupled problem (6) is a 4D respectively 5D problem for
2D respectively 3D image sequences. We will in the sequel
present an operator splitting like scheme which uses appro-
priate quadrature rules to simplify the solution approach. We
are in favour of using finite elements, since they are known to
resolve anisotropic smoothing directions in a better way than
finite differences. Especially in image processing the use of
quadrilateral or hexahedral elements is as efficient as the use
difference schemes, since the elements and the data structures
are completely aligned with the pixel/voxel structure. For the
high dimensional problem we are considering here, we first
arrange space-time finite elements, but simplify the temporal
part in form of a block solver. Therefore, we retain the good
anisotropy resolving behavior of the spatial finite elements,
while having a finite difference like scheme for the temporal
parts. So in the sequel we will present an operator splitting
like scheme which uses appropriate quadrature rules to sim-
plify the solution approach.

We start with the weak formulation of the coupled prob-
lem. To this end we discretize in time by a semi-implicit
backward Euler scheme, denoting the scale step by ∆t and
writing un(s, x) = u(n∆t, s, x). We furthermore test the prob-
lem with a function ψ ∈ C∞(Q) and integrate by parts over Q
to obtain the time-discrete problem:
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Find a family (un)n>0, un : Q → R such that:

(
un+1 −un

∆t|∇(s,x)un| , ψ
)

Q

−
(

Aσ,n ∇(s,x)un+1

|∇(s,x)un| ,∇(s,x)ψ

)
Q

= 0

where (·, ·)Q denotes the L2 scalar product on Q and

u0(·, ·) = u0(·, ·) in Q .

The semi-implicity of this scheme results in the evaluation of
the nonlinearities at the old time step, i.e. at scale step n +1
we take into account Aσ,n and |∇(s,x)un|.
Remark 3. With the definition of Aσ,n we have for two func-
tions φ,ψ

Aσ,n∇(s,x)φ ·∇(s,x)ψ

= aσ,n
v (V σ ·∇(s,x)φ)(V σ ·∇(s,x)ψ)+

aσ,n
TxM∇φ ·∇ψ

= aσ,n
v (∂sφ+vσ

app ·∇φ)(∂sψ +vσ
app ·∇ψ)+

aσ,n
TxM∇φ ·∇ψ

=: aσ,n
v

D

∂s
φ

D

∂s
ψ +aσ,n

TxM∇φ ·∇ψ

where D
∂s = ∂s +vσ

app ·∇ = V σ ·∇(s,x) is the material derivative
along the apparent motion trajectories.

We proceed with the discretization by formally introduc-
ing multi-linear tensor product finite elements on the discrete
domain [0, T ]×Ω. To this end let us denote the nodes in se-
quence time direction s by Latin indices i, j ∈ {0, . . . , M} and
the spatial degrees of freedom by Greek multi-indices α, β ∈
{0, . . . , N}3. We then have the notation Un = (Un

0 , . . . , Un
M)

Fig. 7. The matrix of the system splits up into various parts. The sequence-time/space matrix (upper row, left term) and the spatial stiffness matrix (upper
row, right term) lead to diagonal blocks in the resulting scheme, whereas the coupled diffusion terms (upper row, middle term) futher split up (inner box, cf.
Appendix A)

Table 1. Super- and subscripts in the discretized coupled diffusion problem

t ∈ R+
0 Scale

s ∈ I Sequence time coordinate
x ∈ Ω Spatial coordinate

n ∈N Scale step
i, j = 0, . . . , M Temporal node index (sequence frame)
α, β = 0, . . . , N Spatial node index (image voxel)

∆t Scale-step-width
∆s Temporal grid width (sequence-step-width)
∆x Spatial grid width

for the nodal values of the nth scale step, where Un
i = {Un

i,α}α
is the discrete image at sequence time i and scale step n. Thus,
the identification u(n∆t, i∆s, α∆x) = Un

i,α holds. In Table 1
we have collected all the indices which are now in use.

A basis for the multi-linear finite element space is given by

φi(s) ψα(x)

where φi are simple hat functions on the sequence-time lattice
and ψα also hat functions but on the space-discrete quadtree
respectively octtree. We have the following basis decompos-
ition for the nth scale

un(s, x) =
∑

i

∑
α

Un
i,αφi(s)ψα(x) .

From this we derive the standard discrete formulation of the
problem, testing with each basis function. Using the last re-
mark, the components of the corresponding matrix system
(see Fig. 7) in scale step n +1 will be given by(

φiψα

|∇(s,x)un|ε , φjψβ

)
Q

+ (MM)
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Fig. 8. We compare existing image processing methodology applied to an image-sequence, which shows noisy spherical level-sets bouncing at some solid
object (cf. Fig. 5). In the left pictures one iso-surface from the 3D representation of the image-sequence smoothed at scale 3 is displayed. The leftmost
image shows the result of the model (7) which smooths out the highly accelerated motion of the level-sets. In contrast to that, the anisotropic geometric
model (middle left) preserves this behavior quite well. The right images show magnified sections from the iso-surface representations (middle right: model
(7), right: anisotropic geometric model)

∆t

(
aσ,n

v

|∇(s,x)un|ε
D

∂s
(φiψα),

D

∂s
(φjψβ)

)
Q

+ (CP)

∆t

(
aσ,n

TxM

|∇(s,x)un|ε ∇(φiψα),∇(φjψβ)

)
Q

, (MS)

where the integration on Q reduces to the support of the basis
functions. The terms correspond to the sequence-time/space
mass matrix (MM), a coupled part (CP) consisting of a mix-
ing between sequence-time and space derivatives and the spa-
tial stiffness matrix (MS) multiplied by the sequence-time
mass matrix.

The key to simplify these entries is the application of mass
lumping in sequence-time [36] and a midpoint quadrature
rule in space. The mass lumping results in a diagonalization
of the terms (MM) and (MS) in sequence-time.

Furthermore we evaluate the denominator |∇(s,x)un |ε at
s = i∆s always by a central difference D±

(s,x)u
n
i in time and

therefore can completely split off the sequence-time integra-
tion. We obtain

(MM)(α,i),(β, j) =
(i+1)∆s∫

(i−1)∆s

∫
Ω

φiψα φiψβ

|∇(s,x)un|ε ds dx

≈ ∆s

(
ψα

|D±
(s,x)u

n
i |ε

, ψβ

)
Ω

.

Since we have given the nonlinearity aσ,n
TxM of (MS) on the

sequence-time nodes, we can handle this part in a similar way
to obtain

(MS)(α,i),(β, j)

= ∆t

(i+1)∆s∫
(i−1)∆s

∫
Ω

aσ,n
TxM

φi∇ψα φi∇ψβ

|∇(s,x)un|ε ds dx

≈ ∆t∆s

(
(aσ,n

TxM)i
∇ψα

|D±
(s,x)u

n
i |ε

,∇ψβ

)
Ω

,

which evaluates aσ,n
TxM only at the frame i of the sequence.

The remaining term (CP) does not diagonalize in sequence-
time. If we split this term up into its parts (according to the
last remark), then for each part split off the sequence-time
integral by using Fubini’s theorem and midpoint integration

on the involved sequence-time intervals, we obtain a scheme,
that has 3-band block-structure in sequence-time (cf. Ap-
pendix A). The blocks again correspond to the frames in the
sequence and moreover the off-diagonal blocks reflect the
sequence-time derivatives similar to a difference scheme with
stencil [−1, 2,−1] in the sequence-time direction.

The numerical integration of the sequence-time parts con-
sidered here separates the sequence-temporal operations from
the spatial ones and thus simplifies the resulting matrix.

6.3 A block solver

The complete matrix of our system now has a 3-band block-
structure and therefore we can formally rewrite the discrete
problem as (cf. Fig. 9):

For each scale n > 0 find frames un
i such that

〈Fn
i (un

i−1, un
i , un

i+1), ψα〉 = 0 ∀α ,

where the 〈Fn
i (. . . ), ψα〉 corresponds to the row i of the above

derived matrix structure. To solve the system of equations,
we use a symmetric block Gauß–Seidel solver which can be
sketched as follows:

If we would set kmax = 1 the solution strategy would cor-
respond to an explicit scheme in sequence-time. This is not
desirable since the strength of the approach is its nonlin-
ear sequence-time behavior. We therefore fix a small value

Fig. 9. The block solver considers in each step of the inner frame loop al-
ways only three successive images of the sequence. This corresponds to the
fact that the resulting system matrix has a 3-band block-structure
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greater than one for kmax to obtain a better approximation.
In our computations we always chose kmax = 3. The solu-
tion of the subsystems Fn

i is done by a conjugate gradient
(CG) method preconditioned by diagonal scaling. In a typ-
ical example with a 129 × 129 image sequence consisting
of 60 frames and with a stopping criterion of 10−10 for the
CG solver, one scale-step takes about 600 seconds computing
time on an Intel Itanium II processor with 1.0 GHz.

For each scale n = 0, 1, . . . do

For each frame i = 0, 1, . . . , M set un+1,0
i = un

i .
For k = 1, 2, . . . , kmax do

Sweep from left to right: For each frame
i = 0, 1, . . . , M solve for un+1,k

i the system

〈Fn
i (un+1,k

i−1 , un+1,k
i , un+1,k−1

i+1 ), ψα〉 = 0 .

Sweep from right to left: For each frame
i = M, M −1, . . . , 0 solve for un+1,k

i the system

〈Fn
i (un+1,k−1

i−1 , un+1,k
i , un+1,k

i+1 ), ψα〉 = 0 .

For each frame i = 0, 1, . . . , M set un+1
i = un+1,kmax

i .

7 Comparison to other methods

In this section we would like to compare some of the image-
sequence processing models mentioned in Sect. 2 with the
new model. We will not discuss any steady-image method-
ology which may be applied to the single frames of the se-
quence, since a model taking into account velocity and accel-
eration of an image sequence clearly gives better correlation
between successive frames of the sequence.

In [32] Sarti et al. have presented a model for nonlinear
image sequence smoothing, which is based on the method-
ology derived by Guichard in [15]. They took into account
the apparent acceleration and the apparent velocity in terms
of the curvature of Lambertian trajectories (clt) and used the
following model:

∂tu − clt(u)div(G(|∇uσ |)∇u) = 0 . (7)

The model treats the frames of the sequence separately, but
a coupling is given by the modulation of the speed of dif-
fusion via the clt term in front of the divergence. Since the
curvature of the trajectories is proportional to the acceleration
we conclude that the diffusion will be larger where high ac-
celeration is detected, whereas for non-accelerated motion the
equation degenerates to the identity ∂tu = 0.

A similar approach was taken in [21] where the non-
morphological Perona–Malik like behavior was replaced by
the anisotropic level-set smoothing, which was described
in Sect. 3. Again the frames are treated separately and the
coupling is done via the clt term steering the speed of diffu-
sion:

∂tu − clt(u)div

(
aσ

TxM(Sσ )
∇u

|∇u|
)

= 0 .

We can characterize the time-smoothing character of both
approaches in the following way: The resulting images will
be smoother in regions of high acceleration, whereas no
smoothing is applied to regions, that move uniformly, non-
accelerated. In this sense the behavior of the model presented
in this paper is contrary to the clt approaches. First, we
have a coupled smoothing, where the sequence is treated as
a whole, second, the sequence-time diffusion is decreased if
the trajectory has high curvature. On one hand, this results
in a smoothing of the images even if the motion is non-
accelerated. The important features are then spatial corners
and edges. On the other hand accelerated motions especially
with nearly discontinuous velocities will be preserved much
better.

Since the comparison of the different image sequence
models is very difficult, when only static frames of the se-
quence are shown, we are going to identify a 2D image se-
quence width 3D space in the following: We consider the
image sequence

u0(s, x) = |x −d(s)+ rand(N) N| for N = x

|x| ,

where d(s) models the bouncing at some solid object as be-
fore and rand is a random factor in [−5h, 5h]. Thus, the
images consist of spherical level-sets which are disturbed
in normal direction and which bounce at some solid object.
We run the desired diffusion, which creates a scale u : R+ ×
[0, T ]×Ω of smoothed image sequences. From each scale
we create the 3D representation U(x, y, z) by identifying the
sequence-time s with the third spatial coordinate z, i. e. for
t ∈ R+

U(x, y, z) = u(t, z, w) with w = (x, y) ∈ Ω .

From this 3D image we then draw iso-surfaces which show
the movement of level-sets in the space-time cube. Slices
through this cube correspond to the frames of the smoothed
sequence.

In Fig. 8 we compare the behavior of the clt-model (7)
with the new anisotropic model by looking at iso-surfaces of
the space-time image U for a fixed scale. We clearly see, that
the anisotropic model preserves the high acceleration at the
point where the motion changes its direction much better than
the clt-model does. This verifies our expectations from above.

8 Conclusions

We have presented a new morphological anisotropic smooth-
ing approach for image sequences, which takes into account
temporal and spatial curvature information. The multi-scale
diffusion thereby is truly coupled in sequence-time and space
and the anisotropy directions correspond to the apparent di-
rection of motion in sequence-time and to principal directions
of curvature in space. The diffusivity is decreased in areas of
high curvature which results in a good preservation of spa-
tial corners and edges as well as highly accelerated motions
in sequence-time.

The discretization takes into account a mass lumping in
sequence-time and a suitable mid-point integration rule in
the corresponding sequence-time intervals. Therefore the ma-
trix scheme resulting from a tensor product multi-linear finite
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element approach in sequence-time and space has a 3-block
structure, where the single blocks correspond to the frames
in the sequence. This makes a treatment with moderate effort
feasible even for 3D image sequences, which would result in
a 5D problem.

On the web site

http://www.numerik.math.uni-duisburg.de/
exports/anisoseq/

more examples and movies showing image sequences de-
noised by the new model are available.
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Bologna University and TomTec Imaging Systems for providing the ultra-
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Appendix. Operator splitting in the coupled sequence-
time/space problem

Within our explanations in Sect. 6.2 we have claimed that the
resulting matrix scheme has a 3-band block structure. So far
this has only been shown for a part of the resulting matrix.
Let us recall that the matrix entries of the resulting system are
given by
(

φiψα

|∇(s,x)un |ε , φjψβ

)
Q

+ (MM)

∆t

(
aσ,n

v

|∇(s,x)un|ε
D

∂s
(φiψα),

D

∂s
(φjψβ)

)
Q

+ (CP)

∆t

(
aσ,n

TxM

|∇(s,x)un|ε ∇(φiψα),∇(φjψβ)

)
Q

. (MS)

In Sect. 6.2 it has become clear that together with mass lump-
ing in sequence time, the terms (MM) and (MS) only lead to
diagonal block-entries in the resulting system. In the follow-
ing we will show that (CP) leads to two off-diagonal blocks,
such that the final matrix has a 3-band block structure. Ac-
cording to the Remark 3 we split up the term (CP) to

(CP)(i,α),( j,β) (A.1)

= ∆t

(
aσ,n

v

|∇(s,x)un|ε ∂s(φiψα), ∂s(φjψβ)

)
Q

(CP1)

+∆t

(
aσ,n

v

|∇(s,x)un|ε ∂s(φiψα), v·∇(φjψα)

)
Q

(CP2)

+∆t

(
aσ,n

v

|∇(s,x)un|ε v ·∇(φiψα), ∂s(φjψβ)

)
Q

(CP3)

+∆t

(
aσ,n

v

|∇(s,x)un|ε v·∇(φiψα), v·∇(φjψα)

)
Q

. (CP4)

Again we inspect these terms separately. The first component
(CP1) is the elliptic sequence-time term. Let us perform the
integration:

(CP1)(i,α),( j,β)

= ∆t

T∫
0

∫
Ω

aσ,n
v

|∇(s,x)un|ε ∂s(φiψα)∂s(φjψβ) dx ds

≈ ∆t
∑

k

(k+1)∆s∫
k∆s

∂sφi ∂sφj ds
∫
Ω

(aσ,n
v )k

|D+
(s,x)u

n
k |ε

ψα ψβ dx,

where we assume aσ,n
v to be constant over each sequence-time

interval [k∆s, (k +1)∆s] and denoted by (aσ,n
v )k, and D+

(s,x)u
n
k

is the spatio-temporal-gradient evaluated on such an interval.
Since the support of ∂sφi and ∂sφj only overlap in the case
|i − j| ≤ 1 we conclude that the resulting matrix may only
have 3-band structure, where the entries in row i are approxi-
mated by

−∆t

∆s


∫

Ω

(aσ,n
v )i−1ψα ψβ

|D+
(s,x)u

n
i−1|ε




α,β

,

∆t

∆s


∫

Ω

[(aσ,n
v )i−1 + (aσ,n

v )i]ψα ψβ

|D±
(s,x)u

n
i |ε




α,β

,

−∆t

∆s


∫

Ω

(aσ,n
v )iψα ψβ

|D+
(s,x)u

n
i |ε




α,β


 ,

where we again have used the central derivative D±
(s,x)u

n
i in the

diagonal element.
The second and third term (CP2) and (CP3) consist of

mixed derivatives in sequence-time and space. If the tempo-
ral diffusion coefficient aσ,n

v was constant, these terms would
vanish for symmetry reasons. But since we have built the new
model upon nonlinear temporal diffusion, we have to take
into account these terms. Again due to symmetry reasons, we
only have to take into account the temporal diagonal

(CP2 +CP3)(i,α),( j,β)

= ∆t

T∫
0

∫
Ω

aσ,n
v ∂s(φiψα)

|∇(s,x)un|ε v ·∇(φiψβ)

+ aσ,n
v ∂s(φiψβ)

|∇(s,x)un|ε v ·∇(φiψα) dx ds

≈ ∆t∆s
∫
Ω

[(aσ,n
v )i−1 − (aσ,n

v )i]
|D±

(s,x)u
n
i |(

ψα v ·∇ψβ +v ·ψα ψβ

)
dx .

Finally we have the spatial anisotropic elliptic term (CP4)
which can be handled in exactly the same way as before
(MM) and (MS) to obtain

(CP4)(i,α),( j,β)

= ∆t∆s
∫
Ω

[(aσ,n
v )i−1 + (aσ,n

v )i]
|D±

(s,x)u
n
i |

v·∇ψα v·∇ψβ dx .
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Adding up all the terms (MM)+ ∑4
i=1 (CPi) + (MS), we

obtain the stiffness matrix which is then treated by the block
solver as shown in Sect. 6.3.
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