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VECTOR FIELD RECONSTRUCTION FROM SPARSE SAMPLES BY
TRIPLE-LAPLACIAN

GIULIA LUPI, KAROL MIKULA

Abstract. We present a mathematical model to reconstruct vector fields from given sparse
samples inside the domain. We applied the presented model to reconstruct the velocity vector field
driving macrophages toward the wound during wound healing. In this application, the sparse samples
are the sparsely distributed velocity vectors given on macrophage trajectories. The method consists
of solving a minimization problem, which leads to applying the Laplace equation with suitable
boundary conditions to the two components of the vectors and the vector lengths. The values given
by sparse samples are the prescribed Dirichlet conditions inside the domain, and we impose zero
Neumann boundary conditions on the domain boundary. Solving the Laplace equation, we obtain a
smooth vector field in the whole domain. We prove the existence and uniqueness of a weak solution
for the considered partial differential equation with mixed boundary conditions, present its numerical
solution, and show numerical results.
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1. Introduction. Reconstruction of vector fields from sparse samples is relevant
in several computational contexts, like fluid dynamics visualization, texture synthe-
sis, non-photorealistic rendering, optical flow fields, or map registration [5], [8], [10].
In [8], the authors construct local piecewise polynomial approximations using least
squares techniques and combine these approximations through partitions of unity. In
[11], the author solves the approximation problem of representing the vector field by
combining linearly independent vector fields, called ’basis fields,’ which are invariant
under coordinate transformations. In [5], the authors developed a model for recon-
structing smooth tangent vector fields. Given user-specified constraints, they used
an intrinsically coordinate-free approach in which the discrete Laplace operator en-
forces field smoothness. Laplace interpolation has also been used in image processing
tasks, such as image inpainting and image compression [4], [15]. In [10], the authors
developed the so-called Locally Affine Globally Laplace (LAGL) map transformation.
They first designed affine transformations from one map to the other and then solved
the Laplace equation to reconstruct the other points of the map smoothly.
The mathematical model we propose to reconstruct the 2D vector field is based on
interpolating/extrapolating the given information about the vector field. For this rea-
son, the values given by sparse samples are the Dirichlet conditions inside the domain.
Throughout the paper, the term sparse sample will indicate the position and value of
the prescribed Dirichlet condition. We apply zero Neumann boundary conditions on
the boundary: this choice is again because we do not want to add any new informa-
tion. We consider the following minimization problem for the two vector components
and the vector length

min
u

1

2

∫
Ω

∥∇u∥2, (1.1)

where u : Ω → R is a function defined on Ω ⊆ R2 and E[u] = 1
2

∫
Ω
∥∇u∥2 is the

Dirichlet energy. Solving (1.1) leads to

−∆u = 0, (1.2)
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with appropriate boundary conditions that will be discussed in detail in Section 2.
Suppose we use only double-Laplacian [5] for the two vector components. In that
case, the direction of the vectors changes smoothly from one to the other, where
the vectors influence each other, and it is extrapolated from the Dirichlet conditions,
where the vectors do not influence each other. However, it is well known that the
Laplace equation averages the neighboring points. Therefore, as already observed in
[5], double-Laplacian gives the desired behavior for the vector directions but shortens
the vector lengths. Since our approach is based on extracting the vector field from
the given information, it is reasonable to consider that the vector length should also
be reconstructed starting from the given Dirichlet conditions. For this reason, we
consider the same minimization problem (1.1) for the vector lengths. Then, the
model for vector field reconstruction by triple-Laplacian consists of solving the Laplace
equation 3 times with suitable Dirichlet and Neumann boundary conditions. Namely,
considering the two vector components vx and vy and the vector length L, we solve

−∆ui = 0 i = 1, 2, 3 (1.3)

where u1 = vx, u
2 = vy and u3 = L.

We applied the presented model to reconstruct the velocity vector field driving macro-
phages toward the wound during wound healing. In the presence of an injury, macro-
phages activate in response to danger signals [16]. To reconstruct the velocity vec-
tor field caused by the danger signals from videos of macrophages moving toward
the wound site, we extracted the trajectories using the method described in [13].
Macrophages often show both random and directional motion: we assume that the
gradient of the danger signal causes the drift of macrophage motion toward the wound.
Thus, although we do not know the danger signal gradient explicitly, we use the drift
part of the macrophage motion to reconstruct the corresponding velocity vector field.
To do this, we smooth the trajectories using the model described in [9]. The smooth-
ing algorithm separates the directional part of the motion from the random parts and
finds the velocity vectors on the smoothed curves. We use these vectors to define the
sparse samples to reconstruct the velocity vector field.
In Section 2, we will derive the model considering the different boundary conditions
for triple Laplace equations (1.3) in detail. We will present two different approaches.
For the first one, we will prove the existence and uniqueness of a weak solution. For
the second approach, we will present theoretical results ensuring the existence of a
unique solution under suitable conditions on the domain boundary. In section 3, we
will present the problem’s numerical solution and show numerical experiments and
results on real macrophage data.

2. Mathematical model. Consider Ω̃ the auxiliary domain and

Γ2 = ∂Ω̃ (2.1)

the domain boundary. We define the domain Ω, in which we will solve the Laplace
equation, whose boundary is ∂Ω = Γ2∪Γ1, where Γ1 is a set of curves (open or closed
depending on the definition) on which the Dirichlet conditions are prescribed. In our
specific application, where we find the trajectories starting from videos of macrophages
moving, the Dirichlet conditions are defined by velocity vectors on smooth trajecto-
ries. We consider the general situation where the sparse samples are given in points.
We consider small squares around the given points and prescribe the Dirichlet con-
ditions on the boundary of the squares. The problem’s resolution will then give the
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size of the squares. To define the model and prove the existence of a unique weak
solution, we impose the following conditions: the squares can not touch the domain
boundary Γ2 and can not touch each other.
In Remark 1, we will show a second approach to define the model problem. In this
approach, the Dirichlet conditions are prescribed on curves, which are the smooth tra-
jectories in our specific application. Therefore, Γ1 is the set of smooth open curves.
Notice that the mathematical model we propose can cover more general situations.
Moreover, it can also cover the second approach if we understand the smooth trajec-
tories as discrete curves.

Let us define the model problem. Let us have a pixel (finite volume) grid coming

Fig. 2.1. Example of multiply connected set Ω. We consider small squares given by the pixel
grid so that Ω = Ω̃/S remains connected.

from (e.g. image processing) application. We assume that the sparse sample repre-
sents a value given in the pixel’s center or a constant value for the whole pixel. In any
case, we subdivide the pixel into 9 equal squares and consider the prescribed Dirichlet
condition in the central square. This way, the squares will not touch each other, and
they will not touch the domain boundary, so we will obtain a domain with Lipschitz
boundary, for definition see [14]; an example of such domain is shown in Fig. 2.1.
Thus, consider the squares Sp(k) p = 1, ..., s, with side’s length k = h

3 , where h is the
pixel size. Let us define

S =

s⋃
p=1

Sp(k), (2.2)

and

Γ1
p = ∂Sp(k) ∀p = 1, 2, ..., s, ∂S = Γ1 =

s⋃
p=1

Γ1
p. (2.3)

Indicate by

Ω = Ω̃/S, (2.4)

so that

∂Ω = Γ2 ∪ Γ1. (2.5)
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Notice that, due to the choice of k, the set Ω is multiply connected [1]. Therefore,
in this case, we will solve the minimization problem in Ω subject to the following
boundary conditions

• Zero Neumann boundary conditions on Γ2

∂u

∂ν
(x) = 0 x ∈ Γ2, (2.6)

where ν is the unit outer normal vector to the boundary Γ2.
• Dirichlet boundary conditions on Γ1

g(x) = gi x ∈ Γ1
i ∀i = 1, 2, ..., s, (2.7)

where gi : Γ1
i → R gives the value of the sample on the boundary of the

square Si(k).
Solving the variational problem (1.1) with conditions (2.6) and (2.7) is equivalent

to finding the solution of the following boundary value problem
−∆u(x) = 0, x ∈ Ω,
∂u
∂ν (x) = 0, x ∈ Γ2,
u(x) = g(x), x ∈ Γ1.

(2.8)

In what follows, we will prove the existence and uniqueness of a weak solution for the
boundary value problem (2.8). First, let us define the weak solution for our specific
case; for a more general theory, see [14].

Definition 2.1. Let

Ω ⊂ R2 (2.9)

be a domain with a Lipschitz boundary Γ = Γ1 ∪ Γ2, with Γ1 ∩ Γ2 = ∅ and

Γ1 =

s⋃
p=1

Γ1
p, Γ1

p ∩ Γ1
q = ∅ ∀p ̸= q, (2.10)

so that Γ1
1, ...,Γ

1
s,Γ

2 are disjoint open connected parts of Γ of positive measure. Con-
sider the bilinear form

((v, u)) =

∫
Ω

2∑
l=1

∂v

∂xl

∂u

∂xl
dx. (2.11)

Let be given

B11, ..., Bs1, (2.12)

the operators characterizing the Dirichlet boundary conditions on the individual parts
Γ1
1, ...,Γ

1
s of Γ1, and

V = {v; v ∈ W 1
2 (Ω), B11v = 0, ..., Bs1v = 0 on Γ1 in the sense of the traces}.

(2.13)
Let be given

gp1 ∈ L2(Γ
1
p), p = 1, ..., s, (2.14)
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and

w ∈ W 1
2 (Ω) (2.15)

satisfying on Γ1
p (p = 1, ..., s)

B11w = gp1, ..., Bs1w = gs1 (2.16)

in the sense of the traces. The function u ∈ W 1
2 (Ω) is called the weak solution of the

boundary value problem given by the data (2.9)-(2.16) if

u− w ∈ V, (2.17)

((v, u)) = 0 ∀v ∈ V. (2.18)

For the proof of the existence of a weak solution, we need the Lax Milgram theorem.
Thus, the bilinear form must be V -elliptic and bounded [14]. Recall that, given the
bilinear form ((v, u)) and the space V of Def. 2.1, ((v, u)) is called V -elliptic if there
exists a constant µ > 0 such that for every v ∈ V we have

((v, v)) ≥ µ∥v∥2V . (2.19)

On the other hand, the bilinear form ((v, u)) is bounded if, for every v, u ∈ W 1
2 (Ω),

there exists a constant K > 0 such that

|((v, u))| ≤ K∥v∥W 1
2 (Ω)∥u∥W 1

2 (Ω). (2.20)

Theorem 2.2. The boundary value problem (2.8) has exactly one weak solution
u ∈ W 1

2 (Ω) in the sense of Def. 2.1.

Proof. We apply Theorem 33.2 in [14]. It states that given a boundary value
problem according to Def. 32.2 in [14], and a bilinear form ((v, u)) that is V -elliptic
and bounded, there exists a unique weak solution of the considered boundary value
problem. Therefore, it will be sufficient to prove that: (i) the set Ω has a Lipschitz
boundary, (ii) condition (2.14) holds for the function g in (2.7), (iii) it exists w as in
Def. 2.1, and (iv) ((v, u)) is V -elliptic and bounded. Indeed, Def. 2.1 is a specific
case of the more general Def. 32.2 in [14], where in our case the function f on the
right-hand side of the equation is f = 0 ∈ L2(Ω), and the functions h on the right-
hand side of the Neumann boundary conditions is h = 0 ∈ L2(Ω). Because h = 0, the
bilinear form ((v, u)) has the form (2.11).

Let us start by proving that the domain Ω has a Lipschitz continuous boundary.
To do that, according to Def. 28.6 in [14], we have to prove that there exist constants
α > 0, β > 0, a finite number m of Cartesian coordinate systems xr

1, x
r
2, r = 1, ...,m,

and m functions ar(x
r
1) continuous in the interval [−α, α] satisfying certain properties.

In particular, every point of the boundary has to be expressed as

x = [xr
1, ar(x

r
1)], (2.21)

for at least one r = 1, ...,m. Moreover, the points x = (xr
1, x

r
2) such that

|xr
1| < α, (2.22)
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Fig. 2.2. Cartesian coordinates systems for the domain Ω such that every point on ∂Ω can be
expressed in the form [xr

1, ar(x
r
1)].

lie in Ω or outside Ω̄, i.e.

ar(x
r
1) < xr

2 < ar(x
r
1) + β (2.23)

or

ar(x
r
1)− β < xr

2 < ar(x
r
1). (2.24)

Finally, the functions ar(x
r
1), r = 1, ...,m have to satisfy the Lipschitz condition on

[−α, α].
Then, let us first define the Cartesian coordinates systems for our domain as depicted

in Fig 2.2. We choose k
√
2

4 < α < k
√
2

2 . Remind that, to define the model problem, we
divided the pixel square into 9 smaller squares and selected the central one. Therefore,
k is the measure of the side of the small square. For the inner squares, we choose the
Cartesian coordinates systems on the diagonals of the squares. Therefore, we have
4 Cartesian coordinate systems, 2 for each diagonal, covering the entire boundary of
the square. This particular choice of α is due to the inner squares: indeed, the limit

value k
√
2

4 is half of the length of the segment obtained connecting the middle points

of the sides. If α ≤ k
√
2

4 , there will be some points in the sides that are not expressed

by any Cartesian coordinate system. On the other side, if α ≥ k
√
2

2 , we would not be
able to find any β satisfying the required conditions (2.23) or (2.24). Having defined
the 4 Cartesian coordinate systems for one inner square, each point on the boundary
of the square can be expressed as

[xr
1, ar(x

r
1)] (2.25)

with

ar(x
r
1) = C − |xr

1|, (2.26)

where C = k
√
2

2 − α is a constant. This construction is applied to every inner square.
For the outer rectangle, we define the Cartesian coordinate systems in a similar way.
In this case, we define 4 coordinate systems perpendicular to one of the diagonals of
the rectangle to express the points around the corners (α > 0 is already fixed). We
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then add 2(⌊L1

2α⌋+ ⌊L2

2α⌋) Cartesian coordinate systems parallel to the rectangle sides
L1 and L2 to cover the other points. Therefore, each point in Γ2 can be expressed as

[xr
1, ar(x

r
1)] (2.27)

with

ar(x
r
1) = |xr

1|+ C, (2.28)

and

ar(x
r
1) = C. (2.29)

We then choose β < C to ensure that conditions (2.23) and (2.24) are satisfied for the
inner squares; the conditions automatically hold also for the outer rectangle. Finally,
we have to prove that the functions ar(x

r
1), satisfy the Lipschitz condition, therefore

that ∀r exists Lr > 0 such that for all x, y in the interval [−α, α] in the Cartesian
coordinate system xr

1, x
r
2 it holds

|ar(x)− ar(y)| ≤ Lr|x− y|. (2.30)

For (2.26) and (2.28), we choose Lr = 1, and the condition (2.30) follows from the
reverse triangle inequality. For (2.29), we can choose any Lr > 0.
Therefore, Ω has a Lipschitz continuous boundary. Condition (2.14) is satisfied be-
cause, on each square, the Dirichlet conditions are constant. The proof of the V -
ellipticity of the bilinear form (2.11) follows from Theorem 30.3 in [14], and Theorem
1.9 in [12]; indeed for v ∈ V there exists C1 > 0 such that

∥v∥2V = ∥v∥2W 1
2 (Ω) ≤ C1

(∫
Γ1

|v|2dS +

∫
Ω

∣∣∣∣ ∂v∂x1

∣∣∣∣2 + ∣∣∣∣ ∂v∂x2

∣∣∣∣2 dx
)

= C1((v, v)), (2.31)

where
∫
Γ1 |v|2dS = 0 because v ∈ V . Hence, choosing µ = 1

C1
we obtain (2.19). The

boundedness of the bilinear form (2.11) follows from Schwarz inequality [14].
Finally, we need to prove that there exists w ∈ W 1

2 (Ω) satisfying (2.16). To do that,
consider a square grid in Ω with size k so that the squares Sp(k) will be squares of
the grid. Consider a discretization of the following boundary value problem −∆u(x) = 0, x ∈ Ω,

u(x) = 0, x ∈ Γ2,
u(x) = g(x), x ∈ Γ1.

(2.32)

We consider the values ui,j , i = 1, ..., n1, j = 1, ..., n2 on the vertices of the squares
of the grid, see Fig. 2.3. Hence, the Dirichlet boundary conditions are prescribed on
the vertices of the squares Sp(k). Let us indicate by vp the constant value on Γ1

p,
p = 1, ..., s. The discretization of (2.32) by finite differences method is then given as
follows:

ui,j = 0, on Γ2,
ui,j = vp, on Γ1

p, p = 1, ..., s,
−ui−1,j − ui,j−1 + 4ui,j − ui+1,j − ui,j+1 = 0, for other vertices.

(2.33)

We will prove that the matrix A with elements Ai,j representing the discrete
system of equations (2.33) is weakly chained diagonally dominant (WCDD) [2]. Then,
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Fig. 2.3. Discretization of the domain Ω for the boundary value problem (2.32). The grid nodes
are prescribed on the vertices of the squares.

we will know that it is not singular; thus, a unique solution exists. Indeed, A is weakly
diagonally dominant (WDD), i.e., |Ai,i| ≥

∑
i ̸=j |Ai,j |. To prove that A is WCDD,

we consider the directed graph associated with the matrix A defined as follows: the
vertices of the graph are the rows of the matrix A, and there exists an edge i → j if
and only if Ai,j ̸= 0.
The matrix A is composed of blocks of strictly diagonally dominant (SDD) rows, i.e.
|Ai,i| >

∑
i ̸=j |Ai,j |, and blocks of WDD rows; one possible realization of A is depicted

in (2.34). Notice that the SDD rows are related to the Dirichlet boundary conditions
in (2.33), where we have 1 on the diagonal and 0 everywhere else.



1 0 · · · · · · · · · 0 · · · · · · · · · 0 0 0
. . .

. . .
. . .

. . .
. . .

. . .

i− 1 0 · · · 0 1 0 · · · · · · 0

i
... −1 · · · −1 4 −1 · · · −1 · · · · · · 0 0

i+ 1 0 · · · −1 . . . −1 4 −1 . . . −1 0 0 0
. . .

. . .
. . .

...
. . .

. . .
. . .

. . .
. . .

. . .
. . .

...
. . .

. . .
. . .

. . .
. . .

0 · · · · · · · · · · · · 0 · · · · · · · · · 0 0 1



(2.34)

We have to prove that, starting from each WDD row, a walk in the directed graph
ends at an SDD row. To do that, let us first assume that the row i is WDD, and
the row i − 1 is SDD. For the i-th row we have Ai,i−1 = −1 ̸= 0, therefore in the
directed graph we will have i → i − 1. A more general case is depicted in Fig. 2.4,
which corresponds to the graph of the matrix A depicted in (2.34) for the rows i− 1,
i, and i+1. In this case, the rows i and i+1 are WDD, while the row i is SDD. Since
between two consecutive WDD rows, it always holds Ai,i+1 ̸= 0 and Ai+1,i ̸= 0, we
will always be able to find a walk ending at an SDD row. Then, we proved that the
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Fig. 2.4. Graph of the matrix A depicted in (2.34) for the rows i− 1, i, and i+ 1

Fig. 2.5. Example of open set Ω bounded by open curves Γ1
p and closed curve Γ2

matrix A is WCDD and, therefore, non-singular.
Let us indicate by U the solution of (2.33). To define w from Def. 2.1, we consider the
bilinear interpolation of U on the grid, and we obtain a function defined on Ω satisfying
the prescribed Dirichlet boundary conditions on Γ1. The function w is continuous with
piecewise continuous derivatives, therefore w ∈ W 2

1 (Ω). This concludes the proof.

Remark 1. Let us now consider another approach to define the model problem.
To consider the minimization problem in equation (1.1), we first have to define the
domain Ω bounded by the boundary of Ω̃ and by open curves; an example is depicted
in Fig. 2.5.

Let us denote by Γ1
p, p = 1, 2, ..., sd the inner open curves. Set

Γ1 =

sd⋃
p=1

Γ1
p, Ω = Ω̃/Γ1, (2.35)

so that

∂Ω = Γ2 ∪ Γ1. (2.36)

We solve the minimization problem in Ω subject to the following boundary conditions

• Zero Neumann boundary conditions on the domain boundary

∂u

∂ν
(x) = 0 x ∈ Γ2, (2.37)

where ν is the unit outer normal vector to the boundary Γ2.
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• Dirichlet boundary conditions on the inner open curves

u(x) = g(x) x ∈ Γ1, (2.38)

where g : Γ1 → R is a function that returns the values given by sparse samples.
Solving the variational problem (1.1) with conditions (2.37) and (2.38) is equivalent
to finding the solution of the following boundary value problem

−∆u(x) = 0, x ∈ Ω,
∂u
∂ν (x) = 0, x ∈ Γ2,
u(x) = g(x), x ∈ Γ1.

(2.39)

It can be proved that, under suitable assumptions on Γ1
p and Γ2, the classical solution

of (2.39) exists and is unique [7]. In particular, Γ2 has to be of class C2. Moreover,
∀p = 1, .., s, we require Γ1

p to be a non-closed smooth arc of finite length without self-

intersections of class C2,λ, λ ∈ (0, 1]. Here, C2,λ indicates the set of curves belonging
to the class C2 and such that the second derivatives of the coordinate functions are
Hölder continuous with exponent λ. Since we did not study the regularity of the
curves representing the smoothed trajectories obtained by our model presented in [9],
we can not use theory from [7] directly. Therefore, starting from our trajectories,
we construct quartic splines as in [3]. These splines are of class C3, satisfying the
required continuity conditions. If we understand the second approach in a discrete
way, the velocities given in discrete points can be understood as sparse samples, and
we can use the first approach.

3. Numerical experiments. For the numerical experiments, we use the dis-
cretization from [10], which is slightly different from the one used in the proof of
theorem in the previous section. In system (2.33), we considered the grid points in
the corners of the squares of side k to discretize the Laplace equation. Here, we con-
sider the mean value in the center of the squares. Since the Dirichlet conditions are
constant on each square, the mean value is the same constant.
For the discretization, we consider the uniform squared grid N1 × N2, where N1 is
the height, N2 is the width of the grid with size k = 1. We use the finite difference
method: the grid nodes correspond to the centers of the squares. We use the 5 points
approximation to discretize the Laplace operator and the reflection of values along
the boundary to approximate the zero Neumann boundary condition, for details see
[10]. We obtain a linear system as in [10] and solve it using the Bi-conjugate gradient
stabilized algorithm from Eigen::BiCGSTAB class of [6].
We first performed some numerical tests, as shown in Figs. 3.1, 3.2. In Fig. 3.1, the
prescribed Dirichlet conditions are vectors on parallel lines with the length of the vec-
tor set as constant on the line. The vectors were normalized for better visualization:
the color represents the norm. The direction of the vectors in the reconstructed vec-
tor field is extrapolated from the two parallel lines in the direction to the boundary;
therefore, it remains constant. The vector length changes linearly from the smallest
to the biggest value between the two parallel lines and is extrapolated where the vec-
tors are not influencing each other. In Fig. 3.2, the prescribed Dirichlet conditions
are vectors on 2 lines: the direction and the length are fixed on the line, but it is
different between the lines. We observe that the vectors in the reconstructed vector
field smoothly change direction and length in the regions influencing each other. On
the other hand, both the direction and the length are extrapolated from the Dirichlet
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Fig. 3.1. Left: prescribed Dirichlet condition. Right: vector field reconstruction by triple-Laplacian

Fig. 3.2. Left: prescribed Dirichlet condition. Right: vector field reconstruction by triple-Laplacian

conditions where the vectors do not influence each other.
To better understand the reason why we use the triple-Laplacian model, we se-

lected the simple case of two vectors with the same length but different directions as
shown in Fig. 3.3. If only the double-Laplacian is used, the interpolation between
the vectors will give shorter vectors smoothly changing direction from one Dirichlet
condition to the other, as shown on the bottom right of Fig. 3.3. When we compute
the triple-Laplacian, the result of the reconstruction extrapolates the lengths from
the given ones; therefore, the length of the vectors in the reconstructed vector field
by triple-Laplacian is constant everywhere as shown on the bottom left of Fig. 3.3.
Again, we do not add/create any new information that is not contained in Dirichlet
conditions.

To evaluate the quality of the reconstruction of our model, we considered the
following experiment. We defined 2 vector fields in [−1, 1]× [−1, 1]: the expansion

V (x1, x2) = (x1, x2), (3.1)
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Fig. 3.3. Top: prescribed Dirichlet condition. Bottom left: vector field reconstruction by triple-
Laplacian. Bottom right: vector field reconstruction by double-Laplacian

and the rotation

V (x1, x2) = (−x2, x1). (3.2)

We fixed a percentage of pixel values for each experiment to keep: these pixels are
randomly selected, and the random selection is done 5 times. Then, we reconstructed
the vector field using triple-Laplacian with the given samples. We calculated the root
mean squared error (RMSE) between the reconstructed vector field and the original
one, namely

∥VR − VE∥L2
=

√√√√ 1

n

n∑
i=1

∥VR(xi
1, x

i
2)− VE(xi

1, x
i
2)∥2, (3.3)

where n is the number of pixels that have been reconstructed. Then, we computed
the mean of the RMSE of the 5 different random pixel selections. In Fig. 3.4, we
show the results for the vector fields defined in (3.1) and (3.2). We plotted the RMSE
against the percentage of pixels kept for the reconstruction. The error decreases for
an increasing percentage of kept pixels; indeed, the prescribed Dirichlet conditions
are closer to each other, making the interpolation process more precise. Tab. 3.1
shows the computed RMSE for increasing percentages of kept pixels. In both cases,
the reconstruction of the vector field for at least 30% of kept pixels (that is, the
percentage of sparse samples with respect to the total number of points) is less than
10−3.

Then, we reconstructed the velocity vector field caused by the danger signals and
driving the macrophages toward the wound. The trajectories were extracted with
the algorithm described in [13] and smoothed with the model described in [9]. The
smoothing algorithm allows us to find the velocity vectors on the smoothed curves:
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Fig. 3.4. Left: RMSE for the vector field in Eq. (3.1). Right: RMSE for the vector field in
Eq. (3.2).

Table 3.1
RMSE for increasing percentage of kept pixels for expansion (3.1) and rotation (3.2).

% of points as DBC RMSE Expansion RMSE Rotation

10 2.528425e-003 1.245681e-003
20 1.448192e-003 6.784626e-004
30 9.404206e-004 4.941736e-004
40 8.377425e-004 3.628637e-004
50 6.026122e-004 3.370405e-004
60 5.621018e-004 2.788309e-004
70 4.203156e-004 2.637498e-004
80 4.161753e-004 2.109483e-004
90 3.523628e-004 1.713661e-004

we use these vectors as prescribed Dirichlet conditions. Fig. 3.5 shows the smoothed
velocity vectors found smoothing macrophage trajectories and the corresponding re-
constructed velocity vector field.

4. Discussion and Conclusion. In this paper, we solved the problem of re-
constructing a vector field from sparse samples. We solved a minimization problem
by considering the sparse samples as prescribed Dirichlet conditions inside the do-
main. Minimizing the Dirichlet energy is equivalent to finding the Laplace equation’s
solution with prescribed boundary conditions. We imposed zero Neumann boundary
conditions on the domain’s boundary so as not to add any new information not al-
ready given by the sparse samples. We used the proposed model to reconstruct the
velocity vector field caused by the danger signals and driving macrophages toward the
wound during wound healing. We extracted the trajectories and smoothed them to
separate the directional parts of motion from the random parts. We found the velocity
vectors on the smoothed curve and considered them as prescribed Dirichlet conditions
to reconstruct the vector field. The velocity vector field considered in this paper is
stationary. One possible improvement would be to consider a time-dependent vector
field and apply the same mathematical model to reconstruct the vector field. The
existence of a weak solution when the squares touch each other is another possible
generalization of the theoretical formulation of the problem. Indeed, in that case, the
domain is no longer Lipschitz. Moreover, one can study the existence of a solution
when the Dirichlet conditions are given in points. Finally, the overall workflow can
be straightforwardly extended in 3D.
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Fig. 3.5. Left: prescribed Dirichlet condition. Right: vector field reconstruction by triple-Laplacian
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