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Abstract
In this paper, we propose a cell-centered finite volumemethod to numerically solve the
G-equation on polyhedral meshes in three-dimensional space, that is, a general type of
the level-set equation including advective, normal, and mean curvature flow motions.
The main contribution is to design a numerical algorithm for the regularized mean
curvature flow equation that can be consistently combined regarding the size of the
time step with previous algorithms for the advective and normal flows on polyhedral
meshes. For a spatial discretization, we use a flux-balanced approximation with an
orthogonal splitting of displacement vector from a center of the cell to a center of the
face. For a temporal discretization, we use a nonlinear Crank–Nicolson method with
a deferred correction method which gives us, firstly, second-order accuracy in space
and time similarly to the algorithms for the advective and normal flow equations, and,
secondly, a possibility of straightforward domain decomposition for efficient parallel
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computation. Numerical experiments quantitatively show that the size of time step
proportional to an average size of computational cells is enough to obtain the second-
order convergence in space and time for smooth solutions of the general level set
equation. A qualitative comparison is presented for a nontrivial example to compare
numerical results obtainedwith hexahedral andpolyhedralmeshes. Finally, an example
of solving numerically the G-equation used in combustion literature is given.

Keywords G-equation · Level-set equations · Mean curvature flow · Polyhedral
meshes · Nonlinear Crank–Nicolson method · Flux-balanced approximation ·
Second-order experimental order of convergence

Mathematics Subject Classification 65M08 · 65Y05 · 80A25

1 Introduction

In this paper, we propose a cell-centered finite volumemethod to numerically solve the
G-equation with a given burning velocity on polyhedral meshes in three-dimensional
space. TheG-equation in the combustion literature is firstly introduced in [1] to explain
a propagation of thin flame surface structure in a premixed turbulent combustion. The
formof equation is based on a level set approach, that is, the flame structure is described
by a zero level set of an implicit function G. Numerous and diverse formulations of
G-equation has been extensively studied in order to design correct models of burning
velocities in the combustion community; see more details in [2, 3] and the references
therein. Here, the well-established and standard form of G-equation based on Favre
mean G̃ ofG function is used for the corrugated flamelets regime and the thin reaction
zones regimes in premixed turbulent combustion:

ρ̄
∂G̃

∂t
+ ρ̄ṽ · ∇G̃ = ρ̄us

0
T |∇G̃| − ρ̄Dt κ̃|∇G̃|, (1)

where ρ̄ is the Reynolds mean density, ρ̄u is the Reynolds mean unburnt density, ṽ
is the Favre mean velocity, s0T is the turbulent burning velocity, Dt is the turbulent
diffusivity, and κ̃ is the mean curvature of the flame surface. Note that the zero level
set of G̃ is the Favre mean turbulent flame surface; see also a practical application in
smoldering front propagation [4, 5].

In order to clearly explain the numerical algorithm to solve the G-equation, we
rewrite the Eq. (1) as a general type of the level-set equation with simple coefficients
in a bounded Lipschitz domain � ⊂ R

3:

∂φ

∂t
+ v · ∇φ + δ|∇φ| = γ |∇φ|ε∇ ·

( ∇φ

|∇φ|ε
)

, t ∈ [0, T ], (2)

where |∇φ|ε ≡ (ε2 + |∇φ|2)1/2, a regularization parameter ε > 0 is a small constant
[6], and functions v, δ and γ are given and continuous on � with γ > 0. An initial
condition and Dirichlet boundary condition are given until the final time T > 0 in the
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form

φ(x, 0) = φ0(x), x ∈ �,

φ(x, t) = φb(x, t), (x, t) ∈ ∂� × (0, T ]. (3)

Three velocities in (2) generate distinctive types of the evolution of a level surface of
initial function φ0. The second term in the left-hand side (LHS) of (2) with the spatially
variable velocity v describes an advective flowmotion of level surfaces. The third term
in LHS controls a propagation of level surfaces in surface normal directions with the
speed δ. The right-hand side (RHS) with ε = 0 and the constant γ > 0 generates a
mean curvature flow (MCF) motion of the level surfaces. In numerous applications of
level-set equation (2), an interface is usually represented by the zero level set of initial
signed distance function φ0. Several numerical algorithms and diverse applications
for level set methods are presented in [7–9] and the references therein.

The first contribution of this paper is to propose a novel cell-centered finite volume
method to discretize the regularized mean curvature term of the general level set
equation (2) on polyhedral meshes in three-dimensional (3D) space. A polyhedral
mesh means a collection of star-shaped convex polyhedral cells, which presents a
spatial discretization of a given computational domain� in 3D. A usage of polyhedral
meshes in an industrial computer-aided engineering (CAE) has been steadily increased
for the last decade because of its shape flexibility to discretize highly complicated
computational domains; see more details in [10]. Moreover, the faces of a polyhedron
cell are distributed more isotropically than the ones in a hexahedron cell, which makes
numerical errors in a polyhedralmesh less directionally dependent than in a hexahedral
mesh. The second contribution is to combine the proposed discretization with the
previous algorithms to discretize normal and advective terms of the general level set
equation in order to numerically achieve the second-order convergence in space and
time. At the end, we apply the combined algorithm to solve the G-equation and check
whether it is reasonable in real application.

A classical approach to solve PDEs numerically on polyhedral meshes is to use
finite volume methods (FVMs) [11]. Furthermore, advanced numerical methods on
polyhedral meshes such as mimetic finite-difference methods [12], virtual element
methods [13], and discrete duality finite volume method [14] bring promising results.
We prefer the cell-centered FVMs to aforementioned methods that seemmore suitable
in industrial CAE applications because of less memory requirements and straightfor-
ward implementation of efficient parallel computation. We use the degrees of freedom
only at the centers of cells for the memory efficiency and a 1-ring face neighborhood
structure for a rather straightforward domain decomposition with parallel computa-
tions.

The numerical algorithms for advective or normal flow equations of (2) on unstruc-
tured meshes have been studied by several authors [15–17]. A fully explicit time
discretization with a vertex-centered finite volumemethod is used in [18]. The second-
order total variation diminishing explicit Runge–Kutta method with a cell-centered
finite volume method and inflow based gradient is developed in [19]. To avoid a sta-
bility restriction of the size of time step, an inflow-implicit outflow-explicit (IIOE)
method is suggested in [20–23]. The method is extended in [24, 25] for polyhedral
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meshes with a 1-ring face neighborhood structure to enable efficient parallel compu-
tation.

The numerical algorithms for the regularized mean curvature flow equation have
been studied on hexahedral or tetrahedral meshes. Finite element methods were
developed by, e.g., Deckelnick, Dziuk, and Elliot, see [26] and references therein.
A complementary volume (CV) method is used in [27] with a fully-implicit time dis-
cretization. A semi-implicit CV scheme is suggested in [28] to have better efficiency,
while the theoretical properties from [27] are preserved. The semi-implicit CVmethod
has been widely applied in 2D and 3D image segmentation problems [29–31]. Its the-
oretical properties when using the regularization of gradient norm in the sense of [6]
are proved. Namely, the L∞ stability of solution and the L1 stability of solution gra-
dient are given in [28, 30], and a consistency of the scheme is shown in [32]. In [33,
34], the absolute value of gradient is computed by the Green–Gauss theorem and for
orthogonal meshes the convergence of a numerical solution to the weak solution of
the regularized mean curvature flow equation was proved. In cases of a complicated
shape of domain in 3D, the mesh orthogonality is too strong restriction to practically
generate a polyhedral mesh. The method for solving the regularized mean curvature
flow equation proposed in this paper extends the theoretically approved method from
[33] to the case of general non-orthogonal polyhedral meshes.

To propose a spatial discretization on a non-orthogonal polyhedralmesh, the authors
use a weighted least-squares minimization in [35, 36] to explicitly reconstruct a gra-
dient at a center of polyhedron cell. In [36], the over-relaxed correction method [37]
is applied to discretize the regularized mean curvature term. In this paper, inspired by
[33, 38], we propose a flux-balanced spatial discretization on non-orthogonal polyhe-
dral meshes. The proposed approach is based on a flux-balanced approximation, and
it uses an orthogonal splitting of displacement vector from a center of cell to a center
of face.

A temporal discretization should be properly considered to complete a numerical
algorithm for solving (2). In the case of regularized mean curvature flow, the semi-
implicit methods in [28–34] needs to solve a linear system of algebraic equations in
each time step. However, a size of time step should be proportional to a square of
the average size of cells in order to obtain the second-order experimental order of
convergence. It is not practical to use such a size of time step when a semi-implicit
method for the regularized mean curvature flow equation is combined with numerical
methods for the advective or normal flow equations [19–23, 25], which only need a size
of time step proportional to an average size of cells in order to obtain the experimental
order of convergence (EOC) approximately close to 2. The discrepancy of the size
of time step can be resolved by using a nonlinear Crank–Nicolson method introduced
to solve a plane curve shortening flow in [39]. In the case of level-set equations, the
nonlinear Crank–Nicolson method is applied to obtain EOC � 2 when a size of time
step is proportional to an average size of cells in [40]. For a practical efficiency of
parallel computation, we propose to combine the nonlinear Crank–Nicolson method
with a deferred correction method [41] in order to deal with a restriction of 1-ring face
neighborhood structure in a decomposed computational domain.

The rest of paper is organized as follows. A spatial and temporal discretization for
the regularizedmean curvature flowequation is proposed inSects. 2 and3, respectively.
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We briefly review the iterative IIOE method to solve the advective and normal flow
equation in Section A and then present the final proposed algorithm to solve (2).
Several numerical experiments are presented to quantitatively observe a behavior of
proposed numerical algorithm and to qualitatively compare numerical solutions in
Sect. 4. Finally, we conclude in Sect. 5.

2 Flux-balanced approximation

In this section, we propose a numerical scheme to discretize a regularized mean cur-
vature flow equation on a bounded Lipschitz domain � ⊂ R

3:

∂φ

∂t
= |∇φ|ε∇ ·

( ∇φ

|∇φ|ε
)

, t ∈ [0, T ], (4)

where the regularization parameter ε in (4) is chosen to satisfy the property to be a
small constant that is, typically, proportional to an average size of cells in numerical
computations. Note that we explain the proposed algorithm for the mean curvature
flow equation with γ = 1 in (2) and the algorithm is straightforwardly applied to
solve the general case, for example, γ = γ (x) in (1). The computational domain � is
discretized by open non-overlapping polyhedral cells �p ⊂ � with non-zero volume
|�p| �= 0, that is, �̄ = ⋃

p∈I �̄p, where I is the set of cell indices. For a fixed p ∈ I,
we denote the set Np as indices of neighbor cells where the cells �q , q ∈ Np have a
non-zero two-dimensional (2D) area intersection with�p. An internal face is denoted
by e f ⊂ ∂�q ∩∂�p and has a non-zero 2D area |e f | �= 0. The index set of all internal
faces is denoted by F . We similarly define the set B as the index set of all boundary
faces eb ⊂ ∂�p ∩ ∂� for p ∈ I with a non-zero 2D area |eb| �= 0. The indices of
faces in a cell �p, p ∈ I are split into two disjoint sets; the indices of internal faces
Fp and the indices of boundary faces Bp. The subscript f ∈ Fp is used as the index
of internal face e f and the subscript b ∈ Bp as the index of boundary face eb. For an
internal face e f , f ∈ Fp the outward normal vector to the face is denoted by np f ,
and its length is the area of the face, that is, |np f | = |e f |. Clearly, if f ∈ Fp ∩Fq for
q ∈ Np, then we have np f = −nq f . For an index of boundary face b ∈ Bp, we abuse
the notation to denote the outward normal vector to the boundary of computational
domain as nb = npb with |nb| = |eb|.

In this section, we focus on a spatial discretization, and then in the next section
we discuss a temporal discretization. To apply a finite volume method for a spatial
discretization, we integrate (4) on a cell �p:

∫
�p

1

|∇φ|ε
∂φ

∂t
=

∫
�p

∇ · (g∇φ) =
∑
f ∈Fp

∫
e f

g∇φ · n +
∑
b∈Bp

∫
eb
g∇φ · n, (5)

where g ≡ |∇φ|−1
ε and n is an outward normal vector. An approximation of the

normal flux g∇φ · n should be formulated at internal and boundary faces e f and eb,
respectively. The approximation in a finite volumemethod is represented by unknowns
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Fig. 1 An illustration of the
basic notation used in the flux
balanced approximation

φp = φ(xp), where xp is the center of cell �p, p ∈ I, and by Dirichlet boundary
conditions φb = φb(xb), where xb is the center of boundary face eb, b ∈ B. In the
case of Neumann boundary condition, the boundary flux can be directly replaced by
the given condition. To describe the spatial discretization, we introduce a notation
of directional vectors denoted by d and some proper indices. Namely, the vector
dαβ ≡ xβ − xα is defined by the directional vector from the point xα to the point xβ .

At the left-hand side of (5), we assume that a gradient at the center of cell xp ∈ �p

is constant on each cell �p:

∫
�p

1

|∇φ|ε
∂φ

∂t
≈ 1

|∇φp|ε
∫

�p

∂φ

∂t
, (6)

where the gradient is computed by the inverse distance weighted least-squares mini-
mization [35, 36]:

∇φp ≡ argmin
y∈R3

⎛
⎝ ∑

q∈Np

(φp + y · dpq − φq)
2

|dpq |2 +
∑
b∈Bp

(φp + y · dpb − φb)
2

|dpb|2

⎞
⎠ . (7)

The minimizer is directly obtained by multiplying the inverse weight matrix

Lp(φp, φb) ≡ ∇φp =
∑
q∈Np

M−1dpq

|dpq |2
(
φq − φp

) +
∑
b∈Bp

M−1dpb

|dpb|2
(
φb − φp

)
, (8)

where the weight matrix M is

M =
∑
q∈Np

dpq ⊗ dpq

|dpq |2 +
∑
b∈Bp

dpb ⊗ dpb

|dpb|2 ,

and v ⊗ w is the tensor product which gives a 3 × 3 matrix vwT for v, w ∈ R
3.
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At the right-hand side of (5), we begin with an approximation of the internal flux
at e f , f ∈ Fp ∩Fq . Since the normal flux at the internal face should be balanced, we
use the property of flux-balanced approximation:

∫
e f

gp∇φ · np f = −
∫
e f

gq∇φ · nq f . (9)

In order to discretize the above property, we temporally use an auxiliary variable
φ f = φ(x f ), where x f is the center of face e f . From an orthogonal splitting of the
vectors dp f and dq f ,

gpnp f = cpdp f + tp f and gqnq f = cqdq f + tq f , (10)

where np f ⊥ tp f and nq f ⊥ tq f in Fig. 1, we construct the discretization of (9):

cp(φ f − φp) + tp f · ∇φp = −cq(φ f − φq) − tq f · ∇φq , (11)

by approximations cp∇φ · dp f ≈ cp(φ f − φp) and cq∇φ · dq f ≈ cq(φ f − φq).
Constants cp and cq are directly computed from (10) using an orthogonality:

cp = gp
np f · np f

np f · dp f
and cq = gq

nq f · nq f
nq f · dq f . (12)

Now, we have the approximation for the internal normal fluxes in (5) by using the cell
and face center values:

∑
f ∈Fp

∫
e f

g∇φ · n ≈
∑
f ∈Fp

cp(φ f − φp) + tp f · ∇φp. (13)

Since the summation in (13) takes place in the cell �p, we approximate the value of
g in (13) by the constant gp. Expressing the auxiliary variable φ f from (11) by using
the values of cell centers and their gradients,

φ f = cp
cp + cq

φp + cq
cp + cq

φq − 1

cp + cq

(∇φp · tp f + ∇φq · tq f
)
, (14)

the discretization of internal flux can be written without φ f in (13):

∑
f ∈Fp

∫
e f

g∇φ · n ≈
∑
f ∈Fp

c̄pq(φq − φp) + c̄pq

(
∇φp · tp f

cp
− ∇φq · tq f

cq

)
, (15)

where

c̄pq = cpcq
cp + cq

. (16)
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The discretization of boundary flux is obtained similarly, and we obtain the final form
of spatial discretization:

1

|∇φp|ε
∫

�p

∂φ

∂t
=

∑
f ∈Fp

c̄pq(φq − φp) + c̄pq

(
∇φp · tp f

cp
− ∇φq · tq f

cq

)

+
∑
b∈Bp

cpb(φb − φp) + ∇φp · tpb,
(17)

where cpb = gpnb · nb/(nb · dpb), gpnb = cpbdpb + tpb, and nb ⊥ tpb, for b ∈ Bp.

Remark 1 A geometrical interpretation of summands in (17) brings us a connection to
the alternative derivation of the spatial discretization. The tangential vector tp f /cp in
(17) can be written as

− tp f
cp

= dp f − gp
cp

np f = dp f − np f · dp f

np f · np f
np f = xp′ − xp = dpp′ , (18)

where the relations (10) and (12) are used, and xp′ is a projection of xp onto the line

r f (s) = x f + snp f , s ∈ R, (19)

which passes through the center of face x f , and whose directional vector is np f , see
the Fig. 1. Similarly, we have also −tq f /cq = dqq ′ . Then, the internal normal fluxes
in (15) can be written in the following form by using φp′ ≈ φp + ∇φp · dpp′ and
φq ′ ≈ φq + ∇φq · dqq ′ and relations (12):

∑
f ∈Fp

∫
e f

g∇φ · n ≈
∑
f ∈Fp

c̄pq
(
φq ′ − φp′

)

=
∑
f ∈Fp

1

c−1
p + c−1

q

(
φq ′ − φp′

) =
∑
f ∈Fp

1
|dp′ f |
gp|np f | + |dq ′ f |

gq |nq f |

(
φq ′ − φp′

)

=
∑
f ∈Fp

|dp′ f | + |dq ′ f |
|dp′ f |
gp

+ |dq ′ f |
gq

φq ′ − φp′

|dp′q ′ | |np f |.

(20)

In such case, the internal normal flux is approximated by the directional difference of
the values φ at xp′ and xq ′ , which are the projection points of xp and xq , respectively,
onto the line r f given in (19). The directional difference is multiplied by the distance
weighted harmonic mean of gp and gq , see also [38].
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In the same manner of deriving (20), the boundary normal flux ∇φ · nb in (17) is
geometrically interpreted:

∑
b∈Bp

∫
eb
g∇φ · n ≈

∑
b∈Bp

cpb(φb − φp − ∇φp · dpp′) =
∑
b∈Bp

cpb(φb − φp′).

(21)

Combining (20) and (21), our discretization scheme (17) can be also written in the
form inspired by [38]:

1

|∇φp|ε
∫

�p

∂φ

∂t
=

∑
f ∈Fp

c̄pq(φq ′ − φp′) +
∑
b∈Bp

cpb(φb − φp′), (22)

from which we clearly recover (17).

3 Nonlinear Crank–Nicolsonmethod

Let us denote a size of time step as �t and φn
p = φ(xp, n�t), p ∈ I, and n ∈ N.

A given initial condition is denoted by φ0 ≡ (φ0
1 , φ

0
2 , . . . , φ

0
|I|)

T. Since the spatial
discretization (17) contains nonlinear terms, one can linearize it using a semi-implicit
method similar to [28, 31]. The numerical solution φn is then obtained by solving a
system of linear algebraic equations:

|�p|
�t

(
φn
p − φn−1

p

)
=

∑
f ∈Fp

αn−1
p f

(
φn
q − φn

p + ∇φn
q · dqq ′ − ∇φn

p · dpp′
)

+
∑
b∈Bp

αn−1
pb

(
φn
b − φn

p − ∇φn
p · dpp′

)
,

(23)

where the coefficients are

αn−1
p f = c̄n−1

pq |∇φn−1
p |ε and αn−1

pb = cn−1
pb |∇φn−1

p |ε, (24)

and the gradients are computed by the formula (8):

∇φn−1
p = Lp(φ

n−1
p , φn−1

b ). (25)

For a regular hexahedral mesh, it is rather straightforward to solve the linear system of
equations (23). In the case of polyhedralmesh in three-dimensional (3D) domain, some
practical issues should be considered. Comparing to the case of a regular hexahedral
mesh, non-zero coefficients of thematrix in (23) for a polyhedralmesh aremuchwidely
distributed because a polyhedron cell has in general a larger number of faces than a
hexahedron cell. It can cause a heavy computational cost to solve the linear algebraic
equation.Moreover, the presence of∇φq at the nth time step requires to use at least two
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overlapping layers of cells between decomposed domains for a parallel computation.
It causes a larger communication cost than when using only one overlapping layers of
cells.

In order to avoid the mentioned issues, we apply a deferred correction method in
(23). For n ≥ 1 and k ≥ 1, a numerical solution φn,k is updated from φn,k−1 and φn−1

by solving the following system of linear algebraic equations:

|�p|
�t

(
φ
n,k
p − φn−1

p

)
=

∑
f ∈Fp

αn−1
p f

(
φ
n,k
q − φ

n,k
p + ∇φ

n,k−1
q · dqq ′ − ∇φ

n,k−1
p · dpp′

)

+
∑
b∈Bp

αn−1
pb

(
φn
b − φ

n,k
p − ∇φ

n,k−1
p · dpp′

)
,

(26)

where φ
n,0
p ≡ φn−1

p , p ∈ I and

∇φn,k−1
p = Lp(φ

n,k−1
p , φn

b ), k ≥ 1. (27)

Rewriting (26) formally as the matrix equation:

An−1φn,k = f(φn,k−1), (28)

the kth iteration is stopped at the smallest Kn such that a residual error is smaller than
a chosen error bound η:

1

|I|
∑
p∈I

∣∣∣∣
(
An−1φn,Kn − f(φn,Kn )

)
p

∣∣∣∣ < η, (29)

where an above parenthesis with a subscript ()p denotes the pth component of a vector
in the parenthesis. Then, we define φn ≡ φn,Kn .

An experimental order of convergence is presented in Sect. 4 and it depends on a
choice of size of time step �t in (26). In the case of a regular hexahedral mesh, it is
expected to be a second-order convergence by using the semi-implicit method (23)
if a size of the time step is proportional to a square of an average size of cells. Such
a time step is unnecessary to obtain the second-order convergence for the normal or
advective flow terms in (2). In [25], a size of time step proportional to an average size of
cells is enough to obtain the second-order convergence in the iterative inflow-implicit
and outflow-explicit (IIOE) method. Therefore, in order to consistently combine the
time discretization for the mean curvature flow with the iterative IIOE method, we
propose here a nonlinear Crank–Nicolson method with a deferred correction method.
It is derived by combining a fully-implicit and a fully-explicit method, for n ≥ 1 and
k ≥ 1,

|�p|
�t

(
φ
n,k
p − φn−1

p

)
= 1

2

∑
f ∈Fp

α
n,k−1
p f

(
φ
n,k
q − φ

n,k
p + ∇φ

n,k−1
q · dqq ′ − ∇φ

n,k−1
p · dpp′

)

123
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+ 1

2

∑
b∈Bp

α
n,k−1
pb

(
φn
b − φ

n,k
p − ∇φ

n,k−1
p · dpp′

)

+ 1

2

∑
f ∈Fp

αn−1
p f

(
φn−1
q − φn−1

p + ∇φn−1
q · dqq ′ − ∇φn−1

p · dpp′
)

+ 1

2

∑
b∈Bp

αn−1
pb

(
φn−1
b − φn−1

p − ∇φn−1
p · dpp′

)
, (30)

where the coefficients are now given by

α
n,k−1
p f = c̄n,k−1

pq |∇φn,k−1
p |ε and α

n,k−1
pb = cn,k−1

pb |∇φn,k−1
p |ε . (31)

Again, rewritting (30) as a matrix equation

An,k−1φn,k = f(φn,k−1), (32)

the kth iteration is stopped at the smallest Kn such that the residual error is smaller
than the error bound η:

1

|I|
∑
p∈I

|
(
An,Knφn,Kn − f(φn,Kn )

)
p
| < η. (33)

Note that, opposite to (32), the coefficient matrix A of (28) from the semi-implicit
method does not change in a middle of the k-iteration (26). In Sect. 4, numerical
experiments using the semi-implicit and the nonlinear Crank–Nicolson methods are
presented to discuss about their advantages and disadvantages.

Combining the RHS of (30) and (A9), we finally obtain the proposed finite volume
method to solve a general type of level-set equation (2) on polyhedral meshes:

|�p|
�t

(
φn,k
p − φn−1

p

)
= −

∑
i∈F̄−

p

(
φn,k
q + Dqφ

n,k−1 · dqi − φn,k
p

)
an−1
pi

−
∑
i∈B̄−

p

(
φn
bi − φn,k

p

)
an−1
pi −

∑
i∈B̄+

p ∪F̄+
p

(
Dpφ

n−1 · dpi

)
an−1
pi

+ 1

2

∑
f ∈Fp

α
n,k−1
p f

(
φn,k
q − φn,k

p + ∇φn,k−1
q · dqq ′ − ∇φn,k−1

p · dpp′
)

+ 1

2

∑
b∈Bp

α
n,k−1
pb

(
φn
b − φn,k

p − ∇φn,k−1
p · dpp′

)

+ 1

2

∑
f ∈Fp

αn−1
p f

(
φn−1
q − φn−1

p + ∇φn−1
q · dqq ′ − ∇φn−1

p · dpp′
)

+ 1

2

∑
b∈Bp

αn−1
pb

(
φn−1
b − φn−1

p − ∇φn−1
p · dpp′

)
.

(34)
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Fig. 2 A polyhedral mesh in the cube domain �1 = [−1.25, 1.25]3 ⊂ R
3 is illustrated with the average

size of cells (35) h1 = 1.90 · 10−1 corresponding to the level N = 1 in Table 1. The shape of boundary of
�1 is shown on the right side and its inside is shown on the left side

Fig. 3 A polyhedral mesh for the domain �2 of complex shape is illustrated with the average size of cells
(35) h1 = 4.17 · 10−2 corresponding to the level N = 1 in Table 1. The shape of boundary of �2 is shown
on the right side and its inside is shown on the left side

Analogously to the previous methods, the kth iteration is stopped at the smallest Kn

such that a residual error is smaller than an error bound η in (33). In this case, a formal
matrix A and a vector f in (33) are obtained by (30) and (A9).

4 Numerical Experiments

Firstly, we use some exact solutions of (2) in order to quantitatively observe a behavior
of the proposed numerical algorithm (30). Since the advective or normal flowequations
and their combination are tested in [25], we mostly focus here on numerical tests
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Table 1 The average sizes of cells (35) for each level N are listed for the cube and the domain of complex
shape in Figs. 2 and 3, respectively

N 1 2 3 4

hN �1 1.90 · 10−1 9.52 · 10−2 4.76 · 10−2 2.48 · 10−2

�2 6.64 · 10−2 4.17 · 10−2 2.27 · 10−2 1.29 · 10−2

of the mean curvature flow equation and combinations with advective and normal
flow equations. Secondly, a qualitative comparison of numerical solutions between
hexahedral and polyhedral meshes are presented. Finally, as a typical example of the
engineering application of (2), the G-equation in a premixed turbulent combustion is
shown in a gasoline directed injection (GDI) engine at the end of this section. Note
that polyhedral meshes in Figs. 2, 3, and 6 are generated by AVL FIRETM.

The experimental order of convergence (EOC) is checked by using appropriate
norms of errors. The average size of cells is defined by

hN = 1

|IN |
∑
p∈IN

|�p|1/3B , N ∈ {1, 2, 3, 4}, (35)

where IN is the set of cell indices of the level N , |IN | is the number of cells, and
|�p|B is the volume of the smallest box aligned with the coordinate axes to enclose
the cell �p. The mesh of higher level is generated using smaller volumes of cells. The
four levels of meshes are used to compute the EOC with the average sizes of cells
listed in the Table 1. The following norms of the errors are used. The norms of errors
E2 and E∞ are the L2((0, T ) × �) and L∞(0, T ; L2(�)) norms of the difference
between an exact and a numerical solution, respectively. The norms of errors G2 and
G∞ are the L2((0, T )×�)3 and L∞(0, T ; L2(�)3) norms of the difference between
the gradient of exact and numerical solution, respectively. If E2 is used to compute a
corresponding EOC , it is computed by

EOCN = log(E2
N/E2

N−1)

log(hN/hN−1)
, N ∈ {2, 3, 4}, (36)

where E2
N is the norm of error E2 on the mesh of the level N .

We use the following default values for all examples in this section, if there are no
other comments: the threshold to stop the k-iteration as η = 10−10 in (33) and the
regularization parameter (4) as ε = h2N for each level N .

4.1 Experimental order of convergence (EOC)

We use two exact solutions of the mean curvature flow equation, that is, (2) with
ε = 0, v = 0, δ = 0, and γ = 1, computed on �1 in Fig. 2 and �2 in Fig. 3 in order
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Table 4 The EOC of numerical solution of (37) with l = 1 on a cube domain �1 is presented by using
the semi-implicit method

N E2 EOC E∞ EOC G2 EOC G∞ EOC

1 2.847 · 10−3 7.423 · 10−3 1.980 · 10−2 5.125 · 10−2

2 5.616 · 10−4 2.35 1.735 · 10−3 2.10 8.547 · 10−3 1.22 2.351 · 10−2 1.13

3 3.794 · 10−4 0.57 1.057 · 10−3 0.71 3.889 · 10−3 1.14 1.115 · 10−2 1.08

4 2.280 · 10−4 0.78 6.194 · 10−4 0.82 1.751 · 10−3 1.23 5.292 · 10−3 1.15

N E2 EOC E∞ EOC G2 EOC G∞ EOC

1 2.847 · 10−3 7.423 · 10−3 1.980 · 10−2 5.125 · 10−2

2 4.076 · 10−4 2.81 1.162 · 10−3 2.68 8.422 · 10−3 1.24 2.309 · 10−2 1.15

3 1.312 · 10−4 1.64 4.175 · 10−4 1.48 3.772 · 10−3 1.16 1.069 · 10−2 1.11

4 4.045 · 10−5 1.81 1.260 · 10−4 1.84 1.657 · 10−3 1.27 4.868 · 10−3 1.21

The top and bottom tables use a size of time step as �t1 and �t2 (38), respectively

to numerically check the EOC :

φl(x, t) =
( |x|2

4
+ t

)l/2

, (x, t) ∈ � × [0, T ], (37)

where l = 1 or 2,� = �1 or�2, and T = 0.16. The size of time step�tN = T /2N−1

is used for each level N ∈ {1, 2, 3, 4} in Table 1, which is proportional to the average
size of cells. In Tables 2 and 3, the EOCs of numerical solutions of (37) with l = 1
and l = 2 are presented, respectively, and the results of the proposed method and the
method in [36] are compared. The proposed numerical algorithm (30) shows that the
EOCs are close to 2 in the norms of errors E2 and E∞ on �1 and the EOCs are
larger than 1 in the norms of errors G2 and G∞ on �1 and �2. By comparing errors
in Table 2, we see that the proposed method and the method in [36] behaves similarly
in case of (37) with l = 1. On the other hand, in Table 3 for (37) with l = 2, the
proposed method shows better convergence order and it has about two or three times
lower error on fine meshes.

4.2 Time discretization and regularization parameter

The two time discretizations in Sect. 3 are compared by using the exact solution
(37) with l = 1 on �1 in Fig. 2. In Table 4, we purposely use the following two sizes
of time step for each level N in Table 1:

�t jN = C

(2N−1) j
, j = 1, 2, N ∈ {1, 2, 3, 4}, (38)

whereC = 0.04. Note that�t1N is chosen to be proportional to an average size of cells
and �t2N is to be proportional to a square of an average size of cells. In the case of the
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Table 5 The total number of
iterations to find a numerical
solution at T = 0.16 of (37)
with l = 1 on �1 are compared
between semi-implicit method
(23) and nonlinear
Crank–Nicolson method (30)

N 1 2 3 4

(23) K 1 24 48 80 128

K 2 24 80 293 1024

(30) K 1 52 120 288 580

The sizes of time step �t1 and �t2 (38) are used in K 1 and K 2 (39),
respectively

semi-implicit method (23), the EOC � 2 is obtained by the time step �t = �t2N , but
the EOC is reduced to be 1 by the time step �t = �t1N , with respect to the norms of
errors E2 and E∞. The EOCs with the norms of errorsG2 andG∞ are approximately
1 regardless of the sizes of time step. In the case of nonlinear Crank–Nicolson method
(30), even if the time step �t = �t1N which is, of course, larger than �t2N is used, the
EOC � 2 is obtained in cases of the norms of errors E2 and E∞ by using; see Table
2.

When comparing computational costs, a method that uses a larger size of time step
is not necessarily more efficient than a method that uses a smaller size of time step,
because of, e.g., the number of iterations in iterative solvers. Therefore, for the semi-
implicitmethod (23) and the nonlinear Crank–Nicolsonmethod (30), we count also the
total number of k-iteration to reach the final time T = 0.16 under the same stopping
threshold η = 10−10 in (29) and (33) in order to roughly estimate the computational
cost:

K j =
(2N−1) j∑
n=1

Kn, j = 1, 2. (39)

When K 1 is compared between the semi-implicit method (23) and the nonlinear
Crank–Nicolsonmethod (30) in Table 5, the semi-implicitmethod ismore efficient, but
it is only first order accurate. To obtain second-order accuracy with the semi-implicit
method, a size of time step proportional to a square of average size of cells should be
used, that can, eventually, result in more iterations. Therefore, comparing between
K 2 for the semi-implicit method (23) and K 1 for the nonlinear Crank–Nicolson
method (30), the nonlinear Crank–Nicolson method has a lower computational cost
with respect to the semi-implicit method when the highest level is used. It is caused
by the fact that �t14 is 8 times larger than �t24 . However, when the number of cells
is smaller, the semi-implicit method shows less computational cost. In practice, the
nonlinear Crank–Nicolson method for the regularized mean curvature flow equation
is a reasonable choice to achieve second-order accuracy when we consider to solve a
general type of level set equation, since a size of time step proportional to an average
size of cells is used for the advective or normal flow equations.

In the rest of subsection, the effect of regularization parameter (4) is briefly tested
for the exact solution of (37) with l = 2 on �2 in Fig. 3. From a numerical point of
view, the regularization parameter (4) is introduced to avoid a division by zero when
|∇φ| = 0 in (4), and it is chosen to have smaller values when the average size of
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Table 6 An effect of the regularization parameter ε on numerical solutions of (37) with l = 2 for the
domain �2 of complex shape. The top and bottom tables use ε = 10−8 and ε = hN , respectively, for each
level N in Table 1

N E2 EOC E∞ EOC G2 EOC G∞ EOC

1 7.023 · 10−4 1.952 · 10−3 1.127 · 10−2 2.950 · 10−2

2 2.019 · 10−4 2.67 5.587 · 10−4 2.68 5.364 · 10−3 1.59 1.484 · 10−2 1.47

3 3.726 · 10−5 2.79 1.034 · 10−4 2.78 2.022 · 10−3 1.61 5.991 · 10−3 1.50

4 7.612 · 10−6 2.81 2.123 · 10−5 2.80 9.192 · 10−4 1.40 2.792 · 10−3 1.35

N E2 EOC E∞ EOC G2 EOC G∞ EOC

1 1.013 · 10−3 3.056 · 10−3 1.217 · 10−2 3.159 · 10−2

2 3.253 · 10−4 2.44 1.025 · 10−3 2.34 5.670 · 10−3 1.64 1.525 · 10−2 1.56

3 8.189 · 10−5 2.28 2.697 · 10−4 2.20 2.103 · 10−3 1.64 6.063 · 10−3 1.52

4 2.283 · 10−5 2.26 7.618 · 10−5 2.24 9.370 · 10−4 1.43 2.803 · 10−3 1.37

Table 7 The EOC for the normal and mean curvature flow equation on �1 in Fig. 2 using numerical
solutions of (2) computed for v = 0, δ = 1, and γ = 1 with the initial condition φ0(x) = |x| until T = 1

N E2 EOC E∞ EOC G2 EOC G∞ EOC

1 1.824 · 10−2 3.058 · 10−2 9.262 · 10−2 1.211 · 10−1

2 3.255 · 10−3 2.49 4.610 · 10−3 2.74 3.339 · 10−2 1.48 5.397 · 10−2 1.17

3 1.144 · 10−3 1.51 1.519 · 10−3 1.60 1.423 · 10−2 1.23 2.942 · 10−2 0.88

4 3.186 · 10−4 1.97 4.471 · 10−4 1.88 5.992 · 10−3 1.33 1.576 · 10−2 0.96

cells is getting smaller. In Table 6, the comparison of using the values ε = 10−8 and
ε = hN for each level N in Table 1 is presented. Additionally, the case with ε = h2N is
presented at the bottom of Table 3. Note that the choice of ε = 10−8 is smaller of order
10−4 than any values of ε = h2N , so it is practically very small constant regardless of
the average size of cells for the tested levels with �1. The EOCs for the norms of
errors E2 and E∞ are larger than 2 and the EOCs for the norms of errors G2 and G∞
are larger than 1 for all cases. The error values obtained by ε = 10−8 and ε = h2N are
nearly same. However, the errors with ε = hN from E2 and E∞ are nearly 2 times
larger than with ε = 10−8 or ε = h2N . In order to deal with diverse sizes of cells in a
polyhedral mesh, a fixed regularization parameter is preferred to be practically used.

4.3 General level set equation

In this section, an exact solution of (2) described in [40] is used to numerically check
the EOC on�1 in Fig. 2 for general level-set equations.We briefly explain the solution
φ(x, t) for the initial condition φ0(x) = |x| and some constants δ and γ > 0 in (2).
Since an evolved profile of each level surface for φ(x, t) should preserve a spherical
shape. the governing equation with v = 0 and ε = 0 in (2) of the change of radius
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Table 8 The EOC for the advective, normal, and mean curvature flow equation on �1 in Fig. 2 using
numerical solutions of (2) computed for δ = 0.1, γ = 1, and the rotational velocity (45) with the initial
condition φ0(x) = |x − x0| until T = 1

N E2 EOC E∞ EOC G2 EOC G∞ EOC

1 9.288 · 10−3 1.343 · 10−2 8.315 · 10−2 1.124 · 10−1

2 2.801 · 10−3 1.73 3.674 · 10−3 1.88 3.241 · 10−2 1.36 5.317 · 10−2 1.08

3 9.483 · 10−4 1.56 1.191 · 10−3 1.62 1.413 · 10−2 1.20 2.796 · 10−2 0.93

4 2.550 · 10−4 2.02 4.858 · 10−4 1.38 6.085 · 10−3 1.30 1.646 · 10−2 0.82

r(t) ≥ 0 can be written:

dr

dt
= δ + γ

2

r
, r(0) = r0 > 0. (40)

Note that 2
r is the mean curvature of a sphere with a radius r . The exact solution of

(40) is obtained by using Lambert function W , that is, z = W(zez):

r(t) = ξ−1
(
1 + W

(
(−1 + ξr0)e

−1+ξr0+δt
))

, (41)

where ξ = δ
2γ . Consequently, for the initial condition φ0(x) = |x|, the exact solution

of (2) with ε = 0, v = 0, δ > 0, and γ > 0 is

φ(x, t) = ξ−1 (1 + ψ(x, t)) , ψ(x, t) ≡ W
(
(−1 + ξ |x|)e−1+ξ |x|+δt

)
, (42)

and its gradient is computed analytically by

∇φ(x, t) =
(

ξψ(x, t)
(−1 + ξ |x|)(1 + ψ(x, t))

)
x. (43)

Note that the part,−1+ξ |x|, of denominator in the gradient is eliminated byψ defined
in (42) because of the Taylor series expansion of Lambert function:

W(x) =
∞∑
n=1

(−1)n−1

n! xn . (44)

In Table 7, we present the EOC of normal and regularized mean curvature flow
equation by choosing v = 0 and δ = γ = 1 in (2). The numerical solution for
the propose algorithm (34) is computed until T = 1 by using the size of time step
�t = �t1N in (38). The EOCs for the norms of errors E2 and E∞ are close to 2 and
the EOCs for the norms of errors G2 and G∞ are larger than 1. In Table 8, the EOCs
of the advective, normal, and regularized mean curvature flow equation are presented.
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The numerical solution is computed by choosing δ = 0.1, γ = 1, and the rotational
velocity

v(x) = (πx2,−πx1, 0) (45)

in (2) with the initial condition, φ0(x) = |x − x0|, where x0 = (−0.625, 0, 0). The
size of time step �t = �t1N in (38) is used until T = 1. The exact solution and its
gradient are obtained using (42) and (43) with a rotational transformation. The EOCs
for the norm of error E2 are close to 2 and the EOC for the norm of error E∞ is close
to 1.3. The EOC for the norms of errors G2 and G∞ are close to 1.

4.4 Qualitative comparisons

Two examples are presented to qualitatively compare numerical solutions of general
level-set equations in (2). The first example is chosen in order to show a behavior of
the solution as an evolution of the zero level set of a signed distance function. We
choose the initial surface,

S =
3⋃

i=1

Si , Si ≡
{
x ∈ �i : max

j∈{1,2,3}{|χ
i
j x j |} = 1

}
, (46)

where �i = {
x ∈ R

3 : |xi | ≥ 1
}
, χ1 = (0.5, 1, 1), χ2 = (1, 0.5, 1), and χ3 =

(1, 1, 0.5). The initial functionφ0 is analytically obtained by a signed distance function
whose zero level set is the initial surface S. We use a negative and positive distance
inside and outside of S, respectively. This particular choice of the sign of the initial
condition in (2) brings an expansion or shrinkage of the zero level surface along the
surface normal when δ is positive or negative, respectively. In Fig. 4, the rotational
velocity 5v where v is given in (45) and γ = 1 are fixed for each example, and we
change δ in order to see an effect on the evolution of zero level set. The numerical
solutions are computed by using the proposed algorithm (34) with the size of time step
�t = 10−3 on the computational domain �1 of level 2 in Table 1. Note that a zero
Neumann boundary condition is applied because of unknown exact solution. From the
top left to the bottom right in Fig. 4, we present three results by using δ = 0.1(left),
δ = 1(middle), and δ = 5(right) on each picture. Since the mean curvature flow forces
the evolving surface to converge to a point in a finite time, the zero level surface (46)
is going to vanish at a point. However, if we use a large expansion speed δ in (2), the
initial surface can expand and does not vanish at a point, which can be observed in the
rightmost case of each picture in Fig. 4.

In the second example, we use the Dragon surface from the Stanford 3D scanning
repository1 in order to qualitatively compare numerical results of proposed algorithm
(30) to solve the regularized mean curvature flow equation (4) on hexahedral and
polyhedralmeshes. For the hexahedralmesh, the box domain�3 = [−0.101, 0.111]×
[−0.061, 0.091] × [−0.049, 0.053] is discretized by 207 × 150 × 100 cells, which

1 http://graphics.stanford.edu/data/3Dscanrep.
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Fig. 4 Two columns present sets of triplet figures for three different δ evolving in time; δ = 0.1 (left), δ = 1
(middle), and δ = 5 (right) and with the fixed rotational velocity 5v in (50) and γ = 1. The size of time
step is �t = 10−3. From top left to bottom right, numerical results at Ti ≡ �t + i · 10−2 are presented.
The evolution of zero level set shows an effect of different normal speeds in the general level set equation
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Fig. 5 In each picture, the left and right sides illustrate an evolution of the numerical solution of regularized
mean curvature flow on the hexahedral and the polyhedral mesh of box domain �3, respectively. From the
top left to the bottom right, the numerical results at Ti ≡ (i − 1)�t with �t = 5 · 10−6 are presented
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Fig. 6 A top view of a production GDI engine cylinder (left) and polyhedral cells in the mesh close to a
part of spark ignition plug (right) are illustrated

results in 3,105,000 hexahedral cells and the average size of cells h = 1.02 · 10−3.
For the polyhedral mesh, 2,451,033 polyhedral cells are generated resulting in h =
1.49 · 10−3. The size of time step �t = 5 · 10−6 is used in the nonlinear Crank–
Nicolson method (30). The reason to choose a relatively small size of the time step is
to illustrate the details of topological changes in evolved surfaces. The initial condition
is a signed distance function to the Dragon surface. The evolution of zero level set is
illustrated in Fig. 5. Since an exact solution is unknown, we apply a zero Neumann
boundary condition. The topological change looks indistinguishable for both types of
the mesh, and the location and the time of vanishing point in the regularized mean
curvature flow for two meshes are very similar.

4.5 G-equation

In real application, we add a constant parameter C > 0 to control overall speed of
flame surface from the G-equation (1):

ρ̄
∂G̃

∂t
+ ρ̄ṽ · ∇G̃ = C ρ̄us

0
T |∇G̃| − ρ̄Dt κ̃|∇G̃|. (47)

Note that the zero level set of G̃ is the Favre mean turbulent flame surface. When
the constant C > 1 (or C < 1), the burning speed is faster (or slower) than a given
turbulent burning velocity s0T .

The governing Eq. (2) with ε = 0 contains all terms in (47) to propagate the thin
flame surface. In Fig. 6, a production GDI engine is discretized by a polyhedral mesh
and a detailed view of the inside mesh close to a spark ignition plug is illustrated. A
size of a cell is hugely changed because of complicated shape of boundary and two
boundary layers. In Fig. 7, the parameter values, η = 10−8 and ε = h, are used and
a propagation of the Favre mean turbulent flame surface is presented by red surfaces
which are the zero level set of G̃ in (47). From the top left to the bottom right, the
bottom of computational domain is moved downwards in order to properly simulate
a movement of piston in a combustion engine. An ignition procedure is started from
the crank angle (CA) 705◦.
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Fig. 7 Red surfaces present a propagation of the Favre mean turbulent flame surface, that is, the zero level
set of G̃ in (47). The flame surface is ignited at CA = 705◦

One can observe that some topological changes of flame structures are computed
without any instabilities. A detail explanation of obtaining all burning velocities to
evolve the flame surface is unfortunately beyond a scope of this paper. To understand
a whole premixed combustion simulation from G-equation approach, we refer the
interested readers to complete references [3, 42]. In the Fig. 8, a mean pressure graph
(Pa) versusCA (deg) is presented. The dotted curve represents ameasurement data and
the solid red curve is obtained from the simulation result of G-equation combustion
model in AVL FIRETM with the parameter adjustment, that is, C = 0.685. The peaks
of highest mean pressure and the maximizers of mean pressure are very close enough
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Fig. 8 A mean pressure graph (Pa) versus CA (deg) in the GDI engine cylinder in Fig. 6 is presented. The
dotted blue curve is a measurement data and the solid red curve is the simulation result with C = 0.685 in
AVL FIRETM

that indicates that theG-equation combustionmodel properly simulates ameasurement
of GDI engine.

5 Conclusion

In this paper, we propose the second-order accurate finite volume method to numeri-
cally solve the general level-set equation on polyhedral meshes. The choice of degrees
of freedom is restricted to the centers of cells in order to achieve a low computational
cost. The main focus is to design a numerical algorithm for the regularized mean cur-
vature flow equation which can be consistently combined with the previous numerical
algorithm for the advective or normal flow equations. In the case of regularized mean
curvature flow equation, concerning a spatial discretization, the flux-balanced approx-
imation and the orthogonal splitting are used at the faces between two polyhedral cells
with the explicit reconstruction of gradients using the weighted least-squares min-
imization. For a temporal discretization, we propose the nonlinear Crank–Nicolson
methodwith the deferred correctionmethod in order to obtain an efficient algorithm for
parallel computations using 1-ring neighborhood structure in decomposed domains.
The size of time step is proportional to an average size of cells, which brings a con-
sistent combination with the advective and normal flow equations in order to obtain
the second-order convergence for level-set equations. The proposed method is imple-
mented in AVL FIRETM and tested on several examples to check the experimental
order of convergence or to show some qualitative properties.

123



1078 J. Hahn et al.

Acknowledgements The work was supported by grants VEGA 1/0314/23, VEGA 1/0436/20, and APVV-
19-0460. This project No. 2140/01/01 has received funding from the European Union’s Horizon 2020
research and innovation programme under the Marie Skłodowska-Curie grant agreement No. 945478.

Data Availability The data that support the findings of this study are available on request from the corre-
sponding author.

Appendix A: Iterative IIOEmethod

In order to complete the finite volume method to solve (2), we briefly review the
iterative inflow-implicit outflow-explicit method (IIOE) [24, 25] of discretizing the
advective and normal flow equations which appear in the second and third term of
(2):

∂φ

∂t
+ u · ∇φ = 0. (A1)

The following two forms of the velocity function u are considered:

u = v(x, t) or u = δ
∇φ

|∇φ| , (x, t) ∈ � × [0, T ], (A2)

that describes the advective and normal flow, respectively, for an evolution of surface
described by a zero level set of φ. Without a loss of generality, we choose the spatial
variable δ = δ(x) as the constant δ = 1 in (4) for the rest of derivation of the method.

Firstly, we introduce a spatial discretization, and, secondly, we discuss a temporal
discretization. Let us denote the set of indices F̄p and B̄p of triangles obtained by a
tessellation of internal and boundary faces e f , f ∈ Fp and eb, b ∈ Bp, respectively;
see more details how to construct the tessellation in [25]. For a triangle index i ∈ F̄p,
ēi is the triangle as a subset of some face e f , f ∈ Fp. Furthermore, n̄pi is the outward
normal vector to the triangle whose length is the area of ēi , and x̄i is the center of
the triangle. Using the Gauss divergence theorem on (A1), the spatial discretization is
obtained:

∫
�p

∂φ

∂t
+

∑
i∈F̄p∪B̄p

api
(
φpi − φp

) = 0, api ≡
∫
ēi
u · n̄pi ≈ u (x̄i , t) · n̄pi , (A3)

where φpi is an approximated value defined at the center of the triangle x̄i . Note that
the flux api is computed using Gaussian quadrature of degree 1 which insures the
exactness of integration as polynomials of degree 1.

A crucial point in (A3) is how to approximate the value φpi . In order to obtain a
second-order accurate upwind scheme, we prepare some values at vertices and gra-
dients at centers of tessellated triangles in the following procedure. A value φ(xv) at
an internal vertex is computed by an inverse distance weighted average from adjacent
cells. For the fixed vertex xv , let us denote a set of indices of cells containing xv as a
vertex, Nv ≡ {

p ∈ I : xv ∈ ∂�p
}
. Then the value at internal vertex is obtained by
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the inverse distance weighted average of the first order Taylor polynomial:

φ(xv) =
∑

p∈Nv
|dpv|−1(φ(xp) + ∇φ(xp) · dpv)∑

p∈Nv
|dpv|−1 .

Note that a value at boundary vertex is directly assigned by Dirichlet boundary con-
dition. From the obtained vertex values, a gradient at a center of tessellated triangle
is computed. For an internal triangle ēi ⊂ e f , f ∈ Fp, there exists q ∈ I such that
e f ⊂ ∂�p∩∂�q . Then, we consider two tetrahedrons whose apices are xp and xq and
they have the common base ēi . We denote the set of all vertices of the tetrahedrons as
Pi . Then, the gradient β̄ i at the center of ēi is computed by the weighted least-squares
minimization:

(ᾱi , β̄ i ) = argmin
(ai ,bi )∈R4

∑
y∈Pi

wi (y)
∣∣ai + bi · (x − x̄i ) − φ(x)

∣∣2, (A4)

where x̄i is the center of ēi the weight function is defined by wi (y) = |y− x̄i |−2. The
formula (A4) is a generalization of the diamond-cell method described for a regular
structured hexahedron cell in [20]. Now, we define a so-called average-based gradient
[19] as the inverse distance weighted average of gradients:

Dpφ =
∑

i∈F̄p
|dpi |−1β̄ i∑

i∈F̄p
|dpi |−1 , dpi = xp − x̄i . (A5)

Finally, we compute the value φpi at an internal triangle ēi ⊂ e f , f ∈ Fp, in (A3)
using the average-based gradient and the upwind principle:

φpi =
{

φp + Dpφ · (x̄i − xp) if api ≥ 0,

φq + Dqφ · (x̄i − xq) if api < 0,
(A6)

where the neighbor cell index q ∈ I is such that e f ⊂ ∂�p ∩ ∂�q . The value φpi at
a boundary triangle ēi ⊂ eb, b ∈ Bp, in (A3) is computed by

φpi =
{

φp + Dpφ · (x̄i − xp) if api ≥ 0,

φbi if api < 0,
(A7)

where φbi ≡ φb(x̄i ) from Dirichlet boundary condition. We finally obtain the spatial
discretization from (A6) and (A7):

∫
�p

∂φ

∂t
= −

∑
i∈F̄−

p

(
φq + Dqφ · dqi − φp

)
api −

∑
i∈F̄+

p

(Dpφ · dpi
)
api

−
∑
i∈B̄−

p

(
φbi − φp

)
api −

∑
i∈B̄+

p

(Dpφ · dpi
)
api ,

(A8)
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where F̄−
p and B̄−

p are the subsets of F̄p and B̄p with api < 0, respectively, and

F̄+
p ≡ F̄p\F̄−

p , B̄+
p ≡ B̄p\B̄−

p .
Concerning the time discretization, we apply the deferred correction method

because of the same reasons as discussed in Sect. 3. Following the analogous notations
as in previous sections, the IIOE method inspired by [20–23] is defined by using an
implicit and explicit time discretization of terms in (A8) on an inflow and outflow
triangle, respectively:

|�p|
�t

(
φn,k
p − φn−1

p

)
= −

∑
i∈F̄−

p

(
φn,k
q + Dqφ

n,k−1 · dqi − φn,k
p

)
an−1
pi

−
∑
i∈B̄−

p

(
φn
bi − φn,k

p

)
an−1
pi −

∑
i∈B̄+

p ∪F̄+
p

(
Dpφ

n−1 · dpi

)
an−1
pi ,

(A9)

where φn,0 = φn−1. Note that the average-based gradient Dpφ
n,k−1 is computed by

values at centers of cells from φn,k−1 and values at centers of boundary faces from
the nth time level.
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