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In this paper we give a general, robust, and efficient approach for numerical solu-
tions of partial differential equations (PDEs) arising in image processing and com-
puter vision. The well-established variational computational techniques, namely,
finite element, finite volume, and complementary volume methods, are introduced
on a common base to solve nonlinear problems in image multiscale analysis. Since
they are based on principles like minimization of energy (finite element method)
or conservation laws (finite and complemetary volume methods), they have strong
physical backgrounds. They allow clear and physically meaningful derivation of dif-
ference equations that are local and easy to implement. The variational methods are
combined with semi-implicit discretization in scale, which gives favorable stability
and efficiency properties of computations. We show here L∞-stability without any
restrictions on scale steps. Our approach leads finally to solving linear systems in
every discrete scale level, which can be done efficiently by fast preconditioned it-
erative solvers. We discuss such computational schemes for the regularized (in the
sense of F. Catté et al., SIAM J. Numer. Anal. 129, 1992, 182–193) Perona–Malik
anisotropic diffusion equation (P. Perona and J. Malik, IEEE Trans. Pattern Anal.
Mach. Intell. 12, 1990, 629–639) and for nonlinear degenerate diffusion equation of
mean curvature flow type studied by L. Alvarez et al. (SIAM J. Numer. Anal. 129,
1992, 845–866). C© 2002 Elsevier Science (USA)
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1. INTRODUCTION

The aim of this paper is to present numerical schemes for solving nonlinear diffusion
equations arising in image processing and computer vision. The schemes are based on linear
semi-implicit approximations in scale and variational methods in space. For our presentation
we have chosen two representative geometry-driven diffusion models: the regularized (in
the sense of Catté et al. [1]) Perona–Malik anisotropic diffusion [2] Eq. (1) and the nonlinear
degenerate diffusion equation of mean curvature flow type (2) suggested by Alvarez et al.
[3]. Both models represent a similar view to image selective smoothing that preserves the
edge positions in the multiscale analysis [4, 5]. We consider the nonlinear partial differential
equations

ut − ∇ · (g(|∇Gσ ∗ u|)∇u) = f (u0 − u), (1)

ut − g(|∇Gσ ∗ u|)|∇u|∇ ·
( ∇u

|∇u|
)

= 0, (2)

where u(t, x) is an unknown function defined in QT ≡ I × �. The equations are accom-
panied by zero Neumann boundary conditions and the initial condition

∂u

∂ν
= 0 on I × ∂�, (3)

u(0, x) = u0(x) in �, (4)

where ν is the unit normal to the boundary of �. We assume that � ⊂ IRd is a bounded
rectangular domain, I = [0, T ] is a scaling interval,

g: IR+
0 → IR+ is a nonincreasing function, g(

√
s) is smooth,

(5)
g(0) = 1, and we admit g(s) → 0 for s → ∞,

Gσ ∈ C∞(IRd ) is a smoothing kernel (e.g., Gauss function),
(6)∫

IRd

Gσ (x) dx = 1,

∫
IRd

|∇Gσ | dx ≤ Cσ ,

Gσ (x) → δx for σ → 0, δx is the Dirac measure at point x,
(7)

f is a Lipschitz continuous, nondecreasing function, f (0) = 0,

u0 ∈ L∞(�), (8)

and

∇Gσ ∗ u =
∫

IRd

∇Gσ (x − ξ )ũ(ξ ) dξ, (9)

where ũ is an extension of u to IRd given by a periodic reflection through the boundary of
�.

In image processing, equations of the type (1), (2) arise in nonlinear data filtration,
edge detection, and image enhancement and restoration [1–3]. The initial condition u0(x)
represents a gray-level intensity function of the processed image. The solution u(t, x) of
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either (1) or (2) represents a family of scaled (filtered, smoothed) versions of u0(x); t is
understood as an abstract parameter called scale. In a sense, the processing of u0 by an
evolutionary PDE like (1) or (2) represents an embedding of the initial image into the
nonlinear scale space.

Equation (1) represents a slight modification of the well-known Perona–Malik equation
[2, 6], called also anisotropic diffusion in the computer vision community. It selectively
diffuses an image in the regions where the signal is of a constant mean, in contrast to those
regions where the signal changes its tendency. Such a diffusion process is governed by the
shape of the diffusion coefficient of (1) given by the function g and by its dependence on
∇u, which is in a sense an edge indicator [2]. In the original Perona–Malik formulation, ∇u
stands in the place of∇ Gσ ∗ u. However, in such a case, it can behave locally like a backward
heat equation, which is an ill-posed problem. One way to overcome this mathematical
disadvantage was proposed by Catté et al. [1]. They introduced for the value of the diffusion
coefficient the convolution with Gaussian kernel Gσ . This slight modification allowed them
to prove the existence and uniqueness of a weak solution for the modified equation and
to keep the practical advantages of the original formulation. Moreover, the usage of the
Gaussian gradient makes the process more stable in the presence of noise. It has also made
explicit the regularization included implicitly in numerical realizations of the Perona–Malik
equation.

Equation (2) is related to the so-called morphological multiscale analysis, and it respects
significantly the image geometrical features (like level lines of the image intensity cor-
responding to the silhouettes of objects in the image) in the smoothing process given by
diffusion. Provided g(s) ≡ 1, (2) is called the level set equation proposed by Osher and
Sethian [7, 8] for the computation of moving fronts in the dynamics of phase interfaces in
thermomechanics. The level set equation moves each level set (namely, level line in two-
dimensional (2D) space and level surface in three-dimensional (3D) space) of u with the
velocity proportional to its normal mean curvature field. It also fulfills the morphological
principle: if u is a solution, then, for any nondecreasing function ϕ, ϕ(u) is a solution as
well. This contrast invariant property has a large significance in the theory of image process-
ing [4]. Such property also means that all level sets move independently of each other, they
diffuse only intrinsically (as manifolds, see, e.g., [9–13]) and there is no diffusion across
them in the normal direction. This idea was used in [3], where model (2) has been suggested
for computational image and shape analysis. From the practical point of view, applying just
the level set equation (i.e., g ≡ 1) to initial image yields the intrinsic silhouette smoothing
[14]. On the other hand, Eq. (2) can be used successively for image selective smoothing
with preserving edge positions in a way similar to Eq. (1). The Perona–Malik function g(s)
depending on |∇Gσ ∗ u| is used to strongly slow the motion of edges of silhouettes. The
regions between edges are smoothed by the mean curvature flow.

A general view on (1) and (2) without the convolution terms is given in [4]. The nonlinear
diffusion term ∇ · (g(|∇u|)∇u) can be rewritten as

∇ · (g(|∇u|)∇u) = g(|∇u|)uξξ + H ′(|∇u|)uηη, (10)

where H (s) = sg(s) and ξ, η are the tangential and orthogonal vectors to the level line,
respectively. From this form, one can simply see how diffusion works along and across
the image silhouettes with different choices of g. There is always a positive, but possibly
strongly slowed-down (depending on the shape of g), diffusion along the level lines. Across
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the level line there can be a forward diffusion (when G ′(s) is positive), zero diffusion
(e.g., in the Rudin–Osher–Fatemi model [15] for the total variation denoising, or in the
mean curvature flow equation in the level set formulation), or a backward diffusion (in the
original Perona–Malik model [2, 6]).

The rest of the paper is organized as follows. In Section 2 we present a semi-implicit
approach to scale discretization of Eqs. (1) and (2). It leads to the solving of linear elliptic
equations and, at the same time, it gives good stability properties of numerical approxima-
tions of these strongly nonlinear problems. In both cases, we present methods for deriving
such stability estimates. In Section 3, we present space discretizations of arising elliptic
equations by the means of variational techniques. The presented discretizations are based
on the integral (weak, variational) formulations of the boundary value problems. Variational
methods have strong physical backgrounds since they are based on principles like mini-
mization of energy (finite element method) or conservation laws (finite and complemetary
volume methods). They allow a clear and physically meaningful derivation of difference
equations that is local and easy to implement. We should note that the semi-implicit ap-
proach based on special finite difference approximations was already used in [1] and [3],
for the finite element method it was given in [16], and for the finite volume method it was
given in [17]. In the discussion of the numerical results in Section 4 we concentrate on
the complementary volume method, but we have also found it useful to collect principles
of other discretization methods in one paper. In order to achieve strong efficiency of the
methods, we also accompany the linear semi-implicit approximations with preconditioned
iterative solvers. In Section 5 we give some concluding remarks.

Remark. In the next paragraphs, we will use standard notations for functional spaces
L p(�), p ≥ 1, Ck(�̄) and by V we denote the Sobolev space W 1,2(�) of L2(�) functions
with square integrable weak derivates (see, e.g., [18]). The absolute value will be denoted
by |·| and the norm will be denoted by ‖·‖ with a subscript given by the corresponding
functional space.

2. SEMI-DISCRETIZATIONS IN SCALE

In this section we study semi-discretizations in scale of the problems given by (1) and (2).
We discretize the scaling interval [0, T ]. Choosing N ∈ IN we obtain the length of uniform
discrete scale step τ = T

N . We replace the scale derivative in (1), (2) by backward difference.
The nonlinear terms of the equations are treated from the previous scale step while the linear
terms are considered on the current scale level—this means semi-implicitness of the method.
Let us start with an approximation in scale of Eq. (1) (see also [1, 16, 17]).

Semi-discrete linear scheme for solving Eq. (1). Let N ∈ IN , τ = T
N and σ > 0 be fixed

numbers and u0 be given by (4). For every n = 1, . . . N , we look for a function un , a solution
of the equation

un − un−1

τ
− ∇ · (g(|∇Gσ ∗ un−1|)∇un) = f (u0 − un−1). (11)

For this linear scheme we have guaranteed existence of a weak solution in every discrete
scale step, and moreover we will prove in the next proposition an important L∞-stability
property for the solutions of subsequent elliptic equations. On one hand, this means that
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the scheme is safe from spurious oscilations; on the other hand, since an image can be
represented by a family of its level lines, we have guaranteed that no new level lines are
created in multiscale analysis (provided f ≡ 0) as at least they are controlled by means
of a Lipschitz constant of the right-hand side f and by the length T of processing. Any
reasonable fully discrete scheme should also satisfy this L∞-stability property.

PROPOSITION 1. There exists a unique weak solution un of (11) for every n = 1, . . . , N
and there exists a positive constant C such that

‖un‖L∞(�) ≤ C‖u0‖L∞(�). (12)

The constant C depends on T and the Lipschitz constant L of f only. If f ≡ 0, then C = 1.

Proof. A function un ∈ V is a weak solution of (11) if it fullfils the integral identity

∫
�

un − un−1

τ
v dx +

∫
�

g(|∇Gσ ∗ un−1|)∇un · ∇v dx =
∫

�

f (u0 − un−1)v dx, ∀v ∈ V .

(13)

The properties of convolution and the Lax–Milgram theorem guarantee the existence of
the unique solution un ∈ V of (13), which is moreover in L∞(�) (see [1, 16, 19]). Let us
denote

gn−1 := g(|∇Gσ ∗ un−1|) ≥ ν > 0. (14)

In order to get the uniform L∞-estimate of the proposition we proceed as follows. Since
un ∈ L∞(�), we have that the pth power (un)p ∈ V . Using v = (un)pτ as the test function
in (13) for p odd, we obtain∫

�

|un|p+1 dx + τ

∫
�

gn−1 p|un|p−1|∇un|2 dx

≤
∫

�

|un−1||un|p dx + Lτ

∫
�

|u0||un|p dx + Lτ

∫
�

|un−1||un|p dx .

Then due to the positivity of the second term on the left-hand side we have∫
�

|un|p+1 dx ≤ (1 + Lτ )
∫

�

|un−1||un|p dx + Lτ

∫
�

|u0||un|p dx . (15)

Next we apply Young’s inequality in the form

ab ≤ 1

p + 1
a p+1 + p

p + 1
b

p+1
p

to the last term of (15) with a = ε|u0|, b = 1
ε
|un|p. This gives us

∫
�

|un|p+1 dx ≤ (1 + Lτ )
∫

�

|un−1||un|p dx + Lτ
ε p+1

p + 1

∫
�

|u0|p+1 dx

+ Lτ
p

p + 1

1

ε
p+1

p

∫
�

|un|p+1 dx .
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Let ε = (L p
p + 1 )p/p+1. Subtracting the last term we get

(1 − τ )
∫

�

|un|p+1 dx ≤ (1 + Lτ )
∫

�

|un−1||un|p dx + Lτ
ε p+1

p + 1

∫
�

|u0|p+1 dx .

Since for τ ≤ 1
2 we have 1

1−τ
≤ (1 + 2τ ), we obtain

∫
�

|un|p+1 dx ≤ (1 + Lτ )(1 + 2τ )
∫

�

|un−1||un|p dx + (1 + 2τ )Lτ
ε p+1

p + 1

∫
�

|u0|p+1 dx .

If we use Young’s inequality again but with a = (1 + Lτ )(1 + 2τ )|un−1|, b = |un|p in the
first term on the right-hand side, we get

∫
�

|un|p+1 dx ≤ (1 + Lτ )p+1(1 + 2τ )p+1

p + 1

∫
�

|un−1|p+1 dx

+ p

p + 1

∫
�

|un|p+1 dx + (1 + 2τ )Lτ
ε p+1

p + 1

∫
�

|u0|p+1 dx .

Multiplying the previous inequality by p + 1 and subtracting the second term on the right-
hand side we obtain the recurrent relation∫

�

|un|p+1 dx ≤ (1 + Lτ )p+1(1 + 2τ )p+1
∫

�

|un−1|p+1 dx+(1 + 2τ )Lτε p+1
∫

�

|u0|p+1 dx .

From there we have∫
�

|un|p+1 dx ≤ (1 + Lτ )n(p+1)(1 + 2τ )n(p+1)(1 + (1 + 2τ )LT ε p+1)
∫

�

|u0|p+1 dx .

Take the (p + 1)-th root in the previous inequality and let p → ∞ (n is fixed and finite).
Since (1 + x)n ≤ enx , we have

‖un‖∞ ≤ e(2+L)T (1 + L)‖u0‖∞ ≤ C‖u0‖∞,

where the constant C depends on T and the Lipschitz constant L of f . Provided f (s) ≡ 0,
one can review the above arguments to see that C = 1 without any restriction on the time
step τ . �

Despite Eq. (1), Eq. (2) is not written in a divergence form. For partial derivatives of
second order, as is usual in variational methods, we would like to use integration by parts or
the divergence theorem to get an integral formulation. Thus, first we move the term in front
of the divergence to the time derivative and then we write a semi-implicit discretization of
(2) in scale.

Semi-discrete linear scheme for solving Eq. (2). Let N ∈ IN , τ = T
N and σ > 0 be fixed

numbers and u0 be given by (4). For every n = 1, . . . N , we look for a function un , a solution
of the equation

1

g(|∇Gσ ∗ un−1|)|∇un−1|
un − un−1

τ
− ∇ ·

( ∇un

|∇un−1|
)

= 0. (16)
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At this place, let us note another possible approach for the scale discretization of (2)
based on an interesting approximation of the degenerate diffusion term given in [20]. Fol-
lowing the idea of Walkington one could, instead of (16), use the implicit (nonlinear)
semi-discretization

1

g(|∇Gσ ∗ un−1|)|∇un−1|
un − un−1

τ
− 2∇ ·

( ∇un

|∇un| + |∇un−1|
)

= 0. (17)

Walkington considered averaging the gradient terms from the previous and current scale
steps in the denominator of the divergence term to get an important W 1,1 estimate, i.e., an
estimate on the decay of the total variation of discrete solutions. This estimate is a basic
property of the flow by mean curvature and of a solution of the level set equation as well
[20] and can be interpreted as a curve-shortening property [9, 11, 21]. Any reasonable
numerical approximation should respect this fact. Following [20], one can multiply (17)
by un − un−1 and integrate it over �. Then using integration by parts and zero Neumann
boundary conditions one gets

∫
�

(un − un−1)2

τgn−1|∇un−1| dx + 2
∫

�

∇un · (∇un − ∇un−1)

|∇un−1| + |∇un| dx = 0, (18)

where short notation (14) has been used. Using the relation

2a(a − b) = a2 − b2 + (a − b)2, (19)

where a, b are arbitrary real numbers, and by a simple manipulations related to the sum in
the denominator, we get

∫
�

(un − un−1)2

τgn−1|∇un−1| dx +
∫

�

|∇un|2 − |∇un−1|2
|∇un−1| + |∇un| dx +

∫
�

|∇un − ∇un−1|2
|∇un−1| + |∇un| dx

=
∫

�

(un − un−1)2

τgn−1|∇un−1| dx +
∫

�

|∇un − ∇un−1|2
|∇un−1| + |∇un| dx

+
( ∫

�

|∇un| dx −
∫

�

|∇un−1| dx

)
= 0, (20)

which means that

‖∇un‖L1(�) ≤ ‖∇un−1‖L1(�) (21)

and by recursion

‖∇un‖L1(�) ≤ ‖∇u0‖L1(�), 1 ≤ n ≤ N . (22)

This represents the important stability property of this nonlinear scheme.
However, the previous scheme leads in each discrete scale level (after any spatial dis-

cretization) to solving a nonlinear system of equations. This is a rather nonefficient approach.
In order to have convergence, which is however very slow, one must use fixed point-like
nonlinear iterations; faster possibilities like Newton’s method have no guarantees for con-
vergence [20] and are rather complicated from the implementation point of view.
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In our contribution we get decay of the total variation of solutions in subsequent scale steps
(i.e., the basic property (22)) also for the scheme (16). The linear scheme (16) is much more
simple and efficient. Since it is linear, it allows the use of the fast preconditioned iterative
linear solvers at every scale level (we present some CPU time statistics in Section 4). In
order to get (22) for our scheme, we proceed in the following way. We multiply (16) by
un − un−1, then integrating it over � and using (19) we get

∫
�

(un − un−1)2

τgn−1|∇un−1| dx + 1

2

∫
�

|∇un|2 − |∇un−1|2 + |∇un − ∇un−1|2
|∇un−1| dx = 0. (23)

Since

|∇un − ∇un−1|2 = (|∇un| − |∇un−1|)2 +
( ∇un

|∇un| − ∇un−1

|∇un−1|
)2

|∇un||∇un−1|, (24)

we get

∫
�

(un − un−1)2

τgn−1|∇un−1| dx + 1

2

∫
�

|∇un|2 − |∇un−1|2 − (|∇un| − |∇un−1|)2

|∇un−1| dx

+
∫

�

(|∇un| − |∇un−1|)2

|∇un−1| dx + 1

2

∫
�

( ∇un

|∇un| − ∇un−1

|∇un−1|
)2

|∇un| dx = 0.

Due to positivity of other terms we get for the second term

∫
�

|∇un||∇un−1| − |∇un−1|2
|∇un−1| dx ≤ 0, (25)

which gives

‖∇un‖L1(�) ≤ ‖∇un−1‖L1(�), (26)

and thus

‖∇un‖L1(�) ≤ ‖∇u0‖L1(�), 1 ≤ n ≤ N , (27)

which is the desired W 1,1 estimate for the linear semi-implicit scheme (16).

3. SPACE DISCRETIZATIONS

A discrete image is based on the structure of pixels/voxels with rectangular shape (but it
is not necessary for the methods presented here) in general. We will use this image structure
to create a computational grid for the spatial discretization methods. Concerning a relation
of the computational grid to the pixel structure, there will be a difference between the
finite element and the complementary volume methods on one side and the finite volume
method on other side. The difference is related to a type of approximation of a solution
of a partial differential equation assumed in those methods. While in the finite volume
method the approximation of the solution is assumed to be piecewise constant [22], in the
complementary volume and finite element methods it is assumed to be continuous piecewise
linear. Thus, in the finite volume method we will take for the computational grid directly
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the pixel structure of the image. The initially given and subsequently computed values
of discrete intensity are considered as approximations of the average of the continuous
intensity function on the pixels. On the other hand, in the finite element and complementary
volume methods, the initially given values of discrete intensity and also the computed ones
are considered as approximations of the continuous intensity function in the centers of
the pixels. The centers of the pixels then correspond to the nodes of the finite element or
the complementary volume triangulation. We can get such triangulation by connecting the
centers of the pixels by a new rectangular mesh and then dividing each rectangle into two
triangles (or six tetrahedra in 3D). It also means that in these two methods the computational
domain � is given as the union of all triangles constructed in such a way (� thus corresponds
to the image domain minus the outer half of each boundary pixel)—see Fig. 1. Let us note
that a splitting of each pixel into the two triangles, as depicted in Fig. 1, is not the only
possibility. The orientation of the triangles can change locally, e.g., following an edge
direction, or it can be given by a refinement procedure in a bisection algorithm [23]. We
will assume that the constructed triangulation has no interior angle larger than π/2. Then,
for the complementary volume method we will construct a dual mesh. This dual mesh will
again, in a sense, copy the pixel structure of the image. Let us note that in the finite element
method we will use just the triangulation, in the complementary volume method we use
both triangulation and the dual mesh, and in the finite volume method we use just the pixel
structure of the image corresponding to the dual mesh.

Now, we will define some quantities that will be used in the descriptions of fully discrete
schemes (see also [20]). Let us assume that we have been given a triangulation Th (e.g.,
given by a previous construction). The dual mesh will consist of cells Vi (also called

FIG. 1. The image pixels (solid lines) correspond to the finite volume mesh and to the dual mesh for the
complementary volume method. Triangulation (dashed lines) corresponds to the finite element and complementary
volume methods, with nodes (round points) corresponding to the centers of the pixels.
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complementary volumes, control volumes, or co-volumes) associated with the i th node of
triangulation Th , i = 1, . . . , M . The co-volume Vi is bounded by the lines (planes in 3D)
that bisect and are perpendicular to the edges emanating from the node. We will denote
the edge of Th connecting the i th node to the j th by σi j and its length by hi j . We denote
by Ei j the set of simplices having σi j as an edge, i.e., Ei j = {T ∈ Th | σi j ⊂ T }. Let ei j

denote the co-edge (co-plane) that is the perpendicular bisector of σi j and xi j be a point
of intersection of ei j and σi j . For each T ∈ Ei j , let cT

i j be the length (area) of the portion
of ei j that is in T , i.e., cT

i j = |ei j ∩ T |. Let Ni be the set of simplices that have the i th
node as a vertex, and for each node of Th let Ci denote the set of nodes connected to
the i th node by an edge. Given a triangulation Th , we define the set Vh ⊂ V of piecewise
linear finite elements, i.e., Vh = Vh(Th) := {v ∈ C0(�̄) | v|T ∈ P1 for all T ∈ Th}. For any
vh ∈ Vh we will use the notation vi := vh(xi ), where xi is the i th node of the triangulation.
Let u0

h = Ih(u0) ∈ Vh(Th) be the nodal interpolant of u0. This will be the initial function
for the finite element and complementary volume methods. In the finite volume method we
denote by ūi the representative value for the cell (the bar indicates that we mean the average
value in the cell and not a nodal value). The initial condition for the finite volume scheme
is then assumed to be

ū0
i = 1

|Vi |
∫

Vi

u0(x) dx, i = 1, . . . , M. (28)

Before going to the spatial discretizations we remark on the realization of the convolution
included in the evaluation of the Perona–Malik function g either in (11) or in (16). We use
two strategies. The first is the following: Using the Gauss function as the smoothing kernel
Gσ , one can replace the term Gσ ∗ un−1 by solving the linear heat equation for time σ with
the initial condition given by un−1. This linear equation can be solved numerically at the
same grid by just one implicit step with length σ . Thus, as a realization of convolution
we look for a function uc that is a solution of the heat equation discretized in time by the
backward Euler method with step σ

uc − un−1

σ
= �uc, (29)

where � denotes the Laplace operator. This strategy is very suitable for the finite element
and complementary volume methods, since in this case, the numerical solution uc of (29)
is piecewise linear on triangles, its gradients are constant, and thus we can simply evaluate
the Perona–Malik function on every triangle. Moreover, since the coefficients of Eq. (11)
are then constant on every triangle, we have also guaranteed L∞-stability for the fully
discrete finite element scheme (see, e.g., [24]). In the finite volume method we can use
another approach. Since we consider piecewise constant approximations, we can replace
the convolution (integral) by a sum over pixels. For the gradient of the convolution term at
any point x we get

∇Gσ ∗ un−1(x) =
∑

r

ūn−1
r

∫
Vr

∇Gσ (x − s) ds, (30)
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where we use the convolution derivative property

∂

∂xi
(Gσ ∗ un−1(x)) = ∂Gσ

∂xi
∗ un−1(x)

and

∂Gσ

∂xi
∗ un−1(x) =

∫
IRd

∂Gσ

∂xi
(x − s)un−1(s) ds =

∑
r

ūn−1
r

∫
Vr

∂Gσ

∂zi
(x − s) ds.

The sum in (30) is evaluated over control volumes Vr , which are around x . If we choose a
compactly supported smoothing kernel with support in a ball Bσ ∗ (0) with radius σ ∗, e.g.,
the function

Gσ (x) = 1

Z
e

|x |2
|x |2−σ2 ,

where the constant Z is chosen so that Gσ has the unit mass, the sum is restricted only to the
control volumes contained in Bσ ∗ (x), the ball centered at x . The coefficients

∫
Vr

∇Gσ (x −
s) ds in (30) can be computed in advance using a computer algebra system, e.g., Mathematica
[25]. The same situation arises when we use the Gauss function and we consider as the ball
B∗

σ (0) a “numerical support” of the Gauss function (i.e., we consider a domain in which
the values of the Gauss function are above some treshold given related to the computer
precision). Then, again, just a finite sum in (30) is evaluated.

3.1. Finite Element Discretization

To describe the ideas of the finite element space discretization, let us consider Eq. (1)
[16, 23]. Let τ, σ be given numbers. Before the discretization we use approach (29) for
the realization of the convolution and then we write (11) into a couple of integral identities
(weak formulations)

∫
�

unv dx + τ

∫
�

g(|∇uc|)∇un∇v dx =
∫

�

(un−1 + τ f (u0 − un−1))v dx, (31)

∫
�

ucv dx + σ

∫
�

∇uc∇v dx =
∫

�

un−1v dx (32)

that hold for all v ∈ V [23]. Then, at each scale level n, we look for a continuous piecewise
linear function un

h ∈ Vh(Th) satisfying

∫
�

un
hvh dx + τ

∫
�

g
(∣∣∇uc

h

∣∣)∇un
h∇vh dx =

∫
�

(
un−1

h + τ f
(
u0 − un−1

h

))
vh dx (33)

for vh ∈ Vh(Th) with uc
h ∈ Vh(Th) being the solution of

∫
�

uc
hvh dx + σ

∫
�

∇uc
h∇vh dx =

∫
�

un−1
h vh dx, ∀vh ∈ Vh(Th). (34)

Considering the standard Lagrangian bases functions ϕ j ∈ Vh(Th), j = 1, . . . , M, given by
ϕ j (xi ) = δ j i (Kronecker delta) for all nodes xi , i = 1, . . . , M of Th , the functions un

h, uc
h
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are given by

un
h =

M∑
i=1

un
i ϕi , uc

h =
M∑

i=1

uc
i ϕi .

Then using vh = ϕ j , j = 1, . . . , M as test function in (33)–(34), we get two Ritz–Galerkin
systems of linear equations for the nodal values un

i , uc
i , i = 1, . . . , M of un

h, uc
h , respec-

tively,

M∑
i=1

( ∫
�

ϕiϕ j dx + τ

∫
�

g
(∣∣∇uc

h

∣∣)∇ϕi∇ϕ j dx

)
un

i =
∫

�

(
un−1

h + τ f
(
u0 − un−1

h

))
ϕ j dx

(35)
M∑

i=1

( ∫
�

ϕiϕ j dx + σ

∫
�

∇ϕi∇ϕ j dx

)
uc

i =
∫

�

un−1
h ϕ j dx, (36)

for every j = 1, . . . , M . Thus, we need to solve two linear systems with the matrices
M + τA(g(|∇uc

h |)), M + σA(1), respectively, where M j,i = ∫
�

ϕiϕ j dx is the so-called
mass matrix and A(w) j,i = ∫

�
w∇ϕi∇ϕ j dx is the stiffness matrix, which are symmetric

and positive definite. Thus, the discrete solutions can be found efficiently by preconditioned
conjugate gradient methods (CPU times for finite element discretization are comparable
with those given in Section 4 for the complementary volume method). It is also usual to
use the so-called lumped (diagonalized) mass matrix M j,i = ∑M

k=1ϕi (xk)ϕ j (xk)
∫
�

ϕk dx
in systems (35), (36). In order to improve the efficiency of the finite element method, a
choice of different (coarsened) triangulations T n

h in subsequent scale steps is also possible
[23, 26, 27]. The finite element method can also be used on a rectangular grid with bilinear
approximating functions [27].

The same ideas as above can be also used for the finite element discretization of Eq. (2).
The only difference will be in the facts that the mass matrix M(w) will depend on w =
1/(g(|∇uc

h |)|∇un−1
h |) and the stiffness matrix A(w) will depend on w = 1/|∇un−1

h |.

3.2. Complementary Volume Discretization

In this subsection we will discretize Eq. (2) or, more precisely, the semi-discrete ap-
proximation (16) by means of the complementary volume method. In order to derive the
complementary volume spatial discretization ([20]), we integrate (16) over a co-volume Vi∫

Vi

un − un−1

gn−1|∇un−1|τ dx =
∫

Vi

∇ ·
( ∇un

|∇un−1|
)

dx . (37)

Using the divergence theorem on the right-hand side we get∫
Vi

∇ ·
( ∇un

|∇un−1|
)

dx =
∫

∂Vi

1

|∇un−1|
∂un

∂ν
ds =

∑
j∈Ci

∫
ei j

1

|∇un−1|
∂un

∂ν
ds. (38)

If un
h ∈ Vh(Th) is a continuous piecewise linear function on the triangulation Th and we have

denoted ui = uh(xi ) as its nodal values, then

∑
j∈Ci

∫
ei j

1∣∣∇un−1
h

∣∣ ∂un
h

∂ν
ds =

∑
j∈Ci

( ∑
T ∈Ei j

cT
i j∣∣∇un−1
T

∣∣
)

un
j − un

i

hi j
, (39)
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where |∇un−1
T | denotes the constant value of the gradient of un−1

h in the simplex T . The
complementary volume method approximates the left-hand side of (37) by

|Vi |
(
un

i − un−1
i

)
τg

(∣∣∇uc
i

∣∣)∣∣∇un−1
i

∣∣ , (40)

where |∇un−1
i |, |∇uc

i | denote an approximation of the gradient in co-volume Vi . For that
goal we have chosen the weighted average value of gradients in the co-volume [20]

|∇ui | ≈
∑

T ∈Ni

|T ∩ Vi |
|Vi | |∇uT |. (41)

If we denote

bn−1
i = |Vi |

g
(∣∣∇uc

i

∣∣)∣∣∇un−1
i

∣∣ , (42)

an−1
i j = 1

hi j

∑
T ∈Ei j

cT
i j∣∣∇un−1
T

∣∣ , (43)

we can write the following:

Linear fully discrete complementary volume scheme for solving Eq. (2). For n =
1, . . . , N we look for un

i , i = 1, . . . , M , satisfying the equation

bn−1
i

(
un

i − un−1
i

) + τ
∑
j∈Ci

an−1
i j

(
un

i − un
j

) = 0. (44)

Of course, before solving (44), we must put |∇uc
i | into (42). The function uc

h ∈ Vh(Th) is
found by the same idea as given in (37)–(40) applied to (29); i.e., we solve (44) with un

i

replaced by uc
i and with bn−1

i ≡ bi = |Vi |, an−1
i j ≡ ai j = ei j

hi j
. Then |∇uc

i | is computed by
(41) and put into the Perona–Malik function g. The system (44) gives a symmetric positive
definite M matrix with diagonal dominance.

Using the nonnegativeness of bn−1
i , an−1

i j , we can get the L∞-stability estimate for the
fully discrete scheme (44) in the form

min u0
i ≤ min un

i ≤ max un
i ≤ max u0

i , 1 ≤ n ≤ N , (45)

which means that

∥∥un
h

∥∥
L∞(�) ≤ ∥∥u0

h

∥∥
L∞(�), 1 ≤ n ≤ N . (46)

To see (45), let us rewrite (44) in the form

un
i + τ

bn−1
i

∑
j∈Ci

an−1
i j

(
un

i − un
j

) = un−1
i (47)

and let max un
h = max(un

1, . . . , un
M ) be achieved in the i th node. Then the whole second

term on the left-hand side is nonnegative and thus un
i ≤ un−1

i .
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Until now, we have not solved the problem of possible zero gradients in the denominators
of the scheme (16) or (44). To prevent such a situation we can use the Evans–Spruck-type
regularization [28] and consider

|∇u|ε =
√

ε + |∇u|2 (48)

instead of |∇u| everywhere in the schemes (16) and (44), or just when |∇u| is vanishing.
One can observe that the Evans–Spruck regularization is well suited for image smoothing
purposes. For zero gradients such a regularized discretization (44) reduces to a discretization
of the linear heat equation. It is quite desirable at points with small changes in intensity.
On the other hand, the influence of ε can be neglected, and thus we have a curvature-driven
flow of level lines for large gradients. Such a behavior, in a sense, covers implicitly a
modification of Eq. (2) given in [3] (see [3], Eq. (8)). All results that we have derived so
far for fully discrete or semi-discrete schemes, i.e., L∞ and W 1,1 estimates, are valid also
for regularization. Moreover, they do not depend on the regularization parameter ε. Thus,
we can pass to the limit and understand the solution of either (16) or (44) in a generalized
sense. This is much more technical and we avoid this step in this paper. Concerning the
computational point of view, we have found preconditioned iterative linear solvers, the
efficiency of which is not affected much even when ε is a very small.

Using the integration (37) and the relation (39), one can also derive a complementary
volume discretization of Eq. (1), or, more precisely, for the semi-discrete coupling (11),
(29). In such a way, we get the system (44) with

bn−1
i = |Vi |, an−1

i j = 1

hi j

∑
T ∈Ei j

cT
i j g

(∣∣∇uc
T

∣∣), (49)

where uc
h is computed in the same way as above, and we add the right-hand side to (44)

given by τ f (u0
i − un−1

i )|Vi |. Let us note that such a discretization can be considered as a
special mass lumping approximation in the finite element method.

3.3. Finite Volume Discretization

In spirit, the finite volume discretization follows the ideas of the previous subsection. We
again integrate the equation (in this subsection we will deal only with Eq. (1)) in every finite
volume. In general, the finite volume can be either a simplex of the triangulation itself or
a co-volume of the dual mesh [22]. We have chosen the second strategy, and we associate
finite volumes with co-volumes because they correspond to the pixel/voxel structure of the
image. The main difference, when compared to the complementary volume technique, is
that the approximating functions are not in Vh(Th), but they are just piecewise constant on
finite volumes. Thus, we cannot work directly with gradients or normal derivatives (see
(39)) since they are either zeros (inside finite volumes) or infinite (on their boundaries). By
means of ūi representing an approximate value of the solution inside the finite volume Vi

we will only approximate fluxes through the boundary of the finite volume. The value of
the diffusion coefficient along ei j will be approximated by its value at the point xi j . Then
we get the following:
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Linear fully discrete finite volume scheme for solving Eq. (1) (see [17]). For n =
1, . . . , N we look for ūn

i , i = 1, . . . , M , satisfying

(
ūn

i − ūn−1
i

)|Vi | + τ
∑
j∈Ci

gn−1
i j

|ei j |
hi j

(
ūn

i − ūn
j

) = τ f
(
ū0

i − ūn−1
i

)|Vi | (50)

starting with ū0
i (see (28)). The term

gn−1
i j = g(|∇Gσ ∗ un−1(xi j )|) (51)

is computed by the strategy (30). The system (50) gives a symmetric positive definite
M-matrix with a diagonal dominance.

The study of a kind of finite volume scheme analogous to (50) for the-level-set-like Eq. (2)
is an open problem.

4. NUMERICAL EXPERIMENTS

This section is devoted to a discussion of some numerically computed examples. It also
includes a discussion of the computational efficiency of iterative solvers used in our semi-
implicit scheme (44). Since numerical experiments based on the finite element method
and finite volume methods in 2D and 3D have been presented elsewhere [14, 16, 17, 23,
26, 27, 29], here we give some 2D examples of the usage of the complementary volume
method. In our computations we have chosen g(s) = 1/(1 + K s2) with a constant K > 0,

f ≡ 0 while the convolution is realized using (29) with σ less than τ . The space step h
in our experiments is always given as 1/n, where n is the number of pixels in the vertical
direction.

EXAMPLE 1. In Fig. 2 we smooth an initial 321 × 373 pixel image (ancient coat-of-arms
of the Slovak town Kremnica plotted in the left part of the figure) scanned from the book
with neither paper nor colors of a good quality. We present the result of the scheme (44)

FIG. 2. Initial image (left) and the results of smoothing after 5 (middle) and 10 (right) scale steps (see
Example 1).
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FIG. 3. Initial image (left) and the results of smoothing after 5 (middle) and 20 (right) scale steps (see
Example 2).

after 5 and 10 discrete scale steps, with the parameters τ = 0.0025, σ = 0.0001, ε = 10−6,
K = 1.

EXAMPLE 2. In this example we did a multiscale analysis of an old text (417 × 302
pixels), and in Fig. 3 we present the results after 5 and 20 discrete steps of the scheme (44).
The parameters used were τ = 0.001, σ = 0.0001, ε = 10−4, K = 2.

EXAMPLE 3. In this example we performed a multiscale analysis of a medical image
(463 × 397 pixels), and in Fig. 4 we present the result after 10 discrete steps of the scheme
(44) for Eq. (1)—see (49). The parameters used were τ = 0.001, σ = 0.0001, K = 4.

EXAMPLE 4. In Fig. 5 we test the behavior of the co-volume algorithm (44) applied
to the well-known mean curvature flow problem, i.e., Eq. (2) with g(s) ≡ 1. We evolve
numerically the initial nonconvex curve given in the top left. In the next images we plot the
numerical motion driven by the curvature until a circular shape is obtained and the curve
is shrinking into a point. Since we do not know an exact solution, the numerical solutions
given by the two conceptually different methods are presented for comparison. We plot
the solution given by method (44) by solid lines starting with the so-called signed distance
function [30]. We use the space discretization parameter h = 0.02, time step τ = 0.001,
and ε = 10−4, and we compute 230 time steps. However, practically the same results were
obtained with τ = 0.01, computing just 23 time steps. We plot a numerical solution based

FIG. 4. Initial image (left) and the result after 20 steps of multiscale analysis (right) (see Example 3).
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FIG. 5. Evolution of star-shape-like curves by mean curvature flow. Comparison of two different methods
(see Example 4).

on the representation of the mean curvature flow by intrinsic heat equations [9, 12, 13] by
dashed lines. From the comparison, one can see a precise coincidence of the two methods
during the evolution, as well as a correspondence of the numerical extinction times.

Finally, we remark on solving linear systems in a discrete scale step of the semi-implicit
method. The huge number of unknowns in each system, the sparsity pattern, and the
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TABLE 1
Comparison of Preconditioned Conjugate Gradient Solvers

# Multip/CPU time

CG no precon IC CG MIC CG ILUT(7,0.0001) CG

ε = 10−3 223/7.08 35/2.74 17/1.36 11/1.23
ε = 10−4 395/12.41 31/2.43 31/2.48 12/1.34
ε = 10−5 641/20.20 71/4.92 72/5.10 11/1.16
ε = 10−6 1008/31.09 172/14.5 171/13.09 9/0.91

properties of the coefficient matrices suggest using the conjugate gradient (CG) method.
With a good preconditioner, the total amount of steps required for the convergence can be
reduced dramatically, at the cost of a slight increase in the number of operations per step,
resulting in general in much more efficient algorithms.

It is well known that standard incomplete factorization (IC) methods exist for the
M-matrices [31] arising in our discretizations, and modified incomplete factorization (MIC)
methods exist for weakly diagonally dominant matrices [32, 33]. For that reason, we have
used these techniques to precondition the conjugate gradient algorithm to solve our lin-
ear systems. Then we used, for comparison, a more memory-consuming preconditioner
ILUT (level of fill-in, treshold), allowing fill-in with threshold to compute incomplete LU
factorization, even if it ignores any symmetry in the matrix [34].

In Table 1 we report the number of matrix–vector multiplications used to obtain a con-
vergence in the solution of the linear system taken from the first scale step in Example 1, as
well as the CPU times in seconds on a Digital Alfa XP1000 workstation. In other examples
the behavior was similar. As a stopping criterion we have used ‖rk‖2 <= tol ‖r0‖2 with
tolerance tol = 0.01, where ‖·‖2 means the discrete L2 norm and rk is residual in the kth
iteration. For very small ε = 10−10 when even a finer tolerance did not provide satisfac-
tory results, we used another stopping criterion: ‖�xk‖2 <= tol ‖�x0‖2, where �xk is the
correction to the solution at the kth iteration. Then we obtain a convergence with an ILUT
(7, 0.0001) preconditioner and CG in 15 iterations in 1.42 s. The previous results can be
understood when we realize that the estimated condition numbers range from 43599.869,
in the case of ε = 10−3, to 137682783.127, in the case of ε = 10−10, and we have 119733
unknowns. These experiments show that a well-known algorithm like the conjugate gradient
one with a simple preconditioner allows fast computations. Even though, for instance, the
algebraic multigrid could improve the performances, it would require more programming
efforts.

5. CONCLUSIONS

We have presented a general, robust, and efficient approach for dealing with numerical
solutions of PDEs arising in image processing and computer vision. Using ideas of this
paper, the well-established computational methods (finite elements, finite volumes, and
complementary volumes), well known in the engineering community, can be applied to
nonlinear problems of image multiscale analysis. The methods allow the inclusion of adap-
tivity. This yields a further increase in efficiency. The advantage of the semi-implicity is
also in the use of fast preconditioned linear solvers for discretized equations at every scale
level.
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Of course, there exist other methods of solution known to have a good behavior (e.g.,
[3, 7, 35]). Our goal is not to favorize our approach. However, if the finite element or the
finite volume packages are at one’s disposal, one can get a straightforward solution for
the image-processing problems. The implementations of our schemes are quite natural in
the framework of numerical methods for partial differential equations. They can also be
used for other similar equations used recently in the nonlinear scale space theory (see, e.g.,
[30, 36–38]).
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12. K. Mikula and D. Ševčovič, Solution of nonlinearly curvature driven evolution of plane curves, Appl. Numer.
Math. 31, 1999, 191–207.
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