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Abstract
The paper deals with the multichannel curve segmentation of planar point clouds, scanned
by a terrestrial laser scanner (TLS), which usually represent walls of buildings. Information
derived from the point cloud can be used for quality check of a building (e.g. wall flatness
or mutual perpendicularity of walls) or creation of virtual models of buildings. Therefore,
segmentation of the planar point cloud into subsets representing the surface of the wall and
other structures (e.g. door, electrical outlets) is desired. We describe a mathematical model
of evolving planar curves, which is used for the segmentation of the point cloud. The evo-
lution of curves is controlled by the properties of the scanned walls, such as colour and
intensity. We discretize the model using the finite-volume method and the semi-implicit
Inflow-Implicit/Outflow-Explicit (IIOE) scheme. We demonstrate the functionality of seg-
mentation on real data.

Keywords Numerical methods · Finite-volume methods · Point cloud · Image
segmentation · Evolving curves

Mathematics Subject Classification 53Z30 · 68U10 · 65M08 · 65D17

Communicated by Antonio José Silva Neto.

B Lukáš Tomek
tomek@math.sk

Branislav Beran
branislav.beran@gmail.com

Ján Erdélyi
jan.erdelyi@stuba.sk

Richard Honti
richard.honti@stuba.sk

Karol Mikula
mikula@math.sk

1 Faculty of Civil Engineering, Slovak University of Technology in Bratislava, Radlinského 11, Bratislava
811 07, Slovak Republic

123

http://crossmark.crossref.org/dialog/?doi=10.1007/s40314-023-02457-w&domain=pdf
http://orcid.org/0000-0002-8773-671X


332 Page 2 of 33 L. Tomek et al.

1 Introduction

One of the most effective methods for collecting spatial data is terrestrial laser scanning
(TLS). The resulting data are provided as a 3D point cloud, possibly including radiometric
information, namely colour and intensity. In general, point cloud data can serve as a geometric
basis for modelling objects and phenomena. Point clouds are used for visualisation, measure-
ment, and many other surveying tasks such as 3D model creation or surface reconstruction
(Previtali et al. 2014), digitalisation of cultural heritage (Adamopoulos and Rinaudo 2021;
Haličková andMikula 2016; Remondino and Rizzi 2010), deformation analysis of structures
(Holst et al. 2015), flood modelling or landslide surveying (Giussani and Scaioni 2012).

In the present paper, we work with point clouds resulting from TLS scans of buildings.
Nowadays, virtual models are created for managing the whole lifecycle of a building, from
the design, construction, operation to facility management and demolition using Building
Information Modelling (BIM). A BIMmodel is an object-oriented virtual model defined as a
combination of graphic and non-graphic data. The graphic data in most cases have the form
of a 3D model. The use of information from the 3D point cloud and the information derived
from the BIM model can be used for the monitoring and quality check of a given structure
during the construction process or after its completion (Bariczová et al. 2021).

Our point cloud data include 3D coordinates of the points, colour channels captured by a
digital camera, and the intensity channel containing information related to the strength of the
reflected laser signal. Our goal is to find planar subsets of the original point cloud containing
points that represent the surface of walls. These subsets could be used, e.g. for automation
of the creation of as-built models of buildings.

In our typical workflow, we perform a two-phase segmentation. Primary segmentation is
performed by plane fitting. Planar subsets of the entire point cloud are selected. Each subset
contains points lying within a specified distance from the fitting plane and will be referred to
as planar point cloud. The planar point cloud corresponding to a wall often contains objects
that do not represent the surface of the wall (e.g. door and electrical outlets) and may affect
the result of the quality check (Bariczová et al. 2021). The role of the secondary segmentation
based on evolving curves is to segment each planar point cloud into subsets representing the
wall surface and other objects, e.g. door, whiteboard, and the remaining unsegmented points
(waste).

For the primary segmentation,manymethods have been developed, see the reviewbyGrilli
et al. (2017). We usually use a modification of the Random Sample Consensus (RANSAC)
algorithm (Fischler and Bolles 1981) called M-estimated Sample Consensus (MSAC) (Torr
and Zisserman 2000), possibly followed by some filters, e.g. a normal filter which discards
points whose local normals deviate from the normal of the fitting plane by more than a given
threshold angle. In addition to the MSAC method, we also use the approach developed in
Honti et al. (2022).

For the purpose of this paper, we consider a planar point cloud as the input data for
the secondary segmentation, which will be described in detail. As we will see, the basic
idea of our approach is to create a set of images representing the point cloud data1 and
subsequently segment these images. In the field of image processing, many segmentation
methods based on curve and surface evolution models have been developed. We distinguish
two main approaches to handle evolution problems, the so-called direct (or Lagrangian)
approach (Dziuk 1999; Mikula and Ševčovič 2004; Balažovjech and Mikula 2011) and level

1 One image for each channel, e.g. colour channels R, G, B or intensity channel I. The images are obtained
by orthogonal projection of the point cloud into the meshed fitting plane.
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set (or Eulerian) approach (Sethian 1999; Osher et al. 2004; Caselles et al. 1997; Zhao et al.
2000; Corsaro et al. 2006). Our secondary segmentation is based on a Lagrangian curve
evolution model, which is computationally fast because it solves only 1D curve evolution
problem. The Eulerian approach treats the segmentation curve as the zero-level set of the
level set function and thewhole function is evolving. Therefore, one has to solve 2D evolution
problem which is computationally more expensive.

The evolution of segmentation curves is driven by information from multiple channels of
the point cloud data, e.g. colour, intensity, or distance from the fitting plane. The quality of the
discretisation mesh is crucial for stability and accuracy in the Lagrangian approach. Various
techniques for tangential redistribution of points improving the mesh quality have been
developed (Hou et al. 1994; Kimura 1997; Ševčovič and Mikula 2001; Barrett et al. 2011;
Ševčovič and Yazaki 2011; Benninghoff and Garcke 2014), and we adopt asymptotically
uniform redistribution of points from (Mikula and Ševčovič 2004). Moreover, an algorithm
for the detection and treatment of the topological changes is needed (Benninghoff andGarcke
2014; Frei and Garcke 2016). We use an efficient O(n) algorithm developed in (Mikula and
Urbán 2012; Balažovjech et al. 2012; Ambroz et al. 2019).

The mathematical model for curve evolution is an extension of the model from the paper
(Mikula et al. 2021a) which deals with one channel segmentation of forests from satellite
images. Contributions of the present paper are mainly the fully automatic methodology
for segmentation of the point clouds (meaning two segmentation phases, creation of the
representative images, curve segmentation and creation of the final segments of the point
cloud), themultichannel approach using a novel construction of the aggregated edge detector,
and simultaneous segmentation ofmultiple regions (requiring a different detection ofmerging
of curves). Minor contributions include construction of the initialisation mask, a simpler
approximation of the signed curvature (without using arccos as in Mikula et al. (2021a)) and
a local weight for the curvature regularisation. To make the text self-content, we included
some ideas from Mikula et al. (2021a) in this paper. A preliminary version of the curve
segmentation of planar point clouds is outlined in the paper (Bariczová et al. 2021) which
deals with quality check of walls in buildings. In the paper (Bariczová et al. 2021), only a brief
intuitive description of the model is presented, and the functionality of the segmentation is
shownonly onone example. In this paper,wepresent thefinal version of themethodologywith
the full mathematical description of the model and all computational details of our approach.
The functionality of the model is demonstrated on multiple representative examples.

The text of this paper is organised into three main sections. In Sect. 2, we introduce
the main ideas of our segmentation methodology, mainly the creation of the representative
planar point cloud images (Sect. 2.1), mathematical model (Sect. 2.2), construction of the
edge detectors (Sect. 2.3), and our approach to the multichannel segmentation (Sect. 2.7).
In Sect. 3, we present the numerical discretisation of the mathematical model. The Sect. 4
shows several numerical experiments with real data that illustrate the functionality of our
approach.

2 Point cloud segmentationmethodology

In this section, we describe our method for segmentation of the point clouds. We obtain
our input point cloud data using the Trimble TX5 scanner. The point clouds usually contain
millions of points with the average resolution about 2 − 6 mm. A typical example is a flat
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Fig. 1 Primary segmentation of an apartment scanned by TLS. A planar subset corresponding to a wall was
segmented

Fig. 2 An example of the secondary segmentation phase of a planar point cloud corresponding to a wall with
a door

in Fig. 1.2 The overall workflow of our segmentation process consists of the following main
steps.

1. Primary segmentation by plane fitting. Selection of planar subsets of the point cloud
using the MSACmethod, Fig. 1. Each subset consists of points located within a specified
threshold distance from the fitting plane. The fitting can be possibly followed by a normal
filter removing points whose local normals deviate from the normal of the fitting plane by
more than a specified threshold angle. The resulting planar point clouds3 serve as input
data for secondary segmentation.

2. Secondary segmentation by curve evolution. Segmentation of each planar subset of
the point cloud using evolving curves (Fig. 2).

2 It might seem like a continuous surface, but it is an unorganised cloud of points without any structure.
Figure 1 shows a very dense point cloud with points visualised as tiny square planar patches.
3 For ease of expression, we call these subsets planar point clouds, although in reality they are only approxi-
mately planar.
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(a) Preprocessing: Creation of representative images corresponding to the channels (such
as colour or intensity) of the planar point cloud.

(b) Evolution: Segmentation by evolving curves using representative images.
(c) Postprocessing: Extraction of points in the point cloud corresponding to the seg-

mented regions.

In the following subsections, we describe the steps of the secondary segmentation in detail.
As we mentioned, the same procedure is performed for each planar point cloud. Therefore,
in the following, we will work with a single planar point cloud. In Sects. 2.2–2.6, we present
the method for one-channel segmentation and in Sect. 2.7, we propose a technique to use
information from multiple channels.

2.1 Preprocessing: creation of the representative images from planar point cloud

To reduce the dimension of the problem, we transform (rotate and move) our planar point
cloud to the new coordinate system in which the first two dimensions span the fitting plane.
If we have a transformed point with coordinates x = (x1, x2, x3), the coordinates x1 and x2
describe the position of the point in the plane and the x3 axis is orthogonal to the fitting plane,
i.e. the absolute value of x3 is the distance from the fitting plane, denoted as D = |x3|.

Subsequently, we create a regular square mesh in the x1, x2 plane. We denote the pixel
size (edge length) as h and usually set it as a multiple of the resolution of the point cloud
(e.g. 3×resolution). Then, we represent the point cloud data by a set of bitmap images, one
image for each available channel. Usually, we use the colour channels R, G, B, the intensity
channel I, and the distance channel D. For example, we take the R channel of colour and
compute the value in each pixel (square of the mesh) as the mean value of the R channel of
the points which lie in the pixel, see Fig. 3. Finally, we rescale the image values to the range
[0, 1]. The domain of the images will be denoted by � ⊂ R

2.
The resulting images are pixel representations of the input planar point cloud and will be

segmented using evolving curves.

2.2 Mathematical model of the curve evolution

In this section, we present a Lagrangian curve evolution model for segmentation of the planar
point clouds obtained by TLS. The input data is an image I, which is one of the channels.

(a) Transformed point cloud and mesh. (b) Corresponding bitmap image.

Fig. 3 Creation of the bitmap images from the point cloud data visualised for R, G, B channels
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The use of multiple channels will be described in the Sect. 2.7. The mathematical model for
curve evolution is an extension of the model from the paper (Mikula et al. 2021a) and we
employ a similar notation. The segmentation curve is an evolving closed planar curve with
a position vector of its points denoted by x(u, t), where u ∈ [0, 1] is a parameter that goes
along the curve and t ∈ [0, t f ] is the time (with t f being a final time). The fact that the curve
is closed means x(0, t) = x(1, t).

The evolution is driven by a suitably designed velocity field v(x, t), therefore, the basic
evolution model is

∂tx(u, t) = v(u, t), (1)

where ∂tx := ∂x
∂t denotes the time derivative of the position vector, that is, the velocity of

point x. Equation (1) is coupled with an initial condition x(u, 0) = x0(u), u ∈ [0, 1]. The
initial curve x0 is a small circle (Fig. 4) automatically placed inside the segmented region
(e.g. the small white circle in Fig. 2b). Details on automatic insertion of the initial curve are
provided in Sect. 2.8. We consider the velocity v(u, t) in the following form (see also Mikula
et al. (2021a)):

v(u, t) = (1 − λ(t)
)
B(u, t)N(u, t)︸ ︷︷ ︸

Expansion

+λ(t)
(− ∇E(x(u, t))

)

︸ ︷︷ ︸
Edge attraction

+δ(u, t) k(u, t)N(u, t),︸ ︷︷ ︸
Curvature regularisation

(2)

where N denotes the positively oriented unit normal vector defined by rotation of the unit
tangential vector T = ∂x

∂s (also denoted as ∂sx = (∂s x1, ∂s x2)) by π
2 in the positive direction,

with s = ∫ u0 ‖∂ux‖ du denoting the arc length parameter of the curve. Therefore, the normal
can be expressed as N = T⊥ = (−∂s x2, ∂s x1). The function k in (2) is the signed curvature
and ∇ is the gradient operator. Functions E and B will be properly defined later. Now, we
give a brief description of the terms in (2). The role of the first term B(u, t)N(u, t) is to
expand the segmentation curve in the normal direction from its initial shape through the
segmented region towards its border, and the ‘blowing’ function B(u, t) controls the speed
of expansion.

The second term attracts the points of the curve towards the borders of the segmented
region. Information about the borders is contained in the edge detector function E(x) ∈ [0, 1],
x ∈ � which has values close to 0 near the edges and close to 1 in homogeneous regions
of the planar point cloud (see Fig. 5d). The negative gradient of E points towards the lower
values and, therefore, is suitable to attract the segmentation curve towards the edges.

The time-dependent parameter λ(t) ∈ [0, 1] serves as a weight between the expansion
and the edge attraction term. The standard approach is to set λ(t) at the beginning (t = 0) to
a number 0 < λ0 � 1 (i.e. the edge attraction does not dominate), keep it unchanged until
the curve is close to the border (moving very slowly) and then switch λ(t) to 1, which turns

Fig. 4 An evolving closed planar
curve plotted at times
t = 0, t1, t2, where 0 < t1 < t2
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off the expansion term. The setting λ(t) = λ0 will be called the expansion phase and the
setting λ(t) = 1 we call the attraction phase.

The last term in (2) is called curvature regularisation and has a smoothing effect. We use
it to deal with the noise and to smooth the sharp edges of the segmentation curve during the
expansion phase. The importance of the curvature regularisation was studied, e.g. in Mikula
et al. (2021b). The parameter δ(u, t) weights the influence of the term and will be properly
defined in Sect. 2.7.

The first two terms in (2) could be also called together as ‘external velocity’, because they
substantially depend on external quantities which are properties of the segmented image,
unlike the curvature regularisation term, which depends on the signed curvature k and normal
N, which are properties of the curve. However, we may set the weight δ to be dependent also
on the speed of the curve evolution, as we shall see later.

2.3 Edge detector

The (smoothed) edge detector function E(x) is constructed as follows (Mikula et al. 2021a).
First, we prefilter the original image I, for example, using the Gaussian filter to get Iσ0 =
Gσ0 ∗ I (the convolution with the Gaussian kernel Gσ0 with variance σ0) and then compute
the norm of the gradient of the filtered image

∥∥∇Iσ0(x)
∥∥. If the original image is very

noisy and strong filtration is needed, we can use the anisotropic diffusion (Perona–Malik)
filter (Perona and Malik 1990) instead. However, in some situations, the prefiltration is not
necessary because some filtration is actually done in the preprocessing step (Sect. 2.1) when
computing pixel representations of the point cloud data, which is akin to a mean filter. In such
cases, one may directly compute the norm of the gradient of the original image

∥∥∇I(x)
∥∥.

Next, we find edges in the image I by computing an edge detector function

g(x) = 1

1 + μ
∥∥∇Iσ0(x)

∥∥2
. (3)

The gradients are large near the edges, and therefore, g(x) is close to zero in such regions.
In homogeneous areas, the gradients are small, and thus g(x) is close to 1. The parameter
μ > 0 controls the sensitivity of edge detection. If it is small, the value of g(x) is close to
zero (detects an edge) only for very sharp edges (i.e. very large gradients). If the parameter
μ is large, the function g(x) has values close to zero even for smaller gradients, which means
that g(x) is more sensitive to edges. The reasonable values of μ are from the interval (0, 10].

Finally, we apply the Gaussian filter (convolve the function g(x)with the Gaussian kernel
with variance σ ) to obtain the smoothed edge detector function

E(x) = (Gσ ∗ g)(x). (4)

Smoothing makes the edges ‘wider’ and causes the edge attraction term −∇E(x) in (2) to
point in the right direction (towards the edge) in a larger neighbourhood of the actual edge,
which helps the edge attraction. The edges become too wide and blurry for large σ , so small
values of σ are reasonable, we use σ = 0.5. In Fig. 5a, we can see a point cloud of a wall
with two pictures. Image I for the red channel is in Fig. 5c and the corresponding smoothed
edge detector function E(x) is plotted in Fig. 5d.

We note that if image I contains holes (as in Fig. 7b), i.e. not a number (NaN) values
corresponding to empty pixels (containing no points of the point cloud), the gradients and
filtration need to be computed carefully. For example, if we carelessly calculate the derivative
∂xI in the (i, j)-th pixel by the finite difference (∂xI)i j ≈ (Ii+1, j −Ii−1, j )/2 h and the value
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(a) A point cloud. (b) Corresponding bitmap image.

0

0.2

0.4

0.6

0.8

1

(c) Image I corresponding to the red channel.
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(d) Smoothed edge detector function E(x).

Fig. 5 Construction of the smoothed edge detector function for the red channel

Ii−1, j or Ii+1, j would be NaN, the result would be NaN. Therefore, we first interpolate (or
extrapolate) empty pixels, then compute the finite difference, and eventually reset the NaN
values to preserve the information about the holes (if Ii j was NaN, then reset (∂xI)i j to
NaN). If a point x(u, t) of the curve lies in an empty (NaN) pixel, we set both the expansion
and edge attraction term in (2) to zero.

2.4 Blowing function

The blowing function B used in the expansion term in (2) is defined as (see also Mikula et al.
(2021a))

B(u, t) = H(u, t) E(x(u, t)), (5)

where H is called the homogeneity function and is defined as

H(u, t) =
{
1, d(u, t) < d0,

0, otherwise.
(6)

where d0 is a threshold value and d(u, t) = ∣∣I(x(u, t)) − 〈I〉t ∣∣ is the difference function
which computes the (absolute value of the) difference between the value I(x(u, t)) and the
average value 〈I〉t := 1

|V (t)|
∫
V (t) I dx in the region V (t), which denotes the set of points

x ∈ � visited by the curve since the beginning of the evolution, together with points inside
the initial curve (i.e. V (0) is the interior of the initial curve). If the value of the image I at
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a point x(u, t) of the curve is similar to the points x ∈ � already segmented by the curve,
then the difference d(u, t) is small and the point x(u, t) should move, which is provided by
homogeneity H(u, t) = 1 for small d(u, t). On the contrary, if the difference d(u, t) greater
than threshold d0, the definitions (5), (6) give zero expansion of the curve at the point x(u, t).

A natural definition of the blowing function could simply be B = H . However, then the
expanding term could sometimes drive the points of the curve across the edges. This is the
reason why we multiply the homogeneity function by the edge detector function E (which
is close to zero in the neighbourhood of edges).

2.5 Normal and tangential speed

The basic evolutionmodel (1) moves the points on the curve both in the normal and tangential
directions. From a continuous (analytical) point of view, only the normal componentβ = v·N
of the velocity (2) has an effect on the shape of the curve. Therefore, we could use the
evolution model ∂tx = βN. However, in the discrete setting, it is convenient to enrich this
model with a suitable tangential speed α which can be designed to control the distribution
of the discretisation points along the curve. This becomes crucial in numerical computations
because inappropriate positions of the points can lead to unacceptable errors. Therefore,
instead of the basic model (1), we use the model

∂tx = βN + αT, (7)

where β = v · N is the normal speed calculated from (2) as

β = βe + δk, where βe = (1 − λ
)
B − λ∇E · N (8)

is the so-called external normal speed.
The tangential speed α is constructed to achieve a uniform distribution of the points in

the discrete setting. We follow the approach from Mikula and Ševčovič (2004). The length

of the curve segment between the points x(û, t) and x(û + 
u, t) is
∫ û+
u
û g du, where

g := ‖∂ux‖. We want this length to be asymptotically (for t → ∞) same for every û (each
pair of points), since this corresponds to a uniformdistribution of grid points on the discretised
curve. However, the total length of the curve L = ∫ 1

0 g du changes during evolution, so we
have to study the relative length of the segment (with respect to the total length). For an
asymptotically uniform redistribution of points, the relative length of the segment approaches
a constant

∫ û+
u
û g du

L
→ const. for every û.

This is satisfied if g
L → c, where c > 0 is a constant. Since

∫ 1
0

g
L du = 1, we have to set

c = 1 and the condition is lim
t→∞

g
L = 1. This is fulfilled if the ratio g

L obeys a relaxation

equation

∂t

( g
L

)
=
(
1 − g

L

)
ω, (9)
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where the relaxation parameter ω > 0 controls the speed of relaxation. On the left-hand side,
we need a formula for the derivative of g and L . The first one is

∂t g = ∂t‖∂ux‖ 1.= ∂ux
‖∂ux‖ · ∂t∂ux

2.= ∂sx · ∂u(∂tx)
3.= T · ∂u(βN + αT)

2.= gT · ∂s(βN + αT) = gT · ((∂sβ)N + β∂sN + (∂sα)T + α∂sT
) 4.= −gkβ + g∂sα,

(10)

where we used:

1. Derivative of the norm ∂t‖w‖ = ∂t
√
w · w = w

‖w‖ · ∂tw.

2. Chain rule ∂
∂u = ∂s

∂u
∂
∂s = ‖∂ux‖∂s = g∂s and ∂t∂u = ∂u∂t .

3. Equation (7) and the definition of the unit tangent vector T = ∂sx.
4. Frenet–Serret formulas ∂sT = kN, ∂sN = −kT and orthonormality of the basis T, N

(i.e. T · T = 1, N · N = 1 and T · N = 0).

Integrating (10), we obtain the equation for the derivative of the curve length

∂t L =
∫ 1

0
∂t g du = −

∫ 1

0
gkβ du +

∫ 1

0
g∂sα du = −

∫ L

0
kβ ds = −L〈kβ〉, (11)

where 〈kβ〉 := 1
L

∫ L
0 kβ ds denotes the average value of kβ over the curve. In the above

calculationweusedds = ∂us du = g du and
∫ 1
0 g∂sα du = ∫ 10 ∂uα du = α(1, t)−α(0, t) =

0, which is provided by periodic boundary conditions α(1, t) = α(0, t).
The application of the quotient rule in (9) and the use of formulas (10), (11) give

∂t

( g
L

)
= (∂t g)L − g ∂t L

L2 = (−gkβ + g∂sα)L + gL〈kβ〉
L2 =

(
1 − g

L

)
ω.

After multiplication by L
g and rearrangement, we obtain the equation for the tangential speed

α

∂sα = kβ − 〈kβ〉 +
(
L

g
− 1

)
ω. (12)

To ensure a unique solution, we can simply fix the value of α in one point (e.g. α(0, t) = 0).
However, this can lead to a larger tangential motion than is needed for uniform redistribution.
Therefore, tominimise the tangentialmotion,we ensure uniqueness by requiring zero average
tangential motion 〈α〉 = 1

L

∫ L
0 α ds = 0 for each t ∈ [0, t f ], see also Ambroz et al. (2019).

2.6 Curvature regularisation

The weight δ(u, t) of the curvature regularisation term in (2) and (8) can be simply a constant
δ(u, t) = δk (usually a small number, e.g. 0.01). However, it is convenient to use a more
sophisticated setting that considers the phase of the evolution and the relative speed of the
point x(u, t)

δ(u, t) =
{

δkδloc(u, t), λ < 1, (Expansion phase)

0, λ = 1, (Attraction phase)
(13)

where the local weight δloc(u, t) is defined as follows (Fig. 6):

δloc = 3w2 − 2w3, where w(u, t) = βe(u, t)

maxu∈[0,1] βe(u, t)
.
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Fig. 6 Local weight

Fig. 7 A white wall with three plastic plates

Thus, in the expansion phase, the proposed weight δ(u, t) is a function of the relative external
normal speed w(u, t) of the point x(u, t). For slow points, we apply a small regularisation4

weight, and for fast points, we set a high regularisation.5 In the attraction phase, we turn off
curvature regularisation, which enables sharp corners of the final segmentation curve.

2.7 Multichannel segmentation

So far, we have only discussed single-channel segmentation. Now, we propose a technique
to use information from multiple channels and demonstrate it in a simple but illustrative
example in Fig. 7. There is a white wall with three plastic plates: blue, red, and white. There
are holes (NaN values, black) in Fig. 7b in parts of the planar point cloud in which there are
no point cloud points within the threshold distance from the fitting plane. Let us denote the
images corresponding to the channels R, G, B, I and D as Il , l = 1, . . . , 5, respectively, see
the left column in Fig. 8.

First, we will discuss the construction of the smoothed edge detector function E and then
the computation of the blowing function B. In the right column of Fig. 8, we can see the
edge detector functions gl(x) corresponding to the images Il computed using (3). In practice,
we can set different sensitivity parameter μl for each channel. Notice that some edges are
discovered in one edge detector gl(x) but not in another, e.g. the red plate (with (R,G,B) ≈
(1, 0, 0)) is ‘invisible’ for the R channel (because the wall is white, i.e. (R,G,B) ≈ (1, 1, 1),
see first row of Fig. 8), but it is clearly distinguished by the B channel (and vice versa for the
blue panel). The intensity edge detector (fourth row in Fig. 8) revealed multiple edges that
are not seen in the colour (R, G, B) channels6: the edge of the white plate, electrical outlets,

4 This prevents the curve to overcome an edge (on which the points should stop) by means of curvature.
5 Fast-moving parts of the curve will have a more rounded shape.
6 The colour channels can hardly distinguish white objects on a white wall.
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Fig. 8 Left column: Bitmap images Il , l = 1, . . . , 5 generated from the channels R, G, B, I, D of the point
cloud. Right column: corresponding edge detector functions gl , l = 1, . . . , 5
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light switch, and electrical box covers. These objects have different reflexivity than the wall,
and this is captured by the intensity channel which is related to the strength of the reflected
laser signal. The electrical outlets, light switch and box covers were also clearly detected by
the D channel, see the last row of Fig. 8.

A natural idea is to use the data from all available channels R, G, B, I, D (sometimes the
colour data might be missing) to construct one edge detector. Therefore, we aggregate the
edge detector functions gl(x), l = 1, . . . , 5 into a single edge detector function

g(x) =
5∏

l=1

gl(x), (14)

which contains aggregated information about all edges in all channels, see Fig. 9. Indeed,
if at a point x any (even one) of the edge detectors has a value gl(x) close to zero, then the
value g(x) will be close to zero. Moreover, if multiple channels have values close to zero at
a point x, then the resulting value g(x) will be much closer to zero. This approach is also
convenient, in the situation if multiple edge detectors agree on some mild edge, the resulting
aggregated edge will be more distinct. Finally, we smooth the edge detector function (14)
using (4) to obtain the final smoothed aggregated edge detector function E(x) and use it in
the curve segmentation.

Since the range of the edge detector function (3) is (0, 1], the aggregation (14) can be
interpreted as fuzzy logic aggregation using the product aggregation operator A : [0, 1]n →
[0, 1] defined as A(x1, . . . , xn) =∏n

i=1 xi , see, e.g. van Krieken et al. (2022). Fuzzy logic in
general is a many-valued logic in which the truth values of variables xi are real numbers from
the interval [0, 1], i.e. there is a concept of partial truth while xi = 0 represents completely
false and xi = 1 is completely true. The product is a generalisation of the AND operator
from Boolean logic: the conjunction x1 ∧ x2 with x1, x2 ∈ {0, 1} generalises to x1 · x2 for
x1, x2 ∈ [0, 1].

Now, we shall briefly discuss the aggregated blowing function B. We compute it using
(5) as in the single-channel case. However, now E is the smoothed aggregated edge detector
function described above and H is the aggregated homogeneity function computed as

H(u, t) = H1(u, t) ∧ · · · ∧ H5(u, t), (15)

where Hl(u, t) ∈ {0, 1} denotes the homogeneity function computed using (6) for the image
Il . Equation (15) guarantees that the value B(u, t) of the blowing function is nonzero only
if the difference dl(u, t) = ∣∣Il(x(u, t)) − 〈Il〉t ∣∣ is smaller than the threshold dl0 for each
channel. If dl(u, t) ≥ dl0 for some channel,7 then the blowing function (expansion term)
vanishes at the point x(u, t) of the curve. The threshold value dl0 can be set differently for
each channel. However, in this paper, we will use dl0 = 0.5 for all channels.

2.8 Inserting initial curves

At the beginning of the segmentation, we insert a small circle (or multiple circles8) into the
image. We use the radius r0 = 3h, with h denoting the pixel size (edge length). In order to
find suitable candidates for positions of the initial circles, we construct an initialisation mask
M , Fig. 10. First, we filter the smoothed edge detector EσM = GσM ∗ E , where we use the

7 Meaning the value Il (x(u, t)) is not similar to the average of Il in already segmented region V (t).
8 A reasonable number is one to several dozen.
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Fig. 9 The smoothed aggregated edge detector function E(x)

Fig. 10 Initialisation mask
computed for the wall with three
plates. White regions with value
M(x) = 1 are suitable for placing
initial curves

Gaussian filter with a higher standard deviation (e.g. σM = 2) and a larger kernel size (e.g.
7 × 7). Then, we threshold the function EσM as follows:

M(x) =
{
0, EσM (x) < 0.7 or EσM (x) = NaN,

1, otherwise.
(16)

The region where M(x) = 1 will be referred to as segmentable region �S ⊂ �. We note
that here we perform a careless filtration, which intentionally spreads NaN values to their
neighbourhood (differently from the Sect. 2.3). The centres of the initial circles are randomly
placed in the segmentable region �S (more precisely to random pixel centres in �S). The
construction of mask M prevents the insertion of circles on the edges, holes (NaN values),
and their neighbourhood.

If all curves stop evolving, we remove the segmented region V (t) of each curve from the
segmentable region by setting M(x) = 0 for all x ∈ V (t). Subsequently, we randomly add
a new circle (or multiple circles) into the segmentable region. If we insert multiple circles
(either at the beginning or during the process of segmentation), it is convenient to remove
the interior and possibly some neighbourhood of a circle from the segmentable region after
each curve insertion. This prevents the generation of intersecting or too close curves. When
a segmentation target is reached, e.g. 99 % of the initial segmentable area is segmented, we
end the segmentation process.

123



Multichannel segmentation of planar point clouds using evolving curves Page 15 of 33 332

2.9 Postprocessing: creation of the point cloud segments

When the curve segmentation is finished, the planar point cloud is divided into segments. We
take the segmented region V (t f ) of each segmentation curve and select all points in the point
cloud that lie in V (t f ). The last segment is a ‘waste after segmentation’ and corresponds to
regions of � which were not visited by any curve.

3 Numerical scheme

In this section, we discuss the numerical discretisation of our method in great detail. For the
purpose of the derivation of the numerical scheme, let us rewrite the model (7), (8) using
T = ∂sx, N = ∂sx⊥ and the Frenet–Serret formula kN = ∂sT = ∂2s x. We obtain the
following equation:

∂tx − α∂sx = δ∂2s x + βe∂sx⊥, (17)

with is actually a system of two PDEs, since x = (x1, x2) is the unknown position vector.
Equation (17) has a form of so-called intrinsic PDE. The tangential term −α∂sx represents
an intrinsic advection along the curve, with −α being the speed of the advection, and the
curvature term δ∂2s x can be regarded as an intrinsic diffusion with diffusion coefficient δ.

Now, we will discretize equation (17). First, we perform the space discretisation which
is based on the finite-volume method (Mikula et al. 2021a). Then, we present the time
discretisation both by the standard semi-implicit scheme (Ševčovič and Mikula 2001) and
semi-implicit scheme with Inflow-Implicit/Outflow-Explicit (IIOE) technique to treat the
advection term (Mikula and Ohlberger 2011; Balažovjech et al. 2012; Mikula et al. 2014).

3.1 Space discretisation

The mesh will consist of m grid points xi , i = 1, . . . ,m, where xi (t) ≈ x(ui , t), ui =
(i−1)
u and
u = 1

m . The construction of the finite volumeVi corresponding to the point xi
consists of two line segments connecting the points xi− 1

2
:= xi−1+xi

2 , xi and xi+ 1
2

:= xi+xi+1
2 ,

Fig. 11. The size of Vi is |Vi | = hi−1+hi
2 , where hi := ‖xi+1−xi‖ is the length of the segment

{xi , xi+1}. We integrate equation (17) over the finite volume Vi and obtain

∂txi

∫ x
i+ 1

2

x
i− 1

2

ds − αi

∫ x
i+ 1

2

x
i− 1

2

∂sx ds = δi

∫ x
i+ 1

2

x
i− 1

2

∂2s x ds + βe,i

∫ x
i+ 1

2

x
i− 1

2

∂sx⊥ ds,

Fig. 11 The notation on the curve mesh
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where we approximate some quantities by constants on Vi , namely ∂tx ≈ ∂txi , α ≈ αi ,
δ ≈ δi and βe ≈ βe,i . After using the Newton–Leibniz formula, we have the following:

∂txi |Vi | − αi [x]
x
i+ 1

2
x
i− 1

2
= δi [∂sx]

x
i+ 1

2
x
i− 1

2
+ βe,i

(
[x]

x
i+ 1

2
x
i− 1

2

)⊥
,

which evaluates to

∂txi
hi−1 + hi

2
− αi

(
xi+ 1

2
− xi− 1

2

)
= δi [∂sx]

x
i+ 1

2
x
i− 1

2
+ βe,i

(
xi+ 1

2
− xi− 1

2

)⊥
.

Finally, we approximate the derivative ∂sx in the midpoints xi− 1
2
, xi+ 1

2
using the finite

differences ∂sxi− 1
2

≈ xi−xi−1
hi−1

and ∂sxi+ 1
2

≈ xi+1−xi
hi

, respectively. The space discretisation
of the PDE (17) reads

hi−1 + hi
2

∂txi − αi

(
xi+1 − xi−1

2

)
= δi

(
xi+1 − xi

hi
− xi − xi−1

hi−1

)

+βe,i

(
xi+1 − xi−1

2

)⊥
, (18)

for each i = 1, . . . ,m, with x0 := xm and xm+1 := x1.

3.2 Time discretisation by semi-implicit scheme

In this paper, we show two different time discretisations. In this section, we perform the
time discretisation using a semi-implicit scheme (Ševčovič and Mikula 2001) and motivate
the need for a more sophisticated semi-implicit IIOE scheme (Mikula and Ohlberger 2011;
Balažovjech et al. 2012; Mikula et al. 2014), which is presented in the Sect. 3.3 and used
in our implementation. The motivation is given from a different point of view from those of
(Mikula and Ohlberger 2011; Mikula et al. 2014; Balažovjech et al. 2012).

We discretize the time interval [0, t f ] using discrete times tn , n = 0, . . . , nmax with t0 = 0
and tnmax = t f . Let us denote the length of the time step by τ n = tn+1− tn . The discretisation
is not necessarily uniform in time, and we usually choose a smaller τ n in the attraction phase.

We approximate the time derivative in (18) by the forward finite difference ∂txi ≈ xn+1
i −xni

τ n
,

where xni ≈ xi (tn). Then, we take the coefficients hi , αi , δi , βe,i from the n-th (old) time
step, the advection and diffusion terms are approximated implicitly, that is, we take xi from
(n + 1)-th (new) time step, and the expansion term explicitly, meaning that xi is taken from
the old time step. We obtain the following:

hni−1 + hni
2

xn+1
i − xni

τ n
− αn

i

(
xn+1
i+1 − xn+1

i−1

2

)

= δni

(
xn+1
i+1 − xn+1

i

hni
− xn+1

i − xn+1
i−1

hni−1

)

+ βn
e,i

(
xni+1 − xni−1

2

)⊥
,

which can be rearranged as

− An
i x

n+1
i−1 + Bn

i x
n+1
i − Cn

i x
n+1
i+1 = Dn

i , i = 1, . . . ,m (19)
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for n = 0, . . . , nmax − 1. We denoted

An
i := δni

hni−1
− αn

i
2 , Bn

i := hni−1+hni
2τ n + δni

(
1
hni

+ 1
hni−1

)
,

Cn
i := δni

hni
+ αn

i
2 , Dn

i := hni−1+hni
2τ n xni + βn

e,i

(
xni+1−xni−1

2

)⊥
.

(20)

The formula (19) is a system of m vector equations (2m scalar equations) with unknowns
xn+1
i , i = 1, . . . ,m. The matrix form of the system is

⎡

⎢
⎢
⎢
⎢
⎢
⎣

Bn
1 −Cn

1 0 . . . 0 −An
1−An

2 Bn
2 −Cn

2 0 . . . 0
0 −An

3 Bn
3 −Cn

3 0
...

. . .
...

−Cn
m . . . −An

m Bn
m

⎤

⎥
⎥
⎥
⎥
⎥
⎦

⎡

⎢
⎢
⎢
⎢
⎢
⎣

xn+1
1

...

xn+1
m

⎤

⎥
⎥
⎥
⎥
⎥
⎦

=

⎡

⎢
⎢
⎢
⎢
⎢
⎣

Dn
1

...

Dn
m

⎤

⎥
⎥
⎥
⎥
⎥
⎦

. (21)

It is a cyclic tridiagonal system.9 Such systems can be solved by amodifiedThomas algorithm
(also known as tridiagonal matrix algorithm) (Press et al. 2007).10 If the system matrix is
diagonally dominant, the Thomas algorithm is stable. The diagonal dominance in our case
reads |Bn

i | ≥ |An
i | + |Cn

i |, for all i = 1, . . . ,m, that is,

hni−1 + hni
2τ n

+ δni

(
1

hni
+ 1

hni−1

)

≥
∣∣∣∣∣

δni

hni−1
− αn

i

2

∣∣∣∣∣
+
∣∣∣∣
δni

hni
+ αn

i

2

∣∣∣∣ , (22)

where we cancelled the absolute value on the LHS because all quantities are nonnegative.
However, we cannot cancel it in the terms on the RHS, because αn

i ∈ R. Therefore, the con-
dition (22) is not always satisfied. We can achieve diagonal dominance with the appropriate
choice of the time step length τ n . From (22), we have the following:

τ n ≤ 1

2

hni−1 + hni∣∣∣
(

δni
hni−1

− αn
i
2

)∣∣∣+
∣∣∣
(

δni
hni

+ αn
i
2

)∣∣∣− δni

(
1
hni

+ 1
hni−1

) , (23)

which must hold for each i = 1, . . . ,m, see also Balažovjech and Mikula (2011). Therefore,
we can evaluate the RHS of (23) for each i and find the minimum that will give us the
suitable time step length τ n . Such computation of τ n slows down the evolution algorithm
and, moreover, if we obtain a very small τ n , the evolution algorithm would be even slower.
However, there is a trick (Mikula et al. 2014) which will guarantee stability without any
restriction of the time step length.

Now, we give a motivation for the trick. Let us consider the case with no tangential speed,
αn
i = 0. Then, we can cancel the absolute values also on the RHS of (22) and obtain the

condition
hni−1+hni

2τ n ≥ 0 which holds (even strictly) for any τ n , thus for zero tangential speed
the system matrix is strictly diagonally dominant. In the case of non-vanishing tangential
speed, the idea will be the same, i.e. to obtain the system matrix for which we can cancel
all absolute values in diagonal dominance condition and then cancel out all terms except
hni−1+hni

2τ n .

9 Since the subsystems for x1 and x2 coordinates are independent of each other, we can solve the subsystems
independently. If we would not treat the expansion term explicitly, we would end up with a more complicated
system with 2m by 2m matrix with 5 nonzero elements in each row.
10 The presence of the coefficients An1 andC

n
m does not allow to use the Thomas algorithm directly. However,

one can use a trick from Press et al. (2007) to obtain the standard tridiagonal matrix and then use the Thomas
algorithm.
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3.3 Time discretisation by semi-implicit IIOE scheme

In this section, we present the semi-implicit Inflow-Implicit/Outflow-Explicit (IIOE) scheme
(Mikula and Ohlberger 2011; Balažovjech et al. 2012; Mikula et al. 2014). The goal is to
obtain a diagonally dominantmatrix with no restriction on the time step length also in the case
with nonzero tangential speed. We have seen that the tangential term causes problems. We
will take a term containing αn

i implicitly (i.e. it will occur in the system matrix) only if it has
a suitable sign; otherwise, we will take it explicitly (move it to the RHS). By a ‘suitable sign’,
we mean the sign that will allow us to cancel all absolute values in the diagonal dominance
condition.

First, we rearrange the tangential term in (18) as follows:

−αi

(
xi+1 − xi−1

2

)
= 1

2
(−αi )(−xi−1) + 1

2
αi (−xi+1) + 1

2
(−αi )xi + 1

2
αixi

︸ ︷︷ ︸
0

= 1

2
(−αi )(xi − xi−1) + 1

2
αi (xi − xi+1)

= 1

2

(
bin
i− 1

2
+ bout

i− 1
2

)
(xi − xi−1) + 1

2

(
bin
i+ 1

2
+ bout

i+ 1
2

)
(xi − xi+1),

(24)

where we introduced the notations

bin
i− 1

2
:= max(−αi , 0) ≥ 0, bout

i− 1
2

:= min(−αi , 0) ≤ 0,

bin
i+ 1

2
:= max(αi , 0) ≥ 0, bout

i+ 1
2

:= min(αi , 0) ≤ 0. (25)

To clarify the notation: if the advection speed −αi is positive, we have inflow into the finite
volume Vi at the point xi− 1

2
and outflow at xi+ 1

2
, if the advection speed−αi is negative, there

is outflow at xi− 1
2
and inflow at xi+ 1

2
.

As we shall see, if the sign of αn
i corresponds to the inflow (either at the point xi− 1

2
or xi+ 1

2
), the corresponding terms have a suitable sign and allow cancellation of absolute

values in the diagonal dominance criterion. Therefore, to perform the time discretisation of
the tangential term (24), we take the Inflow terms Implicitly and Outflow terms Explicitly
(IIOE):

bin,n
i− 1

2

2

(
xn+1
i − xn+1

i−1

)
+

bout,n
i− 1

2

2

(
xni − xni−1

)+
bin,n
i+ 1

2

2

(
xn+1
i − xn+1

i+1

)
+

bout,n
i+ 1

2

2

(
xni − xni+1

)
.

The final system has the form (19), i.e.

− An
i x

n+1
i−1 + Bn

i x
n+1
i − Cn

i x
n+1
i+1 = Dn

i , i = 1, . . . ,m (26)
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for n = 0, . . . , nmax − 1. The resulting coefficients An
i , B

n
i , C

n
i , and Dn

i are

An
i := δni

hni−1
+

bin,n
i− 1

2

2
, Bn

i := hni−1 + hni
2τ n

+ δni

(
1

hni
+ 1

hni−1

)

+
bin,n
i− 1

2

2
+

bin,n
i+ 1

2

2
,

Cn
i := δni

hni
+

bin,n
i+ 1

2

2
, (27)

Dn
i := hni−1 + hni

2τ n
xni + βn

e,i

(
xni+1 − xni+1

2

)⊥
+ 1

2
bout,n
i− 1

2
(xni − xni−1) + 1

2
bout,n
i+ 1

2
(xni − xni+1).

The diagonal dominance criterion |Bn
i | ≥ |An

i | + |Cn
i |, now reads

∣
∣
∣
∣
∣
∣

hni−1 + hni
2τ n

+ δni

(
1

hni
+ 1

hni−1

)

+
bin,n
i− 1

2

2
+

bin,n
i+ 1

2

2

∣
∣
∣
∣
∣
∣
≥
∣
∣
∣
∣
∣
∣

δni

hni−1
+

bin,n
i− 1

2

2

∣
∣
∣
∣
∣
∣
+
∣
∣
∣
∣
∣
∣

δni

hni
+

bin,n
i+ 1

2

2

∣
∣
∣
∣
∣
∣
.

All terms are nonnegative, and therefore, we can cancel all absolute values and the condition

reduces to
hni−1+hni

2τ n ≥ 0. This holds for any τ n and the solution of the system (26) by the
modified Thomas algorithm is guaranteed.

Let us briefly discuss the stopping criterion for evolution. If the segmentation is finished
and the curve does not evolve, we should break the time loop even before the final nmax-th
time step is computed by (26). If a large percentage (e.g. 99 %) of the points do not move,
we switch the evolution phase from expansion to attraction (setting λn = 1) and perform 20
evolution steps in this phase. By not moving points, we naturally mean points which move
very slowly (e.g. ‖xn+1

i − xni ‖ < 0.05h) but also the points jumping back and forth between
two neighbouring pixels, which happens very often at an edge.

3.4 Discretisation of the normal and tangential speed

The normal speed is given by (8) and we approximate it at the point xni as follows:

βn
i = βn

e,i + δni k
n
i , with βn

e,i = (1 − λn
)
Bn
i − λn∇E(xni ) · Nn

i , (28)

The evaluation of δni by (13) is straightforward. The discretisation of the signed cur-
vature kni will be discussed in Sect. 3.5. The blowing function is calculated as Bn

i =
Hn
i E(xni ), with the difference dni in the calculation of Hn

i (using (6)) approximated as

dni =
∣∣∣I(xni ) − 1

|V n |
∑

p∈V n Ip

∣∣∣ where V n is the set of pixels p that approximates the region

V (tn), |V n | denotes the number of pixels in V n and Ip denotes the value of image I in the
pixel p. The edge detector function E is computed using (3), (4) in the bitmap image I and
the gradients ∇I and ∇E are approximated by central differences. The positively oriented

normal in (28) is calculated as Nn
i =

(
xni+1−xni−1

‖xni+1−xni−1‖
)⊥

.

The tangential speed is the solution of the equation (12) and we discretize it as follows.

The derivative on the LHS is approximated by the finite difference, ∂sα ≈ αn
i+1−αn

i
hni

. We

regard it as a central difference at the point xn
i+ 1

2
and, therefore, approximate the RHS at

that point. The average (integral) term is approximated by the Riemannian sum, 〈kβ〉(tn) ≈
1
Ln

∑m
j=1 k

n
j+ 1

2
βn
j+ 1

2
hnj with approximate curve length computed as Ln = ∑m

i=1 h
n
i and the

normal speed at xn
i+ 1

2
evaluated as βn

i+ 1
2

= 1
2 (β

n
i + βn

i+1). The approximation of the signed
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curvature kn
i+ 1

2
will be explained in the next section. The norm g = ‖∂ux‖ is approximated

by
‖xni+1−xni ‖


u = hni m. Putting all together, we have

αn
i+1 − αn

i

hni
= kn

i+ 1
2
βn
i+ 1

2
− 1

Ln

m∑

j=1

kn
j+ 1

2
βn
j+ 1

2
hnj +

(
Ln/m

hni
− 1

)
ω, (29)

for i = 1, . . . ,m, which is a two-diagonal system for unknown αn
i , i = 1, . . . ,m. The system

can be easily solved by setting αn
1 = 0 and successively computing αn

2 , . . . , α
n
m by

αn
i+1 = αn

i + hni

⎛

⎝kn
i+ 1

2
βn
i+ 1

2
− 1

Ln

m∑

j=1

kn
j+ 1

2
βn
j+ 1

2
hnj +

(
Ln/m

hni
− 1

)
ω

⎞

⎠ . (30)

Finally,we redefine the tangential speeds by subtracting their averageαn
i ← αn

i − 1
m

∑m
j=1 αn

j
to ensure zero average tangential motion.

3.5 Discretisation of the signed curvature

In the discretisation of the normal and tangential speeds, we need a formula for approximate
curvature at the grid points xni and at the midpoints xn

i+ 1
2
of the edges. We will discretize the

formula

k = ∂2ux · N
‖∂ux‖2 . (31)

It can be derived directly from the definition. Using the notation g = ‖∂ux‖, we have

k = ∂sT · N 1.= 1

g
∂u

∂ux
g

· N 2.= 1

g

(∂2ux)g − ∂ux
(

∂ux
g · ∂2ux

)

g2
· N

= ∂2ux − (∂2ux · T)T
g2

· N 3.= ∂2ux · N
g2

,

where we used:

1. Definition of the unit tangent vector T = ∂ux
g and the chain rule ∂s = 1

g ∂u (see 2. under
(10)).

2. Quotient rule and ∂u‖w‖ = ∂u
√
w · w = w

‖w‖ · ∂uw with w = ∂ux.

3. Since the basis {T,N} is orthonormal, we havew−(w ·T)T = (w ·N)N, wherew = ∂2ux.

To approximate the signed curvature at the grid point xni , we can use the central differences

∂ux ≈ xni+1−xni−1
2
u and ∂2ux ≈ xni−1−2xni +xni+1


u2
(see Fig. 11) which leads to the discretisation

kni = 4(xni−1 − 2xni + xni+1) · Nn
i

‖xni+1 − xni−1‖2
. (32)

At the midpoint xn
i+ 1

2
of the edge, we use the central differences ∂ux ≈ xni+1−xni


u , ∂2ux ≈
x
i+ 3

2
−2x

i+ 1
2
+x

i− 1
2


u2
(see Fig. 11) and the normal Nn

i+ 1
2

=
(
xni+1−xni

hni

)⊥
, which gives

kn
i+ 1

2
= xni−1 − xni − xni+1 + xni+2

2(hni )
3 · (xni+1 − xni )

⊥. (33)

123



Multichannel segmentation of planar point clouds using evolving curves Page 21 of 33 332

3.6 Topological changes

When dealing with curve evolution using the Lagrangian approach, one has to treat topologi-
cal changes that occur during the evolution. The evolving curve can split into multiple curves,
or several initial evolving curves can merge. The detection and treatment of the topologi-
cal changes can be highly time-consuming because the natural approach has computational
complexity O(m2), where m denotes the number of grid points (it includes computation of
pairwise distances between all grid points). However, we adopt the method fromMikula and
Urbán (2012); Balažovjech et al. (2012); Ambroz et al. (2019), which has complexity only
O(m). This makes the Lagrangian method for curve evolution efficient and applicable in
complex situations.

The basic idea of Mikula and Urbán (2012); Balažovjech et al. (2012); Ambroz et al.
(2019) is to construct a background mesh (we use the mesh described in Sect. 2.1). To detect
splitting, wewalk through all curve grid points and label the underlying cells by the grid point
numbers. If the current i-th point belongs to a cell already labelled by the j-th point and the
difference i − j is large enough (e.g. i − j > 3), the splitting is detected. Since we pass the
curve only once, the computational complexity is O(m). The merging detection is similar,
we walk through the points of all curves and label underlying cells by the curve number. If the
current point belongs to the cell already labelled by a point of another curve, the merging is
detected. The most complete explanation of the algorithms (including pseudocodes) is given
in Ambroz et al. (2019).

For the reliable topological changes detection and treatment, it is required to maintain the
mean curve segment length close to a specific constant hd called desired curve segment length
(desired distance between neighbouring grid points).We use setting hd = h/2, where h is the
pixel size. In our method, every curve is asymptotically uniformly discretised (see Sect. 2.5),
i.e. all segment lengths are close to their mean value. However, the mean value can differ
between different curves, and it increases for expanding curves and decreases for shrinking
ones. Such difference is undesirable, especially in merging of curves, so we maintain the
mean curve segment length close to hd for all curves by adding or removing points, after
which the asymptotically uniform redistribution is quickly obtained due to the tangential
velocity α. The detailed algorithm for adding and removing grid points is in Ambroz et al.
(2019). We note that small curves with less than m = 15 grid points are deleted.

The merging detection in this paper is slightly different. If two evolving curves numbered
c1 and c2 get close to each other, we have to decide if they are segmenting regions with similar
properties (curves should merge) or different properties (curves should not merge). First, let
us discuss the single-channel case. We compute the average values 〈I〉tc1 and 〈I〉tc2 of image
I in the regions Vc1(t), Vc2(t) already segmented by the curves c1 and c2, respectively, see
definitions in the Sect. 2.4. If the difference dc1,c2(t) := |〈I〉tc1 − 〈I〉tc2 | is smaller than the
threshold value d0, merging is detected.

For the correct topological changes detection, we use the time step length τ n < h/βn
e,max,

where βn
e,max := maxi∈{1,...,m} βn

e,i denotes the maximal external normal speed in the n-th
time step. Small time step length is crucial because it prevents the points of the curve from
skipping a pixel one time step (and missing possible topological change).

In the case of multichannel segmentation, we compute the difference dlc1,c2(t) for each
channel Il , l = 1, . . . , 5 and compare it with the corresponding threshold dl0. If d

l
c1,c2(t) < dl0

for all l, then the curves c1 and c2 segment the regions Vc1(t), Vc2(t)with similar properties (in
all channels) and the merging is detected. If dlc1,c2(t) ≥ dl0 for some l, merging is forbidden.
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3.7 Summary of the entire algorithm

Now, we give a summary of the algorithm for the multichannel curve segmentation of the
planar point clouds. The algorithm consists of the followingmain steps and is fully automatic.

1. Preprocessing:

(a) Computation of the images Il (for all channels) representing the input planar point
cloud according to Sect. 2.1.

(b) Computation of the edge detector functions gl and smoothed aggregated edge detector
function E as described in the Sects. 2.3 and 2.7.

(c) Construction of the initialisation mask M as explained in the Sect. 2.8 and insertion
of the initial curve(s).

2. Evolution: The main evolution cycle through n = 1, . . . , nmax.

(a) Detection and treatment of the topological changes according to the Sect. 3.6 and the
paper (Ambroz et al. 2019).
(i) Splitting (for each curve).
(ii) Deleting small curves.
(iii) Merging.

(b) Adding and removing the grid points on all curves as described in Ambroz et al.
(2019). (This is performed only in the expansion phase and only in every fifth step.)

(c) For all (unstopped) curves:
(i) Calculation of the necessary geometric quantities as described in the Sect. 3,

computation of the blowing function B, external normal speed βe and tangential
speed α, curvature regularisation weights δ according to Sect. 3.4.

(ii) Construction of the system matrix coefficients (27) and solution of the system
(26).

(iii) Check the stopping criterion discussed at the end of Sect. 3.3 and possibly switch
to the attraction phase (λ = 1) or stop the curve.

(d) Check if all curves are stopped. If so, update the initialisation mask M and check
if the segmentation target is reached (see Sect. 2.8). If not, add a new curve(s) and
continue in the segmentation process.

3. Postprocessing: Create the final segments of the point cloud as explained in Sect. 2.9.

4 Numerical experiments

In this section, we test our curve segmentation methodology in several numerical experi-
ments. Data acquisition was carried out with the Trimble TX5 scanner with a priori distance
measurement error ± 2mm at 10m (defined by the producer). In all experiments, we set the
desired curve segment length to h/2 (see Sect. 3.6), where h is the pixel size.We use adaptive
time step length. For each evolving curve, we set τ n = 0.3 h/βn

e,max in the expansion phase
(λn < 1) and smaller τ n = 0.1 h/βn

e,max in the attraction phase (λn = 1). The Gaussian
filter variance was set to σ = 0.5. The global weight of the curvature regularisation was
set to δk = 0.01, the tangential velocity relaxation parameter to ω = 100, the threshold
d0 = 0.5 for all channels and the initial weight between the attraction and the expansion term
to λ0 = 0.1.

123



Multichannel segmentation of planar point clouds using evolving curves Page 23 of 33 332

n = 0, 100, 200, . . . , 500 n = 800

n = 1400 n = 1700

n = 3100 n = 4000

n = 4400 n = 4800

n = 5100 n = 6700

Fig. 12 Curve segmentation of the wall with three plastic plates, visualisation of the selected time steps

In the first experiment, we perform the curve segmentation of the planar point cloud
corresponding to the white wall with three plastic plates depicted in Fig. 7. The point cloud
consists of approximately 1.2 million points, its resolution is about 3 × 3 mm and the pixel
size was set to h = 12 mm. The images and edge detectors for individual channels were
discussed in the Sect. 2.7 (see Fig. 8). The smoothed aggregated edge detector is visualised in
Fig. 9. Several steps of segmentation are shown in Fig. 12. The curves coloured in magenta
are stopped. We start the segmentation with a single curve, and when all curves stop, we
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Fig. 13 The final segments of the planar point cloud

always insert only one new curve.11 The evolution up to the time step n = 500 is shown in
the upper left of Fig. 12. The curve meets the first edges around the time step n = 400 and
the edge detector correctly prevents the curve from crossing the edge. In the next subfigures,
we also colour already segmented region V n . In the time step n = 1700, we encounter a
surprising observation: the curve stops on the white plastic plate, which is not visible in the
RGB image, but thanks to the intensity channel (fourth row of Fig. 8), it is clearly captured
in the aggregated edge detector, Fig. 9. The right part of the curve is enclosing the electrical
box cover and the curve splitting is going to occur. In the time step n = 4000, we see that the
first segmentation curve correctly segmented the wall and excluded unwanted objects: the
plates, but also the electrical elements (e.g. electrical outlets in the lower part of the wall).
Another curve (green) was inserted onto the blue plate. It correctly segmented the plate and
did not merge with the previous curve (see n = 4400). After it stopped, a new (black) curve
was inserted onto the red plate. The last subfigure of Fig. 12 shows the segmentation just
before the termination. After the dark green curve on the left stops, the segmentation target
is reached and no more curves are inserted. The final segments of the planar point cloud
are visualised in Fig. 13. The magenta points represent the waste after segmentation, i.e. the
regions that were not segmented by any of the curves.

In the second experiment, we segment a wall from the interior of P.O. Hviezdoslav Theatre
in Bratislava, Fig. 14. The planar point cloud has roughly 0.4 million points with an average
resolution of about 6 × 6 mm. Pixel size was set to h = 18 mm. We can see two pictures
on the wall, a sink with facing in the left corner. The hole above the facing corresponds to a
mirror (from which the laser beam did not reflect directly to the scanner). The representative
images Il and the corresponding edge detectors gl are shown in Fig. 15. We see the edges of
the pictures in all channels. Some edges of these pictures are not complete in each channel,
however, in the smoothed aggregated edge detector, Fig. 16, we see distinct and complete
edges (mainly due to the intensity channel). The edge around the facing is mild in all edge
detectors, but since the edge is present in multiple edge detectors and the aggregation is done
by multiplication (14), the aggregated edge is strong in Fig. 16, lower left part. An interesting
situation is in the top left area of the wall strongly illuminated by the lamp. There is a mild
edge in all colour channels, but not precisely in the same region. As a result, the aggregated
edge in Fig. 16 is mild and diffuse.

11 This is just to keep the experiment simple. The segmentation would be much faster if we would start with
multiple curves and insert multiple curves during the segmentation.
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Fig. 14 A wall in P.O. Hviezdoslav Theatre in Bratislava

Several steps of the segmentation process are shown in Fig. 17. In this experiment, we
start with four random initial curves. In the time steps n = 300 and n = 352, we see that
three of them merged into one. However, as we see in the time step n = 600, the green and
blue curves did not merge, which is correct. The evolution stopped in the time step n = 924.
There are twomain segments (the first corresponding to the wall and the second to the facing)
and the waste after segmentation, see Fig. 18. The curve segmentation correctly excluded
pictures, electrical outlets, and switch (above the facing). Interestingly, the blue curve did
not reach the facing edge in the area to the left of the mirror. The reason is that the wall is
crooked (not flat) in this region, which is slightly captured by the edge detector corresponding
to the D channel (last row of Fig. 15). The resulting edge is mild, so this is not the reason for
stopping the curve. The curve stopped because the homogeneity function (6) is zero in this
region due to the large D = |x3| compared to the average in the already segmented region
V n . The detail of this region is shown in Fig. 19.

The last experiment is the segmentation of computer classroomB306 at the Faculty ofCivil
Engineering of the Slovak University of Technology in Bratislava. The input point cloud with
approximately 10million points and an average resolution of about 2×2mm is in Fig. 20. The
ceiling and onewall (with windows) were removed from the original data in order tomake the
images more readable. The point cloud was scanned from four scanner positions. First, we
performed primary segmentation to find planar point clouds. Secondary segmentation was
performed only for vertical planes corresponding to the largest walls visualised in Fig. 21,
left column: front wall with twowhiteboards, the right one is partially covered by a projection
screen; Side wall consisting of two planes, the first with a door and the second with a long
wall hanger and alcove with a sink; and finally, the back wall. We also added a normal filter to
remove points whose local normals deviate from the normal of the fitting plane by more than
30 degrees (coloured blue). The red points form the resulting planar point clouds. In the right
column of Fig. 21, we can see corresponding smoothed edge detector functions. Note that
some unwanted ‘artificial’ edges are also present, e.g. long inclined edge on the back wall
caused by uneven illumination by natural light, edges on the whiteboard of the same origin,
or edges due to merging of multiple scans (mainly on the front wall and bottom of the back
wall). The final segments are shown in Fig. 22. Dark grey points represent waste from the
primary segmentation (points that do not belong to any of the segmented planes). Light grey
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Fig. 15 Left column: Bitmap images generated from the channels R, G, B, I, D of the point cloud. Right
column: Corresponding edge detector functions
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Fig. 16 The smoothed aggregated edge detector function E(x)

n = 0 n = 100

n = 300 n = 352

n = 600 n = 924

Fig. 17 Curve segmentation of the wall in P.O. Hviezdoslav Theatre in Bratislava
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Fig. 18 The final segments of the planar point cloud

Fig. 19 Detail of crooked wall to
the left of the mirror

points form the waste of the secondary segmentation.12 We can see that on the front wall,
our curve segmentation successfully found segments representing the wall, whiteboards, and
projection screen, removed unwanted objects, such as electrical elements, wall hanger on the
side wall, divided the side wall into top and bottom segments (corresponding to different wall
colours). In the upper part of the door plane, we see separate segments due to a cable cover
(which is barely visible in RGB channels, Fig. 20, but considerably filtered out by the normal
filter, see the second row of Fig. 21). Some regions are not segmented as desired, e.g. the
segment representing the darker part of the wall on the left from the door, Fig. 20, is merged
with the upper segment, see the dark red segment in Fig. 22. The segmentation curve leaked
through the weak part of the edge. Also, the situation on the back wall is strongly influenced
by the edge caused by light and the low density of the point cloud in the part closer to us,
see lower part of Fig. 20 and last row of Fig. 21. However, these are situations that cannot be
avoided when working with real data. Therefore, we conclude that we are generally satisfied
with the result of the segmentation.

12 In the case of non-vertical planes, e.g. floor and table tops plane, whole planar point clouds are light grey
since the secondary segmentation was not performed.
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Fig. 20 Point cloud of the classroom B306 at the Faculty of Civil Engineering of the Slovak University of
Technology in Bratislava (ceiling and one wall removed)

5 Conclusion

In this paper, we presented a method for multichannel segmentation of planar point clouds
using evolving curves. The planar point clouds were represented by a set of images, one for
each available channel (colour and intensity channels and distance from the fitting plane).
We discussed details of the mathematical model of the Lagrangian curve evolution, construc-
tion of the edge detectors using all channels, the design of the normal velocity driving the
evolution. The model was equipped with a suitable tangential motion to improve the quality
of the mesh. We derived the numerical discretisation of the mathematical model and used
the fast O(n) approach to treat topological changes. The method was successfully tested on
multiple examples of real data.

The method could be used to automate the processing of point clouds, especially in
the area of as-built documentation and geometry verification of building structures. Further
development of the method can include automatic tuning of the model parameters; correction
of the rough TLS intensity channel (Höfle and Pfeifer 2007; Xu et al. 2017; Bolkas 2019);
usage of other channels, e.g. a derived channel capturing point cloud curvature; examination
of other possibilities for aggregation of the edge detector functions (e.g. choose different fuzzy
logic aggregation operators); or automatic computation of threshold values dl0, possibly using
information from histogram of the segmented image. The overall segmentation methodology
could incorporate the segmentation of other geometric shapes, such as cylinders or rounded
walls.
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Fig. 21 Left column: primary segmentation of the point cloud. Red points belong to the resulting planar point
clouds and the blue points were rejected by the normal filter. Right column: corresponding smoothed edge
detector functions
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Fig. 22 Final segments of the point cloud after segmentation of the largest walls
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