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Natura 2000 is a network of protected areas covering Europe’s most valuable and threatened species 
and habitats. Recently, biota belonging to these networks have been threatened by both climate 
change and various human impacts. Regular monitoring is needed to ensure effective protection and 
proper management measures in these sites and habitats, but conventional field approaches are 
often time-consuming and inaccurate. New approaches and studies with different focuses and results 
are being developed. Our approach includes point data from field research and phytosociological 
databases as starting points for automatic segmentation, which has been developed just recently as 
a novel method that could help to connect ground-based and remote sensing data. Our case study 
is located in Central Slovakia, in the mountains around the village of Čierny Balog. The main aim 
of our case study is to apply advanced  remote sensing techniques to map the area and condition 
of vegetation units. We focus on forest habitats belonging mainly to the Natura 2000 network. We 
concentrated on the verification of the possibilities of differentiation of various habitats using only 
multispectral Sentinel-2 satellite data. Our software NaturaSat created by our team was used to reach 
our objectives. After collecting data in the field using phytosociological approach and segmenting the 
explored areas in the program NaturaSat, spectral characteristics were calculated within identified 
habitats using software tools, which were subsequently processed and tested statistically. We 
obtained significant differences between forest habitat types. Also, segmentation accuracy was tested 
by comparing closed planar curves of ground based filed data and software results. This provided 
promising results and validation of the methods used. The results of this study have the potential to 
be used in a wider area to map the occurrence and quality of Natura 2000 habitats.

Remote sensing (RS) is one of the most important tools in ecology and conservation for the effective monitoring 
of ecosystems in space and  time1. Satellite remote sensing of ecosystem functions could offer many opportunities 
to advance environmental and nature protection, test emerging theories, and unveil the processes that shape the 
impacts of anthropogenic threats on biodiversity more  rapidly2. Using satellite images for monitoring habitats 
and biota dynamics has been highlighted in many research activities. There is a large potential that is already at 
the beginning of this effort depending on the technical background (either hardware or software). Biodiversity 
conservation based on the conservation of seminatural and natural habitats has been one of the objectives of 
the European Biodiversity Strategy to  20203. Since the Convention on Biological Diversity and the European 
Union Biodiversity Strategy to 2030 set ambitious targets for increasing the extent of protected  areas4, developing 
reliable methods substituting expert knowledge and fieldwork is urgent. There are of course many challenges in 
such methodologies, including mapping ecotone transitions between vegetation types and/or low resolution of 
available satellite images. Remote sensing habitat monitoring can indicate core areas that are essential for key 
species and biodiversity patterns and transitional zones that are important for ecosystem  processes5. Digital 
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mapping techniques provide accurate maps that can also be used in climate models to assess the sensitivity and 
feedback to future climate  change6. Mapping landscape-level heterogeneity of microclimate advances our abil-
ity to study how organisms respond to climate variation, which has important implications for understanding 
climate-change impacts on biodiversity and  ecosystems7. The accurate and rapid extraction of vegetation cover 
information from an image enables the monitoring of vegetation changes over time, which is of great significance 
for protecting biodiversity, maintaining social stability, and promoting economic  development8.

Land cover mapping requires a typology or classification by which the more-or-less continuous variations 
in element composition are sorted into discrete habitat or vegetation  units9. Based on vegetation variability, 
differences in species composition that arise from a different environment and competition strategy between 
individual species can be further structured due to variation in vegetation phenology. It is a commonly used 
indicator signalling vegetation responses to global  changes10. When comparing field expert-based approaches, 
there are individual inconsistencies despite using the same mapping systems, materials, and methods. The dif-
ferences are usually more enormous at lower hierarchical levels in the mapping systems and increase strongly 
with system  complexity9; therefore, a proper resolution is needed at the highest possible level depending on the 
intended goals. In contrast, many remote sensing images (aerial or satellite) of the target vegetation types can 
have certain disadvantages because of their potentially high cost, long cycles, and low  resolution8.

From the previously mentioned examples, satellite remote sensing data could be used for mapping broader 
units, e.g., riparian vegetation in  general11 or broadleaved deciduous forests versus coniferous  forests12,13. The 
level of a single habitat or plant community on the alliance level could be reached by unmanned aerial vehicles 
(UAVs) or airborne laser scanning (ALS) photographs in the case of insufficient resolution of satellite images. The 
disadvantage of these high-resolution methods is their limitation to a small area, high cost, and usually one-time 
sampling without repetitions. Sentinel-2 satellite images cover large areas with a high revisit  frequency14. The 
recognition of single habitats using Sentinel-2 data could give us a great opportunity to monitor Natura 2000 
habitats on the European level and describe their spatiotemporal dynamics.

In Europe, there is an old tradition of collecting vegetation data that have recently been stored in the European 
Vegetation Archive database (EVA)15. These data contain point information about species composition and stand 
structure and can be directly transformed into habitat  type16. The majority of European countries have their own 
national databases, e.g., the Slovak Vegetation  Database17, that were created to collect vegetation data of their 
territories and to be as representative as possible. In lists of habitats and vegetation  units18–20, maps of Natura 
2000 habitat occurrence are presented as a square grid with information about habitat presence/absence derived 
from phytosociological relevés coordinates. However, these phytosociological relevés have a large potential to 
serve as a base for exact habitat mapping if they are transformed from point to spatial data using, e.g., remote 
sensing techniques.

Phenological aspects can play an important role in the recognition of land cover types and specific vegeta-
tion through remote sensing and can make their identification and classification more accurate. Several studies 
have been devoted to the added value of multiseasonal images, which capture different periods of the growing 
season, to characterize land cover  types21–26. Dymond,  Mladenoff21 used phenological information in satellite 
images and, as reported, together with vegetation indices, improved the classification of northern temperate 
forests. Phenology-based classification has also been used in several studies to map and monitor monocultures, 
e.g., rubber  plantations27–30.

The satellite image segmentation methods used in the present study are one such  tool31–33. They work based on 
evolving planar curves and are efficient and robust segmentation tools when an “initial estimate” of the desired 
area is available. In the case of Natura 2000 habitats, the pointwise estimate of habitat occurrence is available 
from vegetation databases or field surveys.

The aims of the present study are (i) to show the feasibility of recognizing Natura 2000 forest habitats based on 
optical information from Sentinel-2 satellite data; (ii) to find a suitable period of the year for habitat recognition 
based on phenological aspects; and (iii) to test the feasibility of using phytosociological relevés with coordinates 
as starting points for semiautomatic and automatic segmentation to find the exact habitat area.

Methods
Study area. The case study area is situated in the vicinity of the village of Čierny Balog in central Slovakia at 
an altitude of 559–1338 m a.s.l. (Fig. 1).

Čierny Balog is located in the Slovenské Rudohorie Mountains in the area of the Vepor Mountains and 
Balocké Vrchy Mountains formed by crystalline and Mesozoic rocks of the Veporidy geological  unit34. The 
cadastral district of Čierny Balog corresponds with the water catchment area of Čierny Hron. Most of the area is 
moderately cold and very wet (temperature of 12 °C to 16 °C in July), and the surroundings of Klenovský Vepor 
(the highest part of the study area) are characterized by a cold mountainous and very humid climate (with a 
temperature of 10 °C to 12 °C)35.

The area was affected by two colonization phases (Wallachian since the fifteenth century and German since the 
sixteenth century), when parts of the ancient natural forests were cut  down36. Later, wood processing and pasto-
ralism were the main activities that contributed to the gradual transformation and deforestation of the study area.

According to the Habitats  Directive38 and habitat classification of the Natura 2000 system in Slovakia (cf 
19.), the study area is characterized mainly by forest habitats: 9130 Asperulo-Fagetum beech forests; 9180 Tilio-
Acerion forests of slopes, screes, and ravines; and 9410 Acidophilous Picea forests of the montane to alpine levels 
(Vaccinio-Piceetea) (spruce forests) and planted spruce forest (secondary spruce forests).

Data sampling. Phytosociological approach and GPS tracking. Together, 65 phytosociological relevés were 
sampled during field research in the summer of 2020 and 2021, proportionally covering individual habitat types 
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in the study area. Each relevé was sampled on a 400 square metre plot using the Zürich–Montpellier School 
standard  methodology39–41. The quantitative ratio of relevés of target habitats is represented by their presence in 
the region. Relevés were stored in the TURBOVEG  database42 and processed in the JUICE  programme43. The 
nomenclature of taxa follows Marhold et al.44. The nomenclature of syntaxa follows Jarolímek et al.18, and habitat 
names are under the Habitats Directive, formally known as Council Directive 92/43/EEC on the conservation of 
natural habitats and of wild fauna and  flora38.

During the 2020 and 2021 vegetation seasons, the boundaries of 24 selected habitats (8 segments of 9130 
Asperulo-Fagetum beech forests; 9180 Tilio-Acerion forests of slopes, screes, and ravines; and planted spruce 
forest), with a total area of 70.26 ha, were tracked by a GPS device, Garmin Oregon 600t. For this case study, 
forest segments with an easier definition of boundaries (which are surrounded by a different type of habitat) 
and areas with more complex boundaries (which border on the same or similar type of forest) were chosen. The 
compact stands of the native spruce forests (habitat 9410) were concentrated only in one locality, which did not 
allow us to sample an appropriate amount of data. Moreover, the occurrence of 9410 habitat in the study area was 
on its southern border of distribution, and habitat did not represent typical characteristics there. In the case of 
problems in the field (loss of GPS signal or overly steep impassable rocky slopes), GPS tracks were additionally 
corrected in Google Earth Pro software.

Segmentation methods. NaturaSat software integrates various image-processing techniques together with vege-
tation data  management31. The software allows a user to focus the Sentinel-2 image to the selected habitat occur-
rence indicating point and then allows a user to perform either  semiautomatic32 or  automatic33 segmentation 
by evolving the initial curve, either in the form of a straight line or automatically chosen image isoline (semiau-
tomatic segmentation) or in the form of a small circle (or circles) or a small square (automatic segmentation). 
The segmentation curve is evolved by a general mathematical model including homogeneity and edge detector 
driving forces and curvature  influence32,33,45.

Semiautomatic segmentation requires user interaction. The user clicks the mouse at some correctly chosen 
point on the habitat boundary and drags the mouse along the expected habitat boundary—the algorithm always 
connects the first clicked point with the last mouse position, constructs the initial curve between them and adjusts 
this line to the habitat border in real time by using the numerical  scheme32,45. The overall segmentation results 
are given by an interconnection of several open curve segments. The quality of these segments is controlled by 
the user and governed by the mathematical model and its parameters.

The automatic segmentation software tool is based on a similar principle but evolves closed planar curves 
in the Lagrangian formulation. A detailed description of the mathematical model, numerical implementation, 
and numerical experiments showing the behaviour of the developed method were presented by Mikula et al.32,33. 
The automatic segmentation could start from the user-defined initial closed curve or from the phytosociological 
relevé representing the current habitat or plant community.

In the present study, both types of segmentation methods were used to find a homogeneous area of approxi-
mately 65 phytosociological relevé that represents analysed habitats (with an area of 331.53 ha of polygons 

Figure 1.  Localization of the case study area (created in ArcGIS ArcMap 10.4. Ortofotomozaika SR – ÚGKK 
ZBGIS 2021 https:// zbgis ws. skgeo desy. sk/ zbgis_ ortof oto_ wmts/ servi ce. svc/ get; data source 37).

https://zbgisws.skgeodesy.sk/zbgis_ortofoto_wmts/service.svc/get


4

Vol:.(1234567890)

Scientific Reports |        (2022) 12:18375  | https://doi.org/10.1038/s41598-022-23066-3

www.nature.com/scientificreports/

obtained semiautomatically and 306.53 ha obtained automatically). These 65 areas were supplemented by other 
segments based on field research and detailed knowledge of local forest vegetation and data from  LGIS46. A total 
of 107 areas were segmented (with an area of 586.51 ha of polygons obtained semiautomatically), which were 
divided into four groups according to habitat type resulting from the species composition of phytosociological 
relevés and expert knowledge.

The automatic segmentation is influenced by the expanding term, including the homogeneity detector func-
tion. The values of these parameters could give different segmentation results in the case of different habitats. 
Usually, monodominant forests require a smaller min–max range of the homogeneity function in comparison 
with mixed forests. Tuning these parameters for the studied habitats was one of the aims of the present research.

Computing of the multispectral characteristics. NaturaSat tools allow us to compute spectral characteristics 
inside segmented regions. The characteristics include mean, minimal, and maximal intensity values and stand-
ard deviations of all Sentinel-2 optical bands inside each forest segment. The set of computed values in all optical 
bands creates a habitat spectral characteristic that could be used for its identification. The Sentinel-2 satellite 
records 17 spectral bands from which 14 were used in our analyses for vegetation monitoring (AOT-Aero-
sol Optical Thickness, B01-Aerosol detection, B02-Blue, B03-Green, B04-Red, B08-Near infrared, B09-Water 
vapour, B11 and B12-Snow/ice/cloud discrimination, and WVP-Scene-average Water Vapour map and Veg-
etation classification band values B05, B06, B07 and B8A). The CLD-cloud map, SCL-Scene classification and 
SNW-Snow map were omitted. Each habitat is thus characterized by 56 spectral values for each date. The spatial 
resolution of Sentinel-2 images is up to 10 m (spatial resolution of bands B02, B03, B04, and B08 is 10 m, of 
bands B05, B06, B07, B8a, B11, B12, AOT, and WVP it is 20 m and of bands B01, B09 and B10 it is 60 m).

When addressing forest habitats, it sometimes occurs that native forests—priority Natura 2000 habitats and 
planted forests (e.g., spruce in habitats 9410 and planted spruce forests)—are formed by the same tree species; 
thus, the values of optical bands are similar. In planted forests, in contrast with native forests, there are trees 
of the same age that are often planted in rows. Therefore, in addition to optical data, characteristics express-
ing information about the structure can be used to recognize them—we used Relative High Laplacian (RHL) 
 values31. This RLH classifier was developed and implemented in NaturaSat software to detect structural differ-
ences and capture the heterogeneity (diversity) of data. The RHL value is given by the finite difference numerical 
approximation of the Laplace operator applied to the intensity of the smoothed image in each pixel and then 
by calculating the ratio of high Laplacian pixels and all pixels within the segmented region. The high Laplacian 
pixels are defined relative to the maximum MAX of the Laplacian in the segmented region. We denoted by RHL 
N% the results of the RHL classifier for the segmented region when the pixel was considered to have the high 
Laplacian if its Laplacian was greater than N% of MAX. Because the high Laplace operator is achieved at the 
points with the highest curvature of the graph of image intensity, the RHL represents the diversity of the forest 
observed in the optical bands.

In addition to testing the distinguishability of all four habitat groups, we were interested in which period of 
the year differences in spectral characteristics of habitats were the most significant. The characteristics were com-
puted for datasets recorded in different parts of the year: spring—May 13, 2018 (acquisition time 9:50:30), and 
April 20, 2019 (9:40:39); summer—July 4, 2019 (9:40:41), August 31, 2019 (9:50:39), August 30, 2020 (9:50:31), 
and September 9, 2021 (9:50:29); autumn—October 15, 2018 (9:50:29), November 14, 2018 (9:52:49), October 
15, 2019 (9:50:31), and October 17, 2019 (9:40:29).

Data analyses. Cluster analyses and PERMANOVA test. To divide the relevés into habitat types, we used 
the cluster analysis (divisive clustering methods) computed by the TWINSPAN program  tools47 implemented in 
JUICE 7.1  software43 with three pseudo species cut levels (at cover values 0, 5 and 25). The relevance of division 
was tested using PERMANOVA to confirm the significant differences in the species composition of the identi-
fied habitats.

The spectral values were processed and prepared for testing by PERMANOVAs implemented in R  software48 
(vegan package) with Euclidean distance and Bray–Curtis indices and 999,999 permutations. All four forest 
habitats classified by Twinspan were first analysed together. By comparing all optical bands, we also analysed 
when was the best season to distinguish the planted spruce forest from habitat 9410 (native spruce forest). In 
addition, we analysed which band values and combinations were most appropriate and which classification 
results were most significant. Similarly, we examined the distinguishability of the two mixed habitats, i.e., 9130 
Asperulo-Fagetum beech forests and 9180 Tilio-Acerion forests of slopes, screes, and ravines.

The RHL values were prepared for testing by ANOVAs and compared by a t test implemented in R  software48 
and visualized using boxplot graphs.

Hausdorff distance. The results of semiautomatic and fully automatic segmentations were compared visually 
and quantitatively with the GPS tracks obtained in the field. For the quantitative comparison of two polygons 
represented by closed planar curves, the classical (maximal) Hausdorff  distance49 and the mean Hausdorff dis-
tance were used. Both are general tools for computing the distance of curves, surfaces, and even more com-
plicated geometrical continuous or discrete  objects32,33. These distances were computed using the NaturaSat 
software tools for sets of semiautomatic segmentations versus GPS tracks and automatic segmentations versus 
GPS tracks.

The process of our research approach is shown in the Fig. 2.
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Results
Habitat classification. Four different forest vegetation types (habitats) were distinguished in the case study 
area. From these, three of them represent Natura 2000 habitats (9130, 9180, and 9410), and one denotes planted 
spruce forests (secondary spruce forests) (Table 1).

Cluster analyses showed close species relationships between coniferous and mixed forests that were divided in 
the first step based on the highest level of dissimilarity. Further division resulted in the creation of four clusters 
representing other types. The relevancy of division was confirmed by PERMANOVAs (Fig. 3). Habitats were 
classified according to the classification of the Natura 2000 system in Slovakia (cf 19.). A planted spruce forest is 

Figure 2.  Flow chart of our research solution process.

Table 1.  List of identified habitats according to the classification of the Natura 2000 system and plots that 
represent them in our analyses. Relevés were proportionally recorded based on the area of each habitat type in 
the locality.

Habitat no. Habitat Dominant tree species Number of relevés/plots

9130 Asperulo-Fagetum beech forests Fagus sylvatica, Acer pseudoplatanus, Abies alba 13

9180 Tilio-Acerion forests of slopes, screes, and ravines Fagus sylvatica, Acer pseudoplatanus, Acer platanoides, Fraxinus 
excelsior, Ulmus glabra 29

9410 Acidophilous Picea forests of the montane to alpine levels 
(Vaccinio-Piceetea) (spruce forests) Picea abies, Sorbus aucuparia 7

– Planted spruce forest (secondary spruce forests) Picea abies 16

Figure 3.  A significant differentiation of grouped relevés based on species composition showing relationships 
between target habitats. Abbreviations: s – 9410 – Acidophilous Picea forests of the montane to alpine levels, n – 
planted spruce forest, m – 9130 – Asperulo-Fagetum beech forests, and r – 9180 – Tilio-Acerion forests of slopes, 
screes, and ravines.
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a nonnative habitat (although the same spruce species was planted as in natural spruce forests), and therefore, 
we did not code it. We used this distribution of relevés as a basis for further analyses. Part of the case study area 
with segments of target forest habitats is presented in Fig. 4.

The tree layer of mixed forests (9130, 9180) is dominated by Fagus sylvatica, Acer pseudoplatanus, Acer 
platanoides, Fraxinus excelsior, and Abies alba. Coniferous forests are dominated by Picea abies in 9410 with 
an admixture of Sorbus aucuparia. Mixed forests on steeper slopes and screes (9180) are species rich. They are 
floristically well differentiated from the other forests by the tree (sub)dominant species Acer platanoides, Fraxi-
nus excelsior, and Ulmus glabra and numerous herbs of the order Fagetalia, such as Actaea spicata, Dentaria 
bulbifera, D. enneaphyllos, Galium odoratum, Mercurialis perennis, and Pulmonaria officinalis, together with 
the nitrophilous and nutrient-demanding species Aegopodium podagraria, Geranium robertianum, Impatiens 
noli-tangere, Lunaria rediviva, Stachys sylvatica, and Urtica dioica. In mixed Fagus sylvatica-Abies alba forests 
(9130), all these species are absent (they are negatively differentiated). A higher frequency and dominance of 
Abies alba is a typical feature of these forests. Spruce forests differ from mixed ones by several acidophilous 
species:  Avenella flexuosa, Hieracium murorum, and Vaccinium myrtillus. Native spruce forests (9410) are typi-
cal of numerous mountain to (sub)alpine plants (e.g., Calamagrostis villosa, Homogyne alpina), some of which 
are diagnostic species of the tall herb vegetation of nutrient rich and moistened habitats of the class Mulgedio-
Aconitetea (Adenostyles alliariae, Cicerbita alpina, Dryopteris dilatata, Gentiana asclepiadea, Luzula sylvatica, 
and Ranunculus platanifolius). In the spruce plantations, most of these species are absent. On the other hand, 
the stands are enriched by Asarum europaeum, Dentaria bulbifera, Mercurialis perennis, and Viola reichenbachi-
ana—typical species of the order Fagetalia surviving from previous native broad-leaved or mixed forests. Forest 
clearing species of the class Epilobietea angustifolii, such as Corylus avellana, Digitalis grandiflora, Fragaria vesca, 
Hypericum maculatum, and Rubus hirtus, represent succession residuals after cutting original forests. Picea abies 
frequently dominates in the herb layer.

Within the NaturaSat software environment, we were able to identify 107 segmented areas using the Sentinel-2 
satellite images according to the procedure described in the methodology section (Fig. 3).

By analysing the target habitats, all selected optical values described in the methods were used. The results of 
additional PERMANOVAs (the P values were less than 0.001, unless otherwise stated) confirmed the assumption 
that target forest habitats can be recognized remotely (Fig. 5).

The distinguishability of coniferous habitats and those in which deciduous trees were more numerous was 
confirmed at a high significance level. Consequently, these habitats were analysed separately to provide better 
insight into specific differences.

To test the usage of RHL values to distinguish between 9410 spruce forest and planted spruce forest (forest 
areas older than 80 years), RHL values were calculated for 48 segments of the tested habitats. Segments of spruce 
forests (s) always had higher RHL values, while segments of planted spruce forests (n) had lower and more vari-
able values of RHL (Fig. 6).

In the analyses of coniferous forests, we also added the values of the RHL 10% parameter to the values of 
mean, max, min, and Std, as it turned out that the results of this combination of analysed values were the most 
significant. The period of early spring (end of April, the beginning of May) and late autumn (November) seemed 
to be most suitable (Fig. 7).

The most significant combination of mean and max values distinguished deciduous habitats. The summer 
aspect (end of August) seemed to be the most suitable for this purpose (Fig. 8).

Figure 4.  Part of the case study area in Čierny Balog with segments of habitats 9410 – Acidophilous Picea 
forests of the montane to alpine levels (blue); planted spruce forest (red); 9130 – Asperulo-Fagetum beech forests 
(yellow); and 9180 – Tilio-Acerion forests of slopes, screes, and ravines (green). Red dots are localities where 
relevés were sampled (created in software NaturaSat v1.2 31, dataset from October 17, 2019; acquisition time 
9:40:29, spatial resolution of Sentinel-2 satellite image is 10 m, 1 pixel on the satellite image represents 10 × 10 m 
on the Earth surface).
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Figure 5.  A significant differentiation of target forest types based on various combinations of optical bands 
extracted from Sentinel-2 data (obtained on May 13, 2018), where the P value is less than 0.001. Abbreviations: 
s – 9410 – Acidophilous Picea forests of the montane to alpine levels, n – planted spruce forest, m – 9130 – 
Asperulo-Fagetum beech forests, and r – 9180 – Tilio-Acerion forests of slopes, screes, and ravines.

Figure 6.  Differentiation of RHL 10% of selected forest types in the B04-Red optical band intensity value in 
August (dataset from August 31, 2019). On the vertical axis are values of RHL. The P value is less than 0.001. 
Abbreviations: n – planted spruce forest and s – 9410 – Acidophilous Picea forests of the montane to alpine 
levels.

Figure 7.  Differentiation of two coniferous forest types using mean, max, min, and Std RHL-10% (data from 
April 20, 2019), where the P value is less than 0.001. Abbreviations: s – 9410 – Acidophilous Picea forests of the 
montane to alpine levels and n – planted spruce forest.
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Figure 8.  Differentiation of two mixed habitats using mean and max optical values (data from August 31, 
2019), where the P value is less than 0.01. Abbreviations: m – 9130 – Asperulo-Fagetum beech forests and r – 
9180 – Tilio-Acerion forests of slopes, screes, and ravines.

Table 2.  Results of 24 semiautomatic segmentation and belonging GPS tracks compared by the Hausdorff 
distance (values given in meters). Abbreviations to habitats: n – planted spruce forest, m – 9130 – Asperulo-
Fagetum beech forests, and r – 9180 – Tilio-Acerion forests of slopes, screes, and ravines.

Habitat Relevé No. Mean Hausdorff distance [m] Maximal Hausdorff distance [m]

r 769212 7.20 22.77

r 769214 8.47 29.92

r 769220 4.91 17.67

r 769229 13.53 37.15

r 769235 11.33 36.67

r 769244 9.69 26.84

r 769245 6.98 20.46

r 769259 11.31 48.63

Habitat average 9.18 30.02

m 769209 6.92 17.48

m 769213 12.74 49.37

m 769215 5.04 24.01

m 769216 7.12 20.22

m 769222 8.56 26.32

m 769234 6.75 26.73

m 769236 7.32 19.41

m 769266 6.18 20.08

Habitat average 7.58 25.45

n 769205 11.27 31.74

n 769206 8.13 24.39

n 769207 10.39 35.15

n 769208 9.48 27.10

n 769228 12.06 42.18

n 769233 8.24 34.16

n 769254 8.09 22.02

n 769258 10.97 27.61

Habitat average 9.83 30.54

Average overall 8.86 28.67
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Segmentation accuracy. Accuracy of semiautomatic segmentation methods. The accuracy of semiauto-
matic segmentation, i.e., comparison of semiautomatic segmentation and GPS tracks by means of the Hausdorff 
distance, is presented in Table 2.

The mean Hausdorff distance was on average 8.86 m, which is smaller than the spatial resolution (10 m) of 
Sentinel-2 data. This indicates that by using semiautomatic segmentation, we were able to detect habitat borders 
more accurately as the image resolution allowed this. The maximal Hausdorff distance was on average approxi-
mately 28.67 m (less than 3 pixels).

Accuracy of automatic segmentation methods. In the next part of our research, we focused on the automatic 
segmentation of selected habitats. The results of automatic segmentation and GPS tracks compared by the Haus-
dorff distance are presented in Table 3.

The average mean Hausdorff was 14.63 m, which was only slightly more than the spatial resolution of the 
satellite data. The maximal Hausdorff distance was, on average, approximately 53.3 m, which represents 5 pixels. 
The highest differences could be found in the areas with ecotone zones, where forest patches were connected to 
surroundings by shrub zones or in segments that were connected to a similar type of vegetation, separated in the 
field only by a natural barrier (narrow forest road, boulders, or change of slope orientation), which occurs in this 
type of habitat and is typical for this area but faintly recognizable on satellite images with a resolution of 10 m.

An example of a visual comparison of semiautomatic, automatic, and GPS curves is presented for the segment 
of habitat 9180 Tilio-Acerion forests of slopes, screes, and ravines, relevé IJ4299 (Fig. 9). The figure was obtained 
using NaturaSat software (a dataset from October 17, 2019).

The mean Hausdorff distances of segment of planted spruce forest relevé 769,205 were 11.3 m (comparison 
of semiautomatic segmentation and GPS track), and 11.9 m (comparison of automatic segmentation and GPS 
track), and 4.8 m (result of comparison between automatic and semiautomatic segmentation), which is very 
close and even less than the pixel resolution of the Sentinel-2 data.

Table 3.  Results of automatic segmentation and GPS tracks compared by the Hausdorff distance (values given 
in meters). Abbreviations to habitats: n – planted spruce forest, m – 9130 – Asperulo-Fagetum beech forests, 
and r – 9180 – Tilio-Acerion forests of slopes, screes, and ravines.

Habitat Relevé No. Mean Hausdorff distance [m] Maximal Hausdorff distance [m]

r 769212 11.30 60.05

r 769214 9.30 29.58

r 769220 9.24 37.54

r 769229 14.41 34.13

r 769235 8.81 30.96

r 769244 17.45 77.86

r 769245 17.42 73.02

r 769259 14.86 56.34

Habitat average 12.85 49.93

m 769209 14.04 56.48

m 769213 18.68 56.54

m 769215 6.71 18.45

m 769216 8.05 35.54

m 769222 18.12 46.13

m 769234 19.14 85.89

m 769236 12.73 43.09

m 769266 9.35 32.43

Habitat average 13.35 46.82

n 769205 11.91 37.97

n 769206 12.87 33.76

n 769207 11.32 45.92

n 769208 15.36 50.45

n 769228 22.51 64.99

n 769233 22.08 64.69

n 769254 19.68 90.58

n 769258 25.75 116.82

Habitat average 17.68 63.15

Average overall 14.63 53.30
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Discussion
During our case study, it was confirmed that remote sensing (RS) can make botanical and ecological research 
and mapping more efficient. To achieve our aims, long-term development of technology (satellites) and image 
processing (software) was needed. RS technology has been popular since the 1970s because of its incredible 
opportunities, low acquisition costs, and high-utility data collection. After considerably advanced interpreta-
tion of geography, geology, and agriculture, the observation of land cover was one of the priorities, especially 
after the first satellite from the LANDSAT family, ERTS-1 (Earth Resources Technology Satellite; it was later 
renamed LANDSAT-1), was launched in  197250. Rapidly developing RS techniques were adopted to monitor 
land surface types such as agricultural land, water bodies, abandoned land, forests, and built areas. Launching 
the European Sentinel-2 satellites opened a new era in the application of freely available remotely sensed data 
in  forestry13. With improved resolution, availability of multispectral data, and advanced data-processing tech-
niques, RS offers more profound insight into land cover categories—different crop  fields51, meadows with various 
management  styles52, and different forest types (e.g.,12,53) have been identified successfully. RS has been utilized 
in agriculture (e.g., detection and mapping of weeds in agricultural  crops54–56), forest management (e.g., RS of 
forest insect  disturbances57), and assessing sustainable  development58. Using RS for nature conservation is still a 
major challenge due to the complexity of nature. Ecosystems representing Natura 2000 habitats are complex plant 
communities, including tree, shrub, and herb layers, together with typical fauna. Mapping specific ecosystems, 
such as Natura 2000 habitats, has been demanding for remote sensing techniques in the past and have fallen 
 short59. The monitoring of habitats is a significant part of climate change monitoring and research  challenges60; 
therefore, the present study makes an important contribution to the application of RS in nature conservation.

Evolving curve approach versus other approaches. Many studies have recently focused on recogniz-
ing different habitats using various spatial scales and pixel-based approaches with hard or fuzzy classification 
(e.g.,31,61). For such research, obtaining a high-quality training dataset is necessary. When mapping more pro-
nounced units, basic field observations could be used; however, Natura 2000 habitats can be precisely identified 
mostly by the sampling of phytosociological relevés containing information about plant species composition 
and structure (cf 40,41.). In our study, the pixel-based approach was replaced by a new, evolving curve approach 
that allows obtaining the exact area by automatic segmentation with phytosociological relevés as a starting point. 
This unique interconnection between traditional ground-based information and remote sensing gives us the 
advantage of exact affiliation of the segmented area into Natura 2000 habitat, confirmed by species composition. 
The approach was tested in a case study area in Čierny Balog, but the same methods could be used in different 
parts of Slovakia or Europe where phytosociological relevés of studied habitats occur, which suggests strong 
potential for the use of this method.

Resolution. It is well known that the spatial resolution of imagery must be carefully chosen when the spatial 
scale of the pattern under consideration is  concerned62. Remote sensing data with higher resolution, such as ALS 
or UAV imagery, have considerable potential (e.g.,63). However, their disadvantages may be their higher costs 
and irregular, one-time only or long time between repeated data  acquisitions8 and limitations to the target areas 
and vegetation types. On the other hand, many recent studies focusing on satellite data (e.g.,64) addressed very 
distinct units and pronounced gradients. At the same time, our results show that freely available multispectral 
remote sensing data can be used to identify some types of forests at the scale of single Natura 2000 habitats that 
until now were not determined based on satellite images. The results of automatic segmentation in our dataset 

Figure 9.  Visual comparison of three curves, GPS track (yellow), semiautomatic segmentation (red), and 
automatic segmentation (turquoise), for the segment of planted spruce forest, relevé 769,205 (created in software 
NaturaSat v1.2 31, October 17, 2019; acquisition time 9:40:29, spatial resolution of Sentinel-2 satellite image is 
10 m, 1 pixel on the satellite image represents 10 × 10 m on the Earth surface).
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have an accuracy of approximately 15 m and the results of the semiautomatic segmentation have an accuracy of 
only approximately 9 m, which is less than the pixel resolution of Sentinel-2 data (1 px = 10 m).

Mapping Natura 2000 forest habitats is a major challenge. Biotopes belonging to the Natura 2000 network 
are often more complex, have a transitional ecotone area with smaller trees and shrubs, or are adjacent to forests 
with a similar type of vegetation and are separated by obstacles visible only in the terrain (e.g., rocks, forest roads, 
or changes of slope). Based on field research, we also noticed these limitations in semiautomatic segmentation, 
but they may not be easily recognizable on satellite images and are not considered in automatic segmentation. 
There is also a difference between the tree trunk and tree crown/branches. The tracking of boundaries in the 
field may be different, especially when the trees are tall and/or the trees of different habitats are touching. The 
combination of these segmentation methods allows the necessary simplification and acceleration, which could 
be part of habitat mapping and monitoring for both scientists and conservation needs.

The methods used were able to reach the accuracy of the pixel resolution of Sentinel-2 data, which are suitable 
for forest habitat mapping and identification; however, the methods have large potential when using data with 
a ALS or UAV resolution. After proper calibration, our methods have the potential to achieve pixel resolution 
in these cases.

Accuracy. The overall accuracy of different methods at diverse scales of target phenomena is very variable. 
Simultaneously, it is complicated to compare the evolving curve approach to pixel-based approaches. Our accu-
racy is based on the comparison of whole areas identified by GPS tracks and segmentation curves situated in 
forested areas with exactly defined Natura 2000 units. Commonly used approaches focus on the selection of a 
network of points in the whole landscape—from afforested sites to abandoned land.

The highest accuracy values are reached in the case of broadly defined landscape units or when basic forest 
cover is mapped. A study from a small part of  Vietnam65 where Sentinel-2 imagery was used and three clas-
sification methods were compared (random forest, k-nearest neighbour, and support vector machine) showed 
an overall accuracy ranging from 90 to 95% when six land cover classes were mapped (residential, impervious 
surface, agriculture, bare land, forest, and water). By using multispectral data together with the digital elevation 
model, identification of forest cover was performed with high accuracy (92–98%), while for forest types, accuracy 
was more variable (83–97% 13,). Forest cover and its changes were mapped in Paraguay with accuracy varying 
from 85% (in 2003–2004) to 93% (in 2001–2002)66. Within our study, the cover of a single forest habitat type was 
identified against other forests, and the area that NaturaSat software could find by automatic segmentation using 
only optical multispectral data differed from the forest patch area by an average of 15%; the minimum value was 
only 0.44% (i.e., accuracy up to 99%). The borders of forest differed by 1–5 pixels, where the mean Hausdorff 
distance was 14.6 m, which was only 1.5 pixels of Sentinel-2 resolution between GPS-tracked and automatically 
segmented areas. Using semiautomatic segmentation, applying data only from Sentinel-2, the area of the target 
types of forest habitats was identical to the area obtained by GPS, on average, up to 90%.

Natura 2000 forest habitats are defined by more detailed criteria than most forest type classifications used in 
the abovementioned studies. Land cover maps tend to have high accuracy (e.g., 86% 67,), where pastures and bod-
ies of water tend to be correctly classified, while forest categories tend to have a high degree of inaccuracy. Novel 
approaches, such as the presented evolving curve method focused on forest identification by remote sensing, 
are essential for improving land cover maps. In tropical forests (e.g., in Ghana 68;), we commonly encounter an 
accuracy of approximately 90–93%68. Forest plantations have been successfully identified in numerous examples, 
mainly from tropical areas in  India69, Brazil, and Senegal, with accuracies varying between 83 and 96%70,71.

In the case of a higher success rate, additional information, such as the digital elevation model, NDVI, or 
structural data, was added to the analyses, or multispectral data were used. During more complex forest map-
ping in China, where ten types of natural forests were distinguished by multispectral temporal data and digital 
elevation models, the accuracy was 82%, which is markedly lower than that in simple forest plantations. Within 
our approach, only optical multispectral information was applied. Using phytosociological relevés as starting 
points is a novel method that brings a very high success rate in identifying strictly defined forest habitats that 
were never identified with such accuracy before. If we would like to focus on a wider area, the Special Areas 
of Conservation Ďumbierske Tatras (SKUEV0302 Ďumbierske Tatry) and Kráľovohoľské Tatras (SKUEV0310 
Kráľovohoľské Tatry) are located nearby, where the same forest habitats as in the territory of Čierne Balog occur, 
and for reasons of protection and management of these protected areas, it is necessary to ensure the monitor-
ing of these habitats. This data will be part of a wider data set contained also further habitats forming training 
data set for a deep learning network that will be able to identify protected forest habitats in  Slovakia72. Moreo-
ver, this approach is particularly applicable in European countries, e.g. the Carpathian, Alpine and Pannonian 
biogeographical regions with a long tradition of phytosociological approaches, although the methods could be 
transferred anywhere.

Conclusion
Our study presents an example of the potential of a new approach using an evolving curve on Sentinel-2 satellite 
images when identifying forest habitat type borders. The irreplaceable role of ground-based data from vegeta-
tion databases (cf. Chytrý et al. 2016,  sPLot73) was confirmed in this study. The interconnection between the 
phytosociological approach and remote sensing techniques brings new possibilities for the exact mapping of 
forest habitats and can contribute to enhancing many future studies in vegetation and landscape ecology, as well 
as nature conservation strategies.
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