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NEW EFFICIENT NUMERICAL METHOD FOR 3D POINT CLOUD
SURFACE RECONSTRUCTION BY USING LEVEL SET METHODS.

BALÁZS KÓSA∗, JANA HALIČKOVÁ–BREHOVSKÁ† , AND KAROL MIKULA‡

Abstract. In this article, we present a mathematical model and numerical method for surface
reconstruction from 3D point cloud data, using the level-set method. The presented method solves
surface reconstruction by the computation of the distance function to the shape, represented by the
point cloud, using the so called Fast Sweeping Method, and the solution of advection equation with
curvature term, which creates the evolution of an initial condition to the final state. A crucial point
for efficiency is a construction of initial condition by a simple tagging algorithm which allows us also
to highly speed up the numerical scheme when solving PDEs. For the numerical discretization of the
model we suggested an unconditionally stable method, in which the semi-implicit co-volume scheme
is used in curvature part and implicit upwind scheme in advective part. The method was tested
on representative examples and applied to real data representing the historical and cultural objects
scanned by 3D laser scanners.
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1. Introduction. The aim of our work is to create a reliable and efficient nu-
merical method which can easily create computerized 3D models from point cloud
data that resembles the original object as much as possible. This type of data can be
obtained by 3D scanning or by photogrammetric methods. The data created in this
manner contains three coordinates for every scanned point. For further processing
and the creation of an exact digital model of the scanned object this information is
not enough. The point cloud lacks the information of the connectivity between the
points, thus making the reconstruction of the surface a difficult task. Papers as [1, 2]
have shown us that for solving this problem the level-set method can be applied. We
follow basic ideas from these papers, but we take a different approach in the solution
of the partial differential equation presented here.

In the following parts of our paper after the Mathematical Formulation of the
applied level set equation in the section Algorithm for point cloud surface reconstruc-
tion we will present our method and its numerical discretization and solution. After
the theoretical deduction of the method and the description of a short algorithm for
computing the initial condition in Computation acceleration we suggest a way to ac-
celerate the computational time, making the algorithm really efficient. In the last
section Numerical results we present created 3D models which we obtained so far.
We achieved this by implementing our method in the language C with the use of the
programming environment of Visual Studio. The example pictures of the results used
in this article are direct outputs from our application processed in the freely avail-
able open-source visualization software Paraview. With the help of this software we
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can easily compare the initial point cloud data and our results, to confirm that our
assumptions regarding this new numerical method are right.

2. Algorithm for point cloud surface reconstruction. The level set
method, which we are using is based on the solution of the advection equation with
curvature term

ut −∇d · ∇u− δ |∇u| ∇ ·
(
∇u
|∇u|

)
= 0

(2.1)
(x, t) ∈ Ω× [0, T ]

where u(x, t) is an unknown function, v = −∇d is the advective velocity defined by
the gradient of distance function d to the point cloud, parameter δ > 0 determines
influence of the curvature to the result, Ω is the computational domain and [0, T ]
is a time interval. This equation is coupled with homogeneous Neumann boundary
conditions and an initial condition which we will discuss later.

To obtain numerical solution of the model created from point cloud data, denoted
by Ω0 ⊂ Ω and determined by equation (2.1), following steps have to be executed.
First we have to computate the distance function to the point cloud. For computation
we use the Fast sweeping method, as introduced in [3].The initialization of distance
function in the Fast sweeping method is done in such way, that we prescribe exact
distance to the nearest point from the cloud in the grid points next to the points in the
cloud. After that we have to find a subvolume containing Ω0, which will be used to
set the initial function u0 for the generation of the final solution of the equation. This
subvolume is defined on discrete grid in subsection 2.2. The final solution (created
3D model) will be represented by an isosurface of the computated function u (x, T )
with value 0.5.

2.1. Numerical scheme for solving advection equation with curvature
term. The numerical scheme is obtained by discretization of equation (2.1). We will
do this analogically to the discretization used in [4].

2.1.1. Time discretization. For time discretization, we have to choose a uni-
form discrete time step, denoted by τ . We can replace the time derivative in (2.1) with
a backward difference. Then we can formulate our semi-implicit time discretization
in the following way:

Let τ be a fixed number and u0 a function representing the initial surface of our
mathematical model. Then at every discrete time tn = nτ, n = 1, ..., N we search for
the function un as the solution to equation

un − un−1

τ
−∇d · ∇un − δ

∣∣∇un−1∣∣∇ · ( ∇un

|∇un−1|

)
= 0(2.2)

2.1.2. Spatial discretization. Our discretized model consists of a 3D grid,
which is built of voxels with cubic shape and an edge size h. We will interpret spatial
discretization of the level set function u as numerical values ui,j,k at the voxel centres.
In order to easily computate the gradient of the level-set equation

∣∣∇un−1∣∣ in every
time step of (2.2) we induct a 3D tetrahedral grid into the voxel structure and take a
piecewise linear approximation of u (x) on such a grid. This way we obtain a constant
value of the gradient for each tetrahedron, by which we can construct in a simple and
clear way the fully discrete system of equations.
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Fig. 2.1: Our initial voxel grid cell with a tetrahedral grid cell

The 3D tetrahedral finite element grid is created by the following approach. Every
voxel is divided into six pyramid shaped elements with base surface given by the
voxel’s walls and vertex by the voxel centre. Each one of these pyramids is joined
with neighbouring pyramids with whom they have a common base surface. These
newly formed octahedrons are then split into four tetrahedrons as seen in Figure 2.1.
In our new grid Th the level-set function will be updated only at the centres of the
voxels. They will represent so called degree of freedom (DF) nodes.

For the tetrahedral grid we construct a co-volume mesh, which will consist of cells
p associated only with DF nodes of Th. We denote all neighbouring cells q of p by
Cp. The cells q are all connected to the cell p by a common edge of four tetrahedrons,
which is denoted by σpq with length hpq. Each cell p is bounded by a plane for every
q ∈ Cp which is perpendicular to σpq and is denoted by epq. The set of tetrahedrons
which have σpq as an edge are denoted by εpq. For every T ∈ εpq, cTpq is the area of
the intersection of epq and T . Np will be a set of tetrahedrons that have DF node
associated with cell p as a vertex. On this grid uh will be a piecewise linear function.
Then we can use the notation up = uh (xp), where xp denotes the center coordinates
of cell p.

Now that we have all notations which are needed we can begin the derivation of
the spatial discretization of (2.2). We will do this by using a following modified form
of the equation:

un − un−1

τ
+ v · ∇un = δ

∣∣∇un−1∣∣∇ · ( ∇un

|∇un−1|

)
(2.3)

where v = −∇d.

As the first step we will integrate (2.3) over every cell p.∫
p

un − un−1

τ
dx+

∫
p

v · ∇undx =

∫
p

δ
∣∣∇un−1∣∣∇ · ( ∇un

|∇un−1|

)
dx(2.4)

For the first term on the left-hand side of (2.4) we get the approximation∫
p

un − un−1

τ
dx = m (p)

unp − un−1p

τ
(2.5)

where m (p) is a measure in Rd of the cell p.
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For the second term on the left-hand side of (2.4) we are using the implicit upwind
approach and get ∫

p

v · ∇undx =
∑
q∈Cp

min (vpq, 0)
(
unq − unp

)
(2.6)

where vpq = h2pqv · n.
Now what remains is the discretization of the right-hand side of (2.4). We use

the divergence theorem to get∫
p

δ
∣∣∇un−1∣∣∇ · ( ∇un

|∇un−1|

)
dx = δ

∣∣∇un−1p

∣∣ ∑
q∈Cp

∫
epq

1

|∇un−1|
∂un

∂n
dσ(2.7)

The integral part
∫
epq

1
|∇un−1|

∂un

∂n dσ and
∣∣∇un−1p

∣∣ from (2.7) will be approximated

numerically using piecewise linear reconstruction of un−1 on the tetrahedral grid Th,
thus we get

δ
∣∣∇un−1p

∣∣ ∑
q∈Cp

 ∑
T∈εpq

cTpq
1∣∣∇un−1T

∣∣
 unq − unp

hpq

Mn−1
p =

∣∣∇un−1p

∣∣ =
∑

T∈Np

m (T ∩ p)
m (p)

∣∣∇un−1T

∣∣
and the final form of equation (2.3) after reorganization will be

un−1p = unp +
τ

m (p)

∑
q∈Cp

min (vpq, 0)
(
unq − unp

)
(2.8)

−δMn−1
p

∑
q∈Cp

 ∑
T∈εpq

cTpq
1∣∣∇un−1T

∣∣
 unq − unp

hpq


From this form, we are able to derive the system of linear equations which we will

solve at every time step. For the linear equations, we will define regularized gradients
by

|∇uT |ε =

√
ε2 + |∇uT |2(2.9)

After we arrange all parts of equation (2.8) we get the following coefficients

an−1pq =
τ

m (p)

min (vpq, 0)− δMn−1
p

1

hpq

∑
T∈εpq

cTpq
1∣∣∇un−1T

∣∣
ε

(2.10)

thus, we can formulate our semi-implicit co-volume scheme:
Let u0p, p = 1, ...,M be given discrete initial values of the level-set function. Then,

for n = 1, ..., N we look for unp , p = 1, ...,M , satisfying

unp +
τ

m (p)

∑
q∈Np

an−1pq

(
unq − unp

)
= un−1p(2.11)
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With addition of homogeneous Neumann boundary conditions to our fully discrete
scheme we obtain a system of linear equations. Since an−1pq are non-negative we can
prove the following statement.

Theorem. There exists unique solution (un1 , ..., u
n
M ) of (2.11) for any τ > 0, ε >

0, and for every n = 1, ..., N . The system matrix is a strictly diagonally dominant
M-matrix. For any τ > 0, ε > 0, the following L∞ stability holds:

min
p

u0p ≤ min
p

unp ≤ max
p

unp ≤ max
p

u0p, 1 ≤ n ≤ N.(2.12)

The number of time steps N is determined by the difference of the solution in
current and previous time steps in discrete L2 norm. The computation is stopped
if this difference is less than the prescribed tolerance, which we usually set to 10−6.
Then the stopping time T = Nτ .

If we denote the DF nodes with indexes (i, j, k) and rearrange (2.11) to obtain
the coefficients for every node we can define for a DF node the equation

ci,j,ku
n
i,j,k + bi,j,ku

n
i,j,k−1 + ti,j,ku

n
i,j,k+1 + ni,j,ku

n
i+1,j,k

(2.13)
+si,j,ku

n
i−1,j,k + ei,j,ku

n
i,j+1,k + wi,j,ku

n
i,j−1,k = un−1i,j,k

When we collect the equations for all DF nodes and take into account Neumann
boundary conditions we get the linear system which we have to solve. For the solution
of this system we choose the SOR (Successive Over Relaxation) iterative method. We
start the iterations by setting uni,j,k = un−1i,j,k, then in every iteration l = 1, ... we use
the following two step procedure:

Y = (u
n(0)
i,j,k − bi,j,ku

n(l)
i,j,k−1 − ti,j,ku

n(l−1)
i,j,k+1 − ni,j,ku

n(l−1)
i+1,j,k

− si,j,kun(l)i−1,j,k − ei,j,ku
n(l−1)
i,j+1,k − wi,j,ku

n(l)
i,j−1,k)/ci,j,k(2.14)

u
n(l)
i,j,k = u

n(l−1)
i,j,k + ω

(
Y − un(l−1)i,j,k

)
We define squared L2 norm of residuum at current iteration by

Rl =
∑
i,j,k

(ci,j,ku
n(l)
i,j,k + bi,j,ku

n(l)
i,j,k−1 + ti,j,ku

n(l)
i,j,k+1 + ni,j,ku

n(l)
i+1,j,k

+ si,j,ku
n(l)
i−1,j,k + ei,j,ku

n(l)
i,j+1,k + wi,j,ku

n(l)
i,j−1,k − u

n(0)
i,j,k)2

The iterative process is stopped if Rl < TOL.

2.2. Computation of the initial condition. As mentioned, this method needs
an initial condition, represented by the initial function u0 (x), which will be deformed
to get the solution, that is the final form of the created 3D model. Theoretically any
initial surface that contains the point cloud data set could be used, but an optimal
initial guess is crucial for the efficiency of the method. We can find this optimal
surface by identifying all points for which the value of the distance function is greater
or equal to a parameter β. For simplicity let us call these points, exterior points. To
find all these points we will use the following algorithm:

• Mark all points on the borders of the grid as exterior and add them to set E.
• For every point in the set E check all neighbouring points in the grid.
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• If the neighbouring point is not an exterior point and its distance from the
point cloud is greater or equal to β add it to the set E and mark as exterior.

• Continue until you get to the last point of E.
When we found all the exterior points we set u0 (x) to be equal 0 in every exterior

point and 1 in every other point. With this approach, we can find an initial surface
close to the final shape as seen on the Figure 2.2.

Fig. 2.2: Example for the initial condition used in our method. Object is shown from
different angles.

3. Computation acceleration. The part of our algorithm which consumes the
most time during computation is the solution of the linear system of equations (2.11)
coupled with the computation of its coefficients. To reduce this time, we came up with
the following idea. First, we construct a band around the area between the initial
surface and the point cloud data. To find the surface which we want to reconstruct
it is sufficient to update the values on grid cells contained in such a band, thus we
can computate coefficients and evaluate the SOR method (2.14) only in this new
subset of all grid cells. On Figure 3.1 we can see an example of this subset. For
easier visualization, we show this on a slice with the plane x = 0. Here the red line
marks the point cloud data, the purple line the initial surface and the white lines the
borders of the created band. In the background of the picture we show the values of
the distance function.

To find this area we adopted the algorithm mentioned in the previous section,
which was used to find the initial surface, to this task. To obtain an outer border for
the band which contains the initial surface we chose a new parameter γ = 2β. With
this additional parameter and the introduction of a new set denoted F the algorithm
for finding the band is given as follows.

• Tag all points on the borders of the grid and add them to the set E.
• For every point in the set E check all neighbouring points in the grid.
• If the neighbouring point is not tagged execute the following steps.

– If the neighbouring point’s distance from the point cloud is smaller or
equal to γ add it to the set F .

– If the neighbouring point’s distance from the point cloud is greater or
equal to β add it to the set E as well and tag it.

• Continue until you get to the last point of E. When we finish with set E we
start a new cycle for set F.
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• For every point in the set F check all neighbouring points in the grid.
• If the neighbouring point is not tagged and its distance from the point cloud

is smaller or equal to γ add it to the set F .
• Continue until you get to the last point of F .

While we look for points with distance smaller or equal to γ we will cross the
border with distance 0, represented by the point cloud, thus set F will contain also
grid points from the inner region of the object. From the set F we can create an
array consisting of values 0, for points not in the band, and 1, for points in the band.
This will serve as a mask for the SOR method, thus in the computation loops we can
determine if it is necessary to computate the new value or if we can skip to the next
grid point.

Fig. 3.1: The slice of our new computational area on the plane x = 0.

We measured how much time we managed to save with this new approach on
real-life data sets representing a bracelet and a sealer. The tests were executed on a
personal notebook with a dual core processor and 4 GB of memory. Our results are
listed in the tables 3.1 and 3.2. We tested the algorithm on grids containing 403, 803

and 1603 grid cells. All tests were performed with the same parameter β and stopping
criteria for the iterations.

In the second column of the tables we recorded the number of points contained by
the band. This number depends on the size and form of the original object represented
by the data set. In columns three and four we see the measured times for the original
and optimized implementation. In the tests, we achieved not only reduced times but
also better convergence, so fewer time steps were needed. This led to computations
which were 20 to 60 times faster.

Visually we cannot detect any difference between the created 3D models computed
by the two methods, original and optimized. We measured the mean value of squared
differences between all grid values and listed the obtained values in the third column.
We can see that these values are in the tolerable range.
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Number of
grid cells

Points in
band

CPU time (s)
Original

CPU time (s)
Optimized

Mean squared
difference

403 4 636 4.269 0.261 8.90795e-7
803 37 640 34.247 1.677 2.27554e-8

1603 304 456 895.68 13.385 1.92055e-8

Table 3.1: CPU times comparison for the bracelet data set

Number of
grid cells

Points in
band

CPU time (s)
Original

CPU time (s)
Optimized

Mean squared
difference

403 6 075 13.914 0.537 1.75849e-6
803 48 710 88.673 3.470 4.38982e-8

1603 392 185 2 051.402 72.846 9.36878e-9

Table 3.2: CPU times comparison for the sealer data set

4. Numerical results. In this section, we present the reconstruction of the
point cloud surfaces on a representative testing example and real data. These exam-
ples are a good display of the quality of our method.

Figure 4.1 illustrates the test example. This object was used for the verification
of the correct behaviour of our method during the implementation phase. The point
cloud data was generated with corresponding parametric equations of the object. The
representative example was created on a grid containing 803 cells. We can see that
for this test with such a sparse grid we already got good results.

On Figure 4.2 and 4.3 we can see real-life data. These items where archaeological
finds and the point cloud scans were provided by the Monuments Board of the Slovak
republic to which we express our great thanks. On Figure 4.2 we can see a bracelet.
The created 3D model was computed on a grid with 1603 cells. On Figure 4.3 we
can see a sealer, with a very interesting surface structure. The created 3D model was
computed on a grid with 3203 cells.

Fig. 4.1: On the left, we see the point cloud data, on the right the point cloud with
the created 3D model.
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Fig. 4.2: Archaeological finds: bracelet. On the left, we see the point cloud data, on
the right the final result with triangulated surface.

Fig. 4.3: Archaeological finds: sealer. On the left, we see the point cloud data, on the
right the final result.

Fig. 4.4: Details of the sealer with triangulated surface.

We also tested our method on data sets with noise. In the point cloud data of
the sealer we added artificial noise by changing the coordinates of 100 random points.
Thanks to the curvature part of equation (2.1) this kind of noise has no effect on our
created 3D model. We can observe that fact in Figure 4.5.
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Fig. 4.5: Sealer point cloud data with noise, visualized with the final result.

5. Conclusions. In this work we presented our approach for surface reconstruc-
tion from point cloud data utilizing the level set method. We formulated the math-
ematical model, derived the time and spatial discretization and provided the reader
with an exact description of the numerical solution. By implementing the method
we obtained several interesting results for numerical tests and real-life data which we
presented as examples in the last section. Our results show that for smoother objects
a sparse grid already shows good result, but for an object with more detail we need
more grid points. With adjusting the SOR method to our needs we achieved signif-
icant reduction of the required computational time, thus making our method more
suitable for real-life application.
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