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and Branislav Basara

Abstract A cell-centered finite volume method is used to numerically solve a reg-
ularized mean curvature flow equation on polyhedral meshes. It is based on an over-
relaxed correctionmethod used previously for linear diffusion problems. An iterative
nonlinear Crank-Nicolson method is proposed to obtain the second-order accuracy
in time and space. The proposed algorithm is used for three-dimensional domains
decomposed for parallel computing for two examples that numerically verify the
second order accuracy on polyhedral meshes.
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1 Introduction

A finite volume method to solve the level set formulation of regularized mean cur-
vature flow [15] on a bounded Lipschitz continuous domain Ω ⊂ R

3 is presented:

∂φ

∂t
= |∇φ|ε∇ ·

( ∇φ

|∇φ|ε
)

, |∇φ|ε = (ε2 + |∇φ|2)1/2, (1)
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where the regularization parameter ε > 0 is used as a small constant [6]. The initial
and Dirichlet boundary conditions are defined by

φ(x, 0) = φ0(x), x ∈ Ω,

φ(x, t) = φb(x, t), (x, t) ∈ ∂Ω × (0,T ]. (2)

The level set form of mean curvature flow equation and its modifications are exten-
sively used in numerical applications like the filtering or segmentation in image pro-
cessing [11], the G-equation in combustion models of computational fluid dynamics
[16], and the interface problems in material science; see more details in [8, 14, 17]
and the references therein.

To solve (1) numerically and to develop related mathematical theories, several
methods are used: the finite difference [13, 17], the finite element [3], and the finite
volume methods [7, 11, 19]. In this paper, a method based on a cell-centered finite
volume method is proposed in order to use the smallest number of unknowns on a
polyhedron mesh. For a spatial discretization, one of practically used algorithms in
computer-aided engineering to discretize an elliptic operator on polyhedron meshes,
so-called over-relaxed correction method, is considered [4, 12], because a formal
expansion of the right-hand side of (1) is a combination of a Laplacian and a non-
linear term of second order derivatives; see more details in [18]. For a temporal
discretization, a nonlinear Crank-Nicolson method [1] is considered in order to have
the second order accuracy with a time step size proportional to the space discretiza-
tion step. In such a way, the proposed method can be conveniently combined with
second order accurate methods for an advective or normal flow equation [9, 10],
e.g., for the G-equation model [16]. We also use a deferred correction method [2] in
order to achieve computational efficiency with a 1-ring face neighborhood structure
on domains decomposed for parallel computing.

The paper is organized as follows. In Sect. 2.1, we derive the spatial discretiza-
tion based on the over-relaxed correction method. In Sect. 2.2, the iterative nonlinear
Crank-Nicolson method is proposed. In Sect. 3, the experimental order of conver-
gence for two exact solutions on two computational domains is presented.

2 Cell-Centered Finite Volume Method

The computational domain Ω ⊂ R
3 is discretized by open non-overlapping polyhe-

dral cells Ωp and I is the set of cell indices. We indicate a set Np as adjacent cell
indices to Ωp, where the cells Ωq, q ∈ Np have a non-zero area intersection with Ωp.
An internal face, the result of such intersection, is denoted by ef ⊂ ∂Ωq ∩ ∂Ωp and
the set of all internal faces in a mesh is denoted by F . We similarly define a set B
as the index set of all boundary faces eb ⊂ ∂Ωp ∩ ∂Ω for p ∈ I . The face indices of
a cell Ωp, p ∈ I belong either to the set Fp ⊂ F or to the set Bp ⊂ B. A numerical
solution at time t is represented by unknowns φp ≈ φ(xp, t), where xp is the center
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of cell Ωp. The Dirichlet boundary condition in (2) is evaluated at the centers xb of
boundary faces eb, i.e., φb = φb(xb, t).

We integrate (1) on Ωp, p ∈ I ,

∫
Ωp

1

|∇φ|ε
∂φ

∂t
=

∫
Ωp

∇ · (g∇φ) =
∑

f ∈Fp∪Bp

∫
ef

g∇φ · n, (3)

where g = |∇φp|−1
ε , andn is an outward normal vector.An approximation of gradient

∇φ on a cell Ωp, ∇φp ≈ ∇φ(xp, t), is computed by an inverse distance weighted
least-squares minimization [5, 12]:

∇φp ≡ Lp(φp, φb) = argmin
y∈R3

⎛
⎝ ∑

q∈Np∪Bp

|dpq|−2(φp + y · dpq − φq)
2

⎞
⎠ . (4)

The notation dαβ ≡ xβ − xα for directional vectors is used throughout the paper.
In Sect. 2.1, we present a spatial discretization of (3), including an approximation

of normal flux g∇φ · n. Afterwards, in Sect. 2.2, we discuss a temporal discretization.

2.1 Over-Relaxed Correction Method

In a derivation of spatial discretization, we follow mostly [4, 12]. We assume that
all variables are continuous at the face centers xf , f ∈ F , and we denote their values
by the subscript f . For an internal face ef , the normal flux in (3) at time t is first
approximated by

f ∈ Fp ⇒
∫
ef

g∇φ · n ≈ gf ∇φf · npf , (5)

where npf is the outward normal vector to the face such that |npf | = |ef |.
We use an orthogonal decomposition of the vector dpq with respect to npf and tf ,

npf ⊥ tf , written formally in the form

dpq = gf
cf

npf − tf , (6)

where

cf = gf
npf · npf

npf · dpq
, tf =

(
npf

|npf | · dpq

)
npf

|npf | − dpq.
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Fig. 1 In a, the notation for
an internal face ef , f ∈ Fp is
shown, and dp′p ⊥ npf . In b,
the notation for a boundary
face eb, b ∈ Bp is shown with
the gray region being outside
of the computational
domain, and dp′p ⊥ npb

(b)(a)

Note that tf = dp′p in Fig. 1a. Rewriting (6) as gf npf = cf (dpq + tf ), we can derive
the approximation:

gf ∇φf · npf ≈ cf
(
φq − φp + ∇φf · tf

)
. (7)

The face gradient ∇φf is approximated from gradients in the adjacent cells,

∇φf = ωqf ∇φp + ωpf ∇φq, ωpf + ωqf = 1, ωpf = |dpf |
|dpf | + |dqf | .

Similarly, for a boundary face, the normal flux g∇φ · n in (3) is approximated by

b ∈ Bp ⇒
∫
eb

g∇φ · n ≈ gp∇φp · npb. (8)

Using analogous orthogonal decomposition of dpb in Fig. 1b, and gpnpb = cb(dpb +
tb), where npb ⊥ tb, it gives us a discretization:

gp∇φp · npb ≈ cb(φb − φp + ∇φp · tb), (9)

where

cb = gp
npb · npb

npb · dpb
, tb =

(
npb

|npb| · dpb

)
npb

|npb| − dpb.

Note that tb = dp′p in Fig. 1b.
Substituting (5), (7), (8), and (9) in (3), and assuming a constant approximation

of φp and ∇φp on a cell Ωp in the left hand side of (3), we have the final spatial
discretization:

|Ωp|
|∇φp|ε

d

dt
φp =

∑
f ∈Fp

cf (φq − φp + ∇φf · tf ) +
∑
b∈Bp

cb(φb − φp + ∇φp · tb). (10)
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2.2 Iterative Nonlinear Crank-Nicolson Method

Let us denote a time step as Δt, and φn
p ≈ φ(xp, nΔt), p ∈ I , and n ∈ N. The values

given by the initial condition in (2) are denoted by φ0 = (φ0
1 , . . . , φ

0
|I |)T. To compute

φn, we use a nonlinearCrank-Nicolsonmethodwith a deferred correctionmethod [2].
For n ≥ 1 and k ≥ 1, the method to solve (10) is presented:

|Ωp|
Δt

(
φn,k
p − φn−1

p

)
= 1

2

∑
f ∈Fp

α
n,k−1
pf

(
φn,k
q − φn,k

p + ∇φ
n,k−1
f · tf

)

+ 1

2

∑
b∈Bp

α
n,k−1
pb

(
φn
b − φn,k

p + ∇φn,k−1
p · tb

)

+ 1

2

∑
f ∈Fp

αn−1
pf

(
φn−1
q − φn−1

p + ∇φn−1
f · tf

)

+ 1

2

∑
b∈Bp

αn−1
pb

(
φn−1
b − φn−1

p + ∇φn−1
p · tb

)
, (11)

where α
n,k−1
pf ≡ cn,k−1

f |∇φn,k−1
p |ε and αn−1

pf ≡ cn−1
f |∇φn−1

p |ε, for f ∈ Fp ∪ Bp. Note

that ∇φn,k−1
p ≡ Lp(φn,k−1

p , φn
b) and ∇φn−1

p ≡ Lp(φn−1
p , φn−1

b ). Moreover, for k = 0

the values are determined from the previous time step, e.g., α
n,0
pf = αn−1

pf . For each
n and k, one has to solve a system (11) of linear algebraic equations, where the
elements of the matrix for the system can change with each n and k. Note that the
original nonlinear Crank-Nicolson method [1] should use the terms ∇φ

n,k
f · tf and

∇φ
n,k
b · tb in (11) instead of ∇φ

n,k−1
f · tf and ∇φ

n,k−1
b · tb, respectively. However,

using the original form brings computational difficulties in general when practical
industrial problems are solved because of a larger number of non-zero coefficients
in the matrix and a larger communication cost for parallel computing. Therefore, the
iterative deferred correction method is used in (11).

Rewriting (11) formally as a matrix equation An,k−1φn,k = F(φn,k−1), the k th

iteration is stopped at the smallest Kn such that a residual error is smaller than a
chosen error bound η:

1

|I |
∑
p∈I

∣∣∣(An,Knφn,Kn − F(φn,Kn)
)
p

∣∣∣ < η. (12)

Then, we define φn ≡ φn,Kn .
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3 Numerical Experiments

Two exact solutions of themean curvature flow equation are used in order to check the
experimental order of convergence (EOC) of proposed algorithm (11). The numerical
solutions are computed for two domains using polyhedral meshes generated by AVL
FIRETM in Fig. 2. For all examples in this paper, we use the threshold η = 10−10

in (12) to stop the iteration. Moreover, we stop the iterations if k > 100 in (11). The
EOC is computed by using an average discretization size,

h = 1

|I |
∑
p∈I

|Ωp|1/3 , (13)

and four meshes for which h is decreasing. In Fig. 2, the polyhedral mesh in the cube
domain Ω1 is shown with h = 1.90 × 10−1 and we use the related finer meshes with
the average discretization sizes h = 9.52 × 10−2, 4.76 × 10−2, and 2.48 × 10−2.
The polyhedral mesh in the domainΩ2 of more complex shape has h = 6.64 × 10−2

and the related finer meshes have h = 4.17 × 10−2, 2.27 × 10−2, and 1.29 × 10−2.
Four types of the norms are used to compute the EOC. The errors E2 and E∞ are the
L2((0,T ) × Ω) and L∞(0,T ;L2(Ω)) norms of the difference between the exact and
the numerical solutions, respectively. The errorsG2 andG∞ are the L2((0,T ) × Ω)3

and L∞(0,T ;L2(Ω)3) norms of the difference between the gradient of the exact and
the numerical solutions, respectively.

The two exact solutions of (1) for ε = 0 on the domains in Fig. 2 are used:

φi(x, t) =
( |x|2

4
+ t

)i/2

, (14)

where (x, t) ∈ Ωi × [0,T ], i = 1, 2, and T = 0.16. Note that the regularization
parameter in (11) is chosen as ε = h2. The functions φ0 and φb in the initial and
boundary conditions are obtained from the given exact solution.

Fig. 2 A half cut view of polyhedral meshes in a cube domain Ω1 = [−1.25, 1.25]3 ⊂ R
3 (left)

and in a domain Ω2 of a complex shape (right)
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Table 1 The EOC of numerical solution of (1) using the exact solution in (14) with i = 1 on Ω1
(top) and Ω2 (bottom) is presented by using the iterative nonlinear Crank-Nicolson method (11)

N E2 EOC E∞ EOC G2 EOC G∞ EOC

1 3.54 ×
10−3

9.41 ×
10−3

2.36 ×
10−2

6.60 ×
10−2

2 7.39 ×
10−4

3.36 2.15 ×
10−3

3.17 9.58 ×
10−3

1.93 3.00 ×
10−2

1.69

3 2.08 ×
10−4

2.09 7.59 ×
10−4

1.72 4.46 ×
10−3

1.26 1.72 ×
10−2

0.92

4 4.70 ×
10−5

2.64 2.35 ×
10−4

2.08 1.86 ×
10−3

1.55 8.24 ×
10−3

1.30

N E2 EOC E∞ EOC G2 EOC G∞ EOC

1 7.03 ×
10−4

2.01 ×
10−3

1.03 ×
10−2

3.61 ×
10−2

2 2.30 ×
10−4

2.40 8.58 ×
10−4

1.82 4.92 ×
10−3

1.59 2.21 ×
10−2

1.05

3 5.43 ×
10−5

2.38 3.49 ×
10−4

1.49 2.05 ×
10−3

1.45 1.22 ×
10−2

0.98

4 1.73 ×
10−5

2.03 1.44 ×
10−4

1.56 9.67 ×
10−4

1.33 7.19 ×
10−3

0.93

Table 2 The EOC of numerical solution of (14) with i = 2 on Ω1 (top) and Ω2 (bottom) is
presented by using the iterative nonlinear Crank-Nicolson method (11)

N E2 EOC E∞ EOC G2 EOC G∞ EOC

1 5.02 ×
10−3

1.49 ×
10−2

4.79 ×
10−2

1.24 ×
10−1

2 1.06 ×
10−3

3.33 2.81 ×
10−3

3.57 1.88 ×
10−2

2.01 4.99 ×
10−2

1.94

3 3.01 ×
10−4

2.08 8.94 ×
10−4

1.89 7.73 ×
10−3

1.46 2.26 ×
10−2

1.31

4 8.60 ×
10−5

2.22 2.74 ×
10−4

2.09 3.15 ×
10−3

1.59 9.85 ×
10−3

1.47

N E2 EOC E∞ EOC G2 EOC G∞ EOC

1 9.72 ×
10−4

2.58 ×
10−3

1.41 ×
10−2

3.92 ×
10−2

2 2.91 ×
10−4

2.58 8.03 ×
10−4

2.51 6.68 ×
10−3

1.59 2.02 ×
10−2

1.42

3 6.08 ×
10−5

2.59 1.79 ×
10−4

2.48 2.46 ×
10−3

1.65 7.99 ×
10−3

1.53

4 2.10 ×
10−5

1.88 6.64 ×
10−5

1.76 1.15 ×
10−3

1.35 3.83 ×
10−3

1.30
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In Tables1 and 2, the EOC of numerical solutions of (14) with i = 1 and i = 2 are
presented, respectively. We choose the time step Δt = T/2N−1 for N ∈ {1, 2, 3, 4},
where N = 1 for the coarsest mesh and N = 4 for the finest mesh. The iterative
nonlinear Crank-Nicolson method (11) shows EOC � 2 in the error norms E2 and
E∞ on Ω1 and the EOC is larger than 1 in the error norms G2 and G∞. Note that
in the case of domain Ω2, the EOC is partially influenced by the nontrivial task of
approximating the curved shape of ∂Ω2 with polyhedral meshes.

4 Conclusion

We present a cell-centered finite volume method for the regularized mean curvature
flow equation, which is suitable on polyhedral meshes. The numerical experiments
for the chosen examples indicate a convergence rate of around 2. Consequently, the
proposed method can use the time step proportional to the average discretization size
to obtain the second order accurate method in time and space.

Acknowledgements The work was supported by grants VEGA 1/0709/19 and 1/0436/20 and
APVV-0522-15.
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