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Abstract. We introduce a new computational technique for evolving interfaces, the flux-based
level set method. A nonlinear degenerate advection-diffusion level set equation is discretized by a
finite volume method using a complementary volume strategy. It enables to solve the problem in an
efficient and stable way. Using a flux-based method of characteristics for the advective part and a
semi-implicit treatment of diffusive part, it removes the standard CFL condition on time step and it
decreases CPU times significantly. The method is presented for 2D and 3D interface motions driven
in normal direction by a constant driving force and (mean) curvature. Comparisons with known
exact solutions and further numerical experiments, including topological changes of the interface,
are presented.
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1. Introduction. Moving interfaces (or free boundaries) arise in a broad range
of applications. They represent boundaries between solid and liquid phase in the
solidification of materials [1, 30], boundaries between air and liquid or immiscible
liquids in free surface multiphase flows [35, 11, 17], boundaries between burnt and
unburnt regions in flame front propagation in combustion [33], or free discontinuities
representing edges in digital image segmentation [3, 32]. For a comprehensive overview
of models, methods and applications where free boundaries occur, we refer to books
by Sethian, Sapiro and Osher and Fedkiw [33, 29, 25].

An interface, represented by a closed curve in 2D or a hypersurface in 3D, can be
advected by an external forcing term, given, e.g., by a velocity field of flowing liquid,
by a temperature difference between phases, or by edge attracting forces, etc. Usually,
a shape of the free boundary is also influenced by a principle of the minimization of
surface energy related to surface tension effects. Thus, a local curvature of the inter-
face and an anisotropy of the material (expressed in an orientation of the interface)
play a role.

In a Lagrangian viewpoint (see, e.g., [18, 20, 21]), the motion of any point x of
2D interface can be represented by a space-time dependent vector field, which can be
written in the form

∂tx = β ~N + α~T(1.1)

with ~N and ~T being the normal and tangent vector to the interface, respectively, and
β, α being normal and tangential velocities (3D situation can be described similarly).
Since the tangential component of the motion is related only to a reparametrization of
the closed curve or hypersurface, the normal component of the velocity field influences
the time image of interface evolution. Thus, the general law for the interface motion
is given in the form of geometrical equation for the normal velocity V = ∂tx · ~N of
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the interface,

V = β(x, ν, k) ,(1.2)

where x is a spatial position of the moving curve, ν is a tangent angle to the interface,
k is the curvature and the function β is increasing in its third argument.

In this paper we consider the simple but representative situation,

V = µk + δ ,(1.3)

i.e., we assume a linear dependence of the evolution on the (mean) curvature k, where
µ is a positive constant, and the driving force is given by a constant δ. For the model-
ing of 2D and 3D interface motions in the form of (1.3), we use an Eulerian approach
and the so-called level set formulation [24, 33, 25]. Although the Eulerian approach
passes the problem to one dimension higher case, it is a natural tool for handling
complicated dynamics like topological changes of the interface. The corresponding
advection-diffusion form of the level set formulation of (1.3) is given by the following
level set equation

∂tφ = µ|∇φ|∇ ·

(

∇φ

|∇φ|

)

+ δ
∇φ

|∇φ|
· ∇φ ,(1.4)

where φ is a function of which the zero level set describes the evolving interface. The
interface evolution does not depend on the choice of initial condition for φ, however, a
signed distance function is a standard choice. As it is usual in the level set modeling of
complex interface motions, we consider homogeneous Neumann boundary conditions.

Well-known finite difference computational techniques to solve level set formula-
tions numerically were introduced by Osher and Sethian. They are based on ENO or
WENO type finite difference schemes for solving Hamilton-Jacobi equations that are
given for (1.3) in the form φt = β|∇φ| [24, 31, 14]. The finite difference approach for
solving Hamilton-Jacobi equation related to optimal control problems was developed
in [27, 7]. Semi-Lagrangian schemes for solving an advective form φt = β ∇φ

|∇φ| · ∇φ

of the level set formulation was introduced by Strain. He generalized so-called CIR
scheme for linear advection equations to the case of advective form of the level set
formulation in order to weaken standard CFL stability constrain [34].

Nowadays, applications of the finite volume methods to many physical and engi-
neering problems, including fluid dynamics, material science, structural mechanics or
image processing, are rapidly growing, cf. [16, 6, 19]. In [15] the finite volume method
for solving Hamilton-Jacobi equations including level set formulation of interface mo-
tion is given and studied. An artificial diffusion term is added to get stability and,
consequently, convergence of the scheme.

In this paper we introduce new flux-based finite volume scheme for solving advec-
tion-diffusion form (1.4) of the level set formulation to (1.3). In our approach, equation
(1.4) is rewritten to an integral form and discretized in space by a finite volume method
using a complementary volume (co-volume) technique. The advection-diffusion form
(1.4) allows us to apply unconditionally stable semi-implicit time discretization in the
curvature part of (1.4) and explicit upwind scheme with recursive flux redistribution
(flux-based method of characteristics [9]) removing standard CFL stability constrain
in advective part of (1.4), which are the main ingredients for stability and efficiency
of our method.

In [9], the flux-based method of characteristics for the linear advection equation
with divergence free velocity field was introduced. In this paper, we extend the
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method to nonlinear case of advective part of (1.4) where the advective velocity need
not be divergence free. The method can be viewed as an extension of L∞ stable
upwind schemes to allow time steps with the Courant number significantly larger than
one. After solving the advective part of the motion, one can apply the semi-implicit
time discretization to the curvature term, which is unconditionally stable in L∞ and
W 1,1 sense for arbitrary time step, cf. [12]. Such combination of the discretization
schemes for the advective and the curvature part of (1.4) can be viewed as a two step
operator splitting procedure, and, at the end, it gives our flux-based level set method.
Computational results show that precision of the scheme is not deteriorated using
larger time steps and document its applicability in complex 2D and 3D situations of
curve and surface dynamics.

The paper is organized as follows. In Section §2, we present the finite volume
method for the advective part of equation (1.4). In Section §3, we discuss its extension
by the flux-based method of characteristics. In Section §4, we present the semi-
implicit co-volume scheme for the curvature driven level set equation. In Section §5,
we introduce the flux-based level set method. Finally, in Section §6, we discuss several
numerical experiments.

2. Finite volume method for advective level set equation. In this section,
we restrict our treatment to the advective part of the level set equation (1.4), that
can be rewritten to the form

∂tφ + ~v · ∇φ = 0 ,(2.1)

where the vector velocity field ~v is defined on a whole computational domain (if
|∇φ| 6= 0) by

~v = −δ ~N = −δ
∇φ

|∇φ|
.(2.2)

We describe next the solution by finite volume method for a special case of the
advection equation (2.1) with the velocity ~v = ~v(x) being a given vector function.
In general, ∇ · ~v 6= 0. The differential equation (2.1) is considered for x ∈ Ω, where
Ω ⊂ Rd is a polygonal domain with d = 2 or d = 3, and t ∈ [tn , tn+1] ⊂ R.

The initial conditions are defined by

φ(tn, x) = φn(x) , x ∈ Ω .(2.3)

On the boundary ∂Ω of Ω, we consider boundary conditions ~n(γ) · ~v(γ) = 0, γ ∈ ∂Ω,
where ~n(γ) is the outward unit normal vector to ∂Ω.

Next, we formulate an integral form of the differential advective level set equation
(2.1). First, we rewrite (2.1) to an equivalent divergent form,

∂tφ + ∇ · (~v φ) − φ∇ · ~v = 0 .(2.4)

Further, we assume that a finite volume mesh of polygonal subsets Ωi ⊂ Ω,
i = 1, . . . , I is available that covers Ω, i.e.,

Ω =

I
⋃

i=1

Ωi , Ωi 6= ∅ , Ωi ∩ Ωj = ∅ , if i 6= j .(2.5)
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Finally, integrating (2.4) over the finite volume Ωi and the time interval (tn , tn+1),
one obtains

∫

Ωi

φ(tn+1, x) dx =(2.6)

∫

Ωi

φ(tn, x) dx −

tn+1
∫

tn

∫

∂Ωi

φ(t, γ)~ni(γ) · ~v(γ) dγdt +

tn+1
∫

tn

∫

Ωi

φ(t, x)∇ · ~v(x) dxdt ,

where ~ni = ~ni(γ) is the outward unit normal vector to ∂Ωi.
Note that (2.6) can be viewed as an integral formulation of conservation laws with

source terms. If one thinks of φ being a density then (2.6) expresses a mass balance
formulation for (2.4). Consequently, if ∇ · ~v = 0 (i.e., for a divergence free velocity),
the last integral in (2.6) vanishes and (2.6) describes the local mass conservation
property.

If φ represents a level set function (e.g., a signed distance function), the conser-
vation property for integrals of φ (if ∇ · ~v = 0) does not have a direct practical value
for numerical simulations. Instead, one is interested in conservation of integrals for
H(u), where H is the Heaviside function. Nevertheless, the view of integral formula-
tion (2.6) as conservation laws with source terms is essential for our algorithm, and,
therefore, the notion of “mass balance” will be used when helpful.

Before formulating a discrete form of (2.6), we introduce some notations. First,

φn+1
i :=

1

|Ωi|

∫

Ωi

φ(tn+1, x) dx , φn
i :=

1

|Ωi|

∫

Ωi

φ(tn, x) dx ,(2.7)

where |Ωi| denotes the measure in Rd of Ωi. In such a way, the term φn
i |Ωi| can

represent the exact integral of φ over Ωi at t = tn that can be computed for n = 0
from the initial conditions (2.3). Analogously, the term φn+1

i |Ωi| will represent the
exact integral of φ over Ωi at t = tn+1 and it has to be determined.

Further, one can split the boundary ∂Ωi to several segments Γij ,

∂Ωi :=
⋃

j∈Λi

Γij , Γij := ∂Ωi ∩ ∂Ωj ,(2.8)

where the set Λi contains the indices of neighbouring cells Ωj of Ωi with Γij having
a nonzero measure in Rd−1.

In such a way, (2.6) can be written to the form,

φn+1
i |Ωi| = φn

i |Ωi| −(2.9)

∑

j∈Λi

tn+1
∫

tn

∫

Γij

φ(t, γ)~ni(γ) · ~v(γ) dγdt +

tn+1
∫

tn

∫

Ωi

φ(t, x)∇ · ~v(x) dxdt .

Note that no numerical approximation has been applied so far in (2.9).
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To introduce the finite volume discretization of (2.9), we define first the integrated
fluxes

vij :=

∫

Γij

~ni(γ) · ~v(γ) dγ ,(2.10)

and we distinguish between the outflow and inflow boundaries Γij of ∂Ωi by defining,
respectively, the sets of indices Λout

i and Λin
i ,

Λout
i := {j ∈ Λi , vij ≥ 0} , Λin

i := {j ∈ Λi , vij < 0} .(2.11)

Of course, vij = −vji, and if i ∈ Λout
j then j ∈ Λin

i . In general, (2.10) is realized
numerically.

Now, if one considers a piecewise constant form of φn(x), i.e.,

φn(x) = φn
i , x ∈ Ωi ,(2.12)

and applies standard upwind arguments for the approximation of advective flux, the
following discretization scheme can be derived for (2.9),

φn+1
i |Ωi| = φn

i |Ωi| − τ
∑

j∈Λout
i

φn
i vij − τ

∑

j∈Λin
i

φn
j vij + τ φn

i

∑

j∈Λi

vij ,(2.13)

where τ := tn+1 − tn.
In (2.13), the upstream values of φn(x) are used for the computations of advective

fluxes φ~ni·~v at Γij , i.e., the values φ = φn
i are taken for vij > 0, and, consequently, φ =

φn
j for vij < 0. Moreover, for the source term in (2.6), the function φ is approximated

by φn
i and the standard Green formula is used for the integral of ∇ · ~v over Ωi.
After a simple algebraic manipulation, (2.13) takes the form

φn+1
i |Ωi| = φn

i |Ωi| + τ
∑

j∈Λin
i

φn
j vji − τviφ

n
i ,(2.14)

where vi denotes the total inflow flux, i.e.,

vi :=
∑

j∈Λin
i

vji .(2.15)

It is important to comment the differences in a possible interpretation of the standard
form (2.13) and the new form (2.14). The last term in (2.13) represents the source
term that can be either positive (injection) or negative (sink). In (2.14), the last term
(if present) can be only negative, thus it represents the effective sink. From the point
of view of mass balance formulation, the equation (2.14) would describe that the mass
at the new time level (the left hand side) is equal to the mass at the previous time
level (the first term on the right hand side) plus the mass coming through the inflow
boundary (the second term) minus the mass leaving due to the sink term vi (the last
term). For a divergence free velocity field, the sink vi is equal to the total outflow
flux.

Finally, one can rewrite (2.14) to the basic finite volume scheme for the advective
level set equation

φn+1
i |Ωi| = φn

i (|Ωi| − τvi) +
∑

j∈Λin
i

φn
j τvji .(2.16)
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Now, if one denotes the so called critical time step τi [9],

τi :=
|Ωi|

vi

,(2.17)

it is clear that (2.16) is acceptable only for time steps τ that fulfill the CFL condition

τ ≤ τCFL := min{τi , i = 1, . . . , I} ,(2.18)

otherwise nonphysical oscillations of the numerical solution can occur, cf. Lemma 2.1.
Using (2.17), one can define the so called local grid Courant number

Ci = Ci(τ) :=
τ

τi

,(2.19)

and (2.18) denotes the well-known condition that Ci(τ) ≤ 1, i = 1, . . . , I.

Remark 1. The critical time step τi in (2.17) and the local Courant number Ci

in (2.19) are, formally, not defined if vi = 0. This can happen when there is no inflow
into Ωi and the equation (2.14) turns to the trivial form φn+1

i = φn
i . It is clear that

for this discrete equation there exists no restriction on the time step τ and one can,
formally, define τi = ∞ and Ci = 0.

Lemma 2.1. If (2.18) is valid, the values φn+1
i computed from (2.16) fulfil the

local discrete minimum and maximum principle

min{φn
i , min

j∈Λin
i

{φn
j }} ≤ φn+1

i ≤ max{φn
i , max

j∈Λin
i

{φn
j }} .(2.20)

Proof. If we divide (2.16) by |Ωi| we see on the right hand side that for any i the
coefficients of φn

i and of all φn
j , j ∈ Λin

i are nonnegative provided (2.18). Moreover in

the sum they are equal to 1. It means that φn+1
i is a convex combination (weighted

average) of φn
i and φn

j , j ∈ Λin
i , so the inequalities (2.20) are clearly satisfied.

If homogeneous Neumann boundary conditions are imposed and (2.18) is valid
then clearly also global discrete L∞ stability property is fulfilled, namely

min
j=1,...,I

φn
j ≤ φn+1

i ≤ max
j=1,...,I

φn
j , i = 1, . . . , I .(2.21)

The advantage of discretization scheme (2.16) is that it can be viewed as the
discrete mass balance formulation of conservation laws with source terms and that
it gives physically acceptable values of the numerical solution with no unphysical
oscillations. Moreover, it offers the straightforward definition (2.19) of the local grid
Courant number for general finite volume computational grids. This can be used to
extend this method for arbitrary large time steps (at least in a theory) by preserving
the mass balance formulation and the discrete minimum-maximum principle. Such
extension is explained in following Section.

3. Flux-based method of characteristics. For a clarity of presentation, we
prefer to view φ as a density here and to treat (2.14) as a discrete mass balance
formulation of conservation laws with source terms.

Before presenting a general form of the flux-based method of characteristics (FB-
MOC) for the advective level set equation (2.1), we try to introduce it in simple
consequent steps. To do so, let us first write (2.14) for some index j ∈ Λin

i ,

φn+1
j |Ωj | = φn

j |Ωj | + τ
∑

k∈Λin
j

vkj φn
k − τ vj φn

j .(3.1)
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First, let us suppose that τ = τj = τCFL, see also (2.17) and (2.18). In such a case,
(3.1) takes the form

φn+1
j |Ωj | = τj

∑

k∈Λin
j

vkj φn
k =





∑

k∈Λin
j

vkj

vj

φn
k



 |Ωj | .(3.2)

Standard finite volume methods must stop here, because Cj(τ) = 1, and hence for
a larger time step the density φn

j can not be used in the full upwind discretization at
the outflow boundary of ∂Ωj or for the sink term vj . In fact, as one can see from (3.2),
the density φn

j must be replaced for t > tn +τj by the density given in the parentheses
in the right hand side (r.h.s.) of (3.2), which is nothing else than a weighted average
of neighbouring inflowing densities.

Consequently, for a “little larger” time step τ such that τ > τj , but τ < τk for
k = 1, . . . , I and k 6= j, the j-th discrete equation can be written for the time interval
(tn, tn + τj) and (tn + τj , t

n+1), and the sum of both equations is equal then to

φn+1
j |Ωj | = φn

j |Ωj | +(3.3)

τ
∑

k∈Λin
j

vkj φn
k − vj



τjφ
n
j + (τ − τj)

∑

k∈Λin
j

vkj

vj

φn
k



 .

However, after simple algebraic manipulations, one obtains that the equations
(3.3) and (3.2) are identical. It is a simple consequence of the fact that for τ ≥ τj

the r.h.s. of the j-th discrete equation can be written as the mass contribution to Ωj

through the inflow boundary during time interval (tn+1 − τj , t
n+1).

The equations that must be changed for our special choice of the time step τ are
those with indices i ∈ Λout

j . Particularly, using (3.2), the equation (2.14) for some
index i ∈ Λout

j can be written as follows,

φn+1
i |Ωi| = φn

i |Ωi| +(3.4)









vji



τjφ
n
j + (τ − τj)

∑

k∈Λin
j

vkj

vj

φn
k



+ τ
∑

j′∈Λin
i

j′ 6=j

vj′i φn
j′









− τ vi φn
i .

These considerations can be continued to define a general form of the FB-MOC. To
extend (3.4) for arbitrary large time step τ , one has to find all possible combinations
of indices starting with all j0 ∈ Λin

i , continuing backwards with j1 ∈ Λin
j0

, until the

last neighbours in these chains, say jl ∈ Λin
jl−1

, are found, such that the following two
conditions are fulfilled,

τj0 + τj1 + . . . + τjl−1
< τ , τj0 + τj1 + . . . + τjl−1

+ τjl
≥ τ .(3.5)

The conditions (3.5) mean that the densities φn
j0

until φn
jl

are entering the finite

volume Ωi through the inflow part of ∂Ωi during time interval (tn, tn+1), with the
densities φn

jl
being the last ones (the most far-away ones). Note that several chains

of indices can start with the index j0.
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τj
k+1

i j
k

jk+1 j1jkjl j0

v = 1

i

j
k

τi j
l

h−τ
i

τin out

Fig. 3.1. 1D example of the flux-based method of characteristics on a nonuniform grid for (2.1)
with ~v ≡ v = 1. Note that in this case one has |Ωi| =: hi = τi = (τjk

− τout
ijk

) + τjk+1
+ τ in

ijl
.

Further, for each particular chain of indices given by (3.5), one has to find k such
that k ≤ l and

τi + τj0 + τj1 + . . . + τjk−1
< τ , τi + τj0 + τj1 + . . . + τjk−1

+ τjk
≥ τ .(3.6)

The conditions (3.6), together with (3.5), mean that the densities φn
j0

until φn
jk

are not only entering the finite volume Ωi, but also leaving it through the sink vi

during time interval (tn, tn+1) with the densities φn
k being the most far-away ones.

The conditions (3.5) - (3.6) can be used to define the “rest” values τ in
ijl

and τout
ijk

,

τ in
ijl

:= τ − τj0 − . . . − τjl−1
, τout

ijk
:= τ − τi − τj0 − . . . − τjk−1

.

Particularly, τ in
ijl

denote the length of time intervals in which the most far-away

densities φn
jl

are entering Ωi. Of course, τ in
ijl

≤ τjl
. Analogously, the values τout

ijk
denote

the length of time intervals in which the most far-away density φn
jk

are leaving Ωi due
to the sink vi. Again, τout

ijk
≤ τjk

. One can also see that if k < l, then

τi = (τjk
− τout

ijk
) + τjk+1

+ . . . + τjl−1
+ τ in

ijl
,(3.7)

see also Figure 3.1 for an illustration, and if k = l, then τi = τ in
ijl

− τout
ijk

.
Using all above definitions, one can introduce the general form of the FB-MOC,

φn+1
i |Ωi| = φn

i |Ωi| +(3.8)

∑

j0∈Λin
i

vj0i






τj0φ

n
j0

+
∑

j1∈Λin
j0

vj1j0

vj0






τj1φ

n
j1

+ . . .
∑

jl∈Λin
jl−1

vjljl−1

vjl−1

τ in
ijl

φn
jl












−

viτiφ
n
i −

∑

j0∈Λin
i

vj0i






τj0φ

n
j0

+
∑

j1∈Λin
j0

vj1j0

vj0






τj1φ

n
j1

+ . . .
∑

jk∈Λin
jk−1

vjkjk−1

vjk−1

τout
ijk

φn
jk












.

If τ ≥ τi, analogously to the description after (3.3), the equations (3.8) can be
rewritten to the form where only the mass contribution from the inflow for the time
interval (tn+1 − τi , tn+1) is considered,

φn+1
i |Ωi| =

∑

j0∈Λin
i

vj0i

∑

j1∈Λin
j0

vj1j0

vj0

. . .
∑

jk∈Λin
jk−1

vjkjk−1

vjk−1

(3.9)
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(τjk

− τout
ijk

)φn
jk

+
∑

jk+1∈Λin
jk

vjk+1jk

vjk






τjk+1

φjk+1
+ . . .

∑

jl∈Λin
jl−1

vjljl−1

vjl−1

τ in
ijl

φn
jl












.

If τ < τi, the term (|Ωi| − τvi)φ
n
i must be added to the r.h.s. of (3.9), analogously to

(3.8).
Theorem 3.1. Let us suppose homogeneous Neumann boundary conditions to

(2.1). Then for any time step τ the discrete L∞ stability estimate is valid for numerical
solution given by the scheme (3.9), i.e.

min
j=1,...,I

φn
j ≤ φn+1

i ≤ max
j=1,...,I

φn
j , i = 1, . . . , I .(3.10)

Proof. Dividing (3.9) by |Ωi|, one can rewrite it to

φn+1
i =

∑

l,k

l
∑

m=k

τ̂jm

τi

vj0i

vi

vj1j0

vj0

. . .
vjmjm−1

vjm−1

φn
jm

,(3.11)

where the first sum in (3.11) is, analogously to (3.9), realized for all indices l and k
given by (3.5) and (3.6) and value τ̂jm

is defined by

τ̂jm
=















τjk
− τout

ijk
k = m < l ,

τjm
k < m < l ,

τ in
ijl

k < m = l ,
τi k = m = l .

(3.12)

Using (3.7) and definition of total inflow fluxes (2.15) we see that the right hand side
of (3.11) is weighted avarage of all values φn

jm
contributing to φn+1

i by the chains given
by (3.5) and (3.6). Due to homogeneous Neumann boundary conditions this convex
combination is realized on a subset of all φn

j , j = 1, . . . , I, so the resulting value must
be greater or equal then their minimum and less or equal to their maximum.

3.1. Implementation of FB-MOC for advective level set equation. The
description of the flux-based method of characteristics (3.8) can be viewed as a back-
ward tracking form of this algorithm. This means that the characteristics (or, more
precisely, the inflow boundaries) are tracked backwards to find the densities (or the
fractions of mass) that are added to the r.h.s. of (3.9) (or, equivalently, to the mass
φn+1

i |Ωi|).
The forward tracking variants of the methods of characteristics offer in general

some advantages with respect to the backward tracking ones, especially concerning the
treatment of boundary conditions or the control of mass balance errors [28]. Hence,
we present a forward tracking (or redistributing) variant of (3.9) here.

To do so, for a chosen fixed index j one has to find all indices i such that the
density φn

j occurs (at least once) in the r.h.s. of (3.11). For such i there exists then a
pair of indices l and k (at least one), given by (3.5) and (3.6), such that j = jm with
k ≤ m ≤ l. Consequently, the term in the l.h.s. of the following trivial equality

vj0i

vj1j0

vj0

. . .
vjmjm−1

vjm−1

φn
jm

= vjmjm−1
φn

jm

vjm−1jm−2

vjm−1

. . .
vj1j0

vj1

vj0i

vj0

(3.13)

occurs in (3.11). The order of indices in the l.h.s. of (3.13) corresponds to the notation
of (3.11), and the r.h.s. of (3.13) will be used in the following algorithm.
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Recall that τ = tn+1− tn is a chosen time step without the CFL condition (2.18).
We denote by bi the r.h.s. of (3.11), and we set initially bi = 0 for i = 1, . . . , I. We
try to keep analogous notations to (3.13) and (3.11) in the following description of
the algorithm.

To determine the values bi, the following main program can be implemented:

for (i = 1, . . . , I) {

if (τ < τi) then {

bi = bi + φn
i (|Ωi| − τvi) ;

τ̂ = τ ;

}

else

τ̂ = τi;

jm = i;

for (jm−1 ∈ Λout
jm

)

DistributeMass(jm−1, tn, τ̂ , vjmjm−1
φn

jm
) ;

}

The (recursive) procedure DistributeMass(j, t0, τ̂ , q) implements the consequent
mass redistribution. This procedure may modify the value bj and it may call itself,
if necessary. The time t0 < tn+1 denotes an entering time of the mass contribution
to Ωj . The parameter τ̂ in DistributeMass corresponds to τ̂jm

in (3.12). The value
q should accumulate the product on the r.h.s. of (3.13). The implementation of the
procedure DistributeMass can take the following form:

DistributeMass(j, t0, τ̂ , q) {

t0 = t0 + τj ;

if (t0 ≥ tn+1) then {

bj = bj + τ̂ q ;

return;

}

if (t0 + τ̂ > tn+1) then {

bj = bj + (τ̂ − (tn+1 − t0)) q ;

τ̂ = tn+1 − t0 ;

}

jm−1 = j ;

for (jm−2 ∈ Λout
jm−1

)

DistributeMass(jm−2, t0, τ̂ ,
vjm−1jm−2

vjm−1

q) ;

return ;

}
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4. Co-volume method for the motion by curvature. Although the pre-
vious finite volume method for the advective level set equation (2.1) is applicable
for arbitrary computational meshes of polygonal finite volumes Ωi, for the numerical
discretization of the intrinsic diffusion part (the motion by curvature)

∂tφ = |∇φ|∇ ·

(

∇φ

|∇φ|

)

,(4.1)

we apply the so called co-volume method [36, 12] (also called the vertex-centered
finite volume method or the finite volume element method [2]). For a simplicity, we
set µ = 1 in (1.4).

More precisely, let T e ⊂ Ω, e = 1, . . . , E be a mesh of finite elements for Ω (with
the properties analogous to (2.5)), and let xi, i = 1, . . . , I be the vertices of this grid.
Further, let Ni = Ni(x) be the standard continuous finite element (FE) test functions
that are polynomial for x ∈ T e and that fulfil Ni(xj) = δij . In such a way, the FE

interpolation φ̂(tn, x) of the values φn
i can be defined,

φ̂(tn, x) :=
I
∑

i=1

φn
i Ni(x) .(4.2)

Using (4.2), the gradient ∇φ̂(tn, x) is well defined for x ∈ T e. An analogous definition

to (4.2) is taken for φ̂(tn+1, x) and for x ∈ T e one can use

∇φ̂(tn+1, x) =
∑

k∈Λe

φn+1
k ∇Nk(x) ,(4.3)

where the set Λe contains all indices k such that xk ∈ T e.
The dual (complementary) mesh of finite volumes that fulfils (2.5) can be con-

structed by defining Ωi around each vertex xi. There exists some freedom in the
construction of such vertex-centered finite volumes, but the most common choice is
the so called barycenter-based finite volumes. In 2D case, they are obtained by con-
necting the edge-midpoints of elements with the barycenters of elements, see, e.g., [8]
for more details.

In general, the boundary ∂Ωi has the form

∂Ωi :=
⋃

j∈Λi

⋃

e∈Λij

Γe
ij , Γe

ij := ∂Ωi ∩ ∂Ωj ∩ T e .(4.4)

The indices e ∈ Λij denote all elements T e that contain the vertices xi and xj .
To describe a finite volume discretization of (4.1), we apply the following notations

for the gradient of φ at xij ∈ T e,

∇eφn+1
ij := ∇φ̂n+1|T e(xij) , ∇eφn

ij := ∇φ̂n|T e(xij) ,(4.5)

where xij := 0.5(xi + xj). Finally, we introduce

|∇φn
i | :=

1

|Ωi|

∑

j∈Λi

∑

e∈Λij

|Ωi ∩ T e|

2
|∇eφn

ij |.(4.6)

Now, one can integrate (4.1) over x ∈ Ωi and t ∈ (tn , tn+1), and using (4.6) to
approximate ∇φ(t, x), one can, firstly, obtain

φn+1
i |Ωi| = φn

i |Ωi| − |∇φn
i |

tn+1
∫

tn

∫

∂Ωi

1

|∇φ|
~n · ∇φdγdt .(4.7)
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Using (4.5) afterwards, one can derive the following discretization scheme

φn+1
i |Ωi| + |∇φn

i | τ
∑

j∈Λi

∑

e∈Λij

|Γe
ij |

~ne
ij · ∇

eφn+1
ij

|∇eφn
ij |

= φn
i |Ωi| ,(4.8)

where ~ne
ij denotes the outer unit normal to Γe

ij .
The linear discrete system of equations (4.8) represents the semi-implicit co-

volume discretization of the motion by curvature (4.1). In general, zero gradients
in solution can occur and therefore we regularize the scheme in the sense of Evans
and Spruck [5] by replacing

|s| ≈
√

ε + |s|2 .(4.9)

5. Flux-based level set method. The previous Section §4 described the co-
volume discretization method for the intrinsic diffusion equation, i.e., the motion by
curvature. This method exploits a finite volume mesh that is complementary (dual)
to a standard finite element mesh. This gives us two important advantages - firstly,
the gradient of numerical solution is easy to compute from the nodal values, and,
secondly, the co-volume discretization can be viewed as a finite volume method that
contains the terms φn

i |Ωi| representing the mass in Ωi at t = tn.
If the discretization scheme for the advective level set equation, described in

Section §3, is realized on the same finite volume mesh as the co-volume method for
the motion by curvature, the both discretization methods are easy to combine for the
advection-diffusion level set equation (1.4).

The flux-based level set method can be straightforwardly explained using the
standard operator splitting procedure. In its simplest two-step variant, the first step
consists of solving the advective part (2.1) of (1.4) for a given initial condition. The
second step is realized afterwards by taking the result of the first step as the initial
condition and solving the diffusive part (4.1) of (1.4).

Comparing the l.h.s. of (2.14) and the r.h.s. of (4.8), these two steps can be
directly combined to the basic finite volume discretization scheme of the flux-based
level set method

φn+1
i |Ωi| + |∇φn

i | τ
∑

j∈Λi

∑

e∈Λij

|Γe
ij |

~ne
ij · ∇

eφn+1
ij

|∇eφn
ij |

=(5.1)

un
i |Ωi| + τ

∑

j∈Λin
i

φn
j vn

ji − τvn
i φn

i ,

where vn
ij and vn

i are equal to vij in (2.10) and vi in (2.15) for the choice ~v(x) =

−δ ∇φ̂n(x)

|∇φ̂n(x)|
.

The discretization scheme (5.1) corresponds to the flux-based level set method
when the CFL condition (2.18) is fulfilled, otherwise, the r.h.s. of (5.1) must be
replaced with the r.h.s. of (3.8).

6. Discussion on numerical experiments. In this section, we present numer-
ical computations by the flux-based level set method in the case of curve evolution
equation (1.3) in the level set formulation (1.4).
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Fig. 6.1. The initial distance function φ(0, x) (the left picture) and the numerical solution at
time t = 0.5 (the right picture) for the pure advective case of shrinking circle. The middle picture
shows the zero level lines of the exact (violet lines) and numerical solution (black lines) at the time
points t = 0, 0.2, 0.4, 0.6, 0.8 using the time step τ = 0.04 that violates the CFL condition. Note
that in this plot resolution the exact and numerical solution can not be distinguished except a slight
difference at t = 0.8.

6.1. Comparison with exact solutions. In next examples, we give a com-
parison with simple known exact solutions of the curve evolution problem. Namely,
in Figures 6.1–6.2 and in Tables 6.1-6.5, we compare the exact evolving circles with
the corresponding zero level lines obtained by the numerical solution of the level set
equation (1.4).

In all 2D experiments presented in this section, if not stated otherwise, we use the
spatial domain Ω = [−1.25, 1.25]× [−1.25, 1.25], which is split into M×M rectangular
finite elements with the side length h = 2.5/M . The dual co-volume grid is obtained
by shifting this grid by h

2 . The regularization parameter in (4.9) is ε = 10−4.
To compare numerical and exact solutions, in every discrete time step n = 0, ..., N

we find all zero crossing points rn
i , i = 1, ..., K, of piecewise linear representation of

numerical solution with finite element grid lines. Then we compute distances from
origin of all rn

i , i = 1, ..., K and compare them with radius r(nτ) of the exact evolving
circle. Then the formula

Error =

(

N
∑

n=0

τ
1

K

K
∑

i=1

(rn
i − r(nτ))2

)

1
2

is used as L2((0, T ), L2(S
1))-norm, S1 is a unit circle, T = Nτ , of the difference of

exact and numerical curve (similar strategy can be used also in 3D). In the next two
subsections we discuss comparison of numerical and exact solutions in advective and
curvature driven cases.

6.1.1. Purely advective case. In the left picture of Figure 6.1, we plot the
initial (distance) function φ(0, x), and, on the right, the numerical solution φ(t, x)
at t = 0.5 for purely advective case (µ = 0, δ = −1) to illustrate the shape of the
evolving level set function.

In the middle picture of Figure 6.1, the level lines of exact and numerical solution
are plotted at the time points t = 0, 0.2, 0.4, 0.6, 0.8. The exact radius of a shrinking
circle is given by r(t) = r(0) − t, t ∈ [0, T ], T = r(0). The numerical solution was
obtained using M = 250 and the time step τ = 0.005 that respects the standard CFL
condition.
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τ 0.005 0.01 0.02 0.04
steps 160 80 40 20
Error 3.297e-3 3.2e-3 3.34e-3 3.443e-3
CPU 290 s 158 s 94 s 104 s

Table 6.1

Errors in L2((0, 0.8), L2(S1))-norm and CPU times for purely advective case of shrinking circle
using time steps of different sizes. The latter three cases violate the standard CFL condition.

M N Error EOC N Error EOC N Error EOC

10 4 4.253e-2 2 4.754e-2 1 6.425e-2
20 8 1.820e-2 1.22 4 1.945e-2 1.29 2 2.394e-2 1.42
40 16 8.586e-3 1.08 8 8.812e-3 1.14 4 9.996e-3 1.26
80 32 4.148e-3 1.04 16 4.109e-3 1.10 8 4.416e-3 1.17
160 64 2.033e-3 1.03 32 2.024e-3 1.02 16 2.089e-3 1.08
320 128 1.002e-3 1.02 64 9.976e-4 1.02 32 1.017e-3 1.04

Table 6.2

Errors in L2((0, 0.5), L2(S1))-norm and EOC for purely advective case of shrinking circle using
different time step τ = 0.5/N .

In Table 6.1, we present errors and CPU times of computations by the flux-based
level set method on the same grid M = 250 using bigger time steps that violate
the CFL condition. Note that no significant differences in the precision could be
observed, while the CPU times decreased on 1GHz Linux PC, and the minimum-
maximum principle remained valid. Table 6.2 shows that the method is of order h for
any of these time steps. The same results were obtained also in 3D case comparing
numerical and exact shrinking spheres.

Further, we present more complex experiment where the initial circle is expanding
(δ = 0.05, µ = 0) and rotating in the counterclockwise direction due to the variable
external velocity vector field equals to (−y, x).

The top left picture in Figure 6.7 shows numerically computed evolution starting
from the smallest most right circle and ending with the largest most left circle. The
evolution takes the half of rotation approximately. Other plots in Figure 6.7 show
the initial circle, the exact final circle and its numerical approximation depending on
a grid refinement. These images are presented in order to show the area loss of the
method.

It has been reported recently [23, 4, 10] that finite volume based numerical meth-
ods (or related discontinuous Galerkin methods) exhibits a better area/volume preser-
vation property than some standard level set methods. In our experiment the differ-
ences in encompassing area of the numerically computed interface and the exact one
are clearly visible, especially in the case of coarse grids. However, the convergence to
exact solution (and correspondingly diminishing of difference in exact and numerical
areas) can be observed taking subsequently M = 20, 40, 80, 160, 320.

The convergence of the method for this experiment is reported in Table 6.3. Since
the acceptable results are obtained on fine grids when the CPU time can be critical,
the speed up of computation without losing stability is an important issue. In Table
6.4 we show for this example that the flux-based level set method gives the stable
solution with the same error on the finest grid but with several times enlarged time
steps and thus speeding up the computations (CPU times reported were obtained on
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M τ N Error EOC

10 0.125 25 0.369
20 0.0625 50 0.179 1.04
40 0.03125 100 0.0869 1.04
80 0.015625 200 0.0428 1.02
160 0.0078125 400 0.0212 1.01
320 0.00390625 800 0.0105 1.01

Table 6.3

Errors in L2((0, 3.125), L2(S1))-norm and EOC for rotating and expanding circle.

τ 0.00390625 0.0078125 0.015625 0.03125
steps 800 400 200 100
Error 0.0105 0.0102 0.0103 0.0105
CPU 560 s 300 s 198 s 457 s

Table 6.4

Errors in L2((0, 3.125), L2(S1))-norm and CPU for rotating and expanding circle using increas-
ing time steps.

2.4 GHz Linux PC).
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Fig. 6.2. The left picture shows the numerical solution φ(t, x) at t = 0.3. The right picture
compares the exact (violet lines) and the numerical zero level lines (black lines), but due to plot
resolution no differences might be visible. The curvature driven case with µ = 1, δ = 0 was computed
in this experiment for the initial distance function plotted in Figure 6.1.

6.1.2. Purely curvature driven case. The level lines in Figure 6.2 represent
the computed evolution of the unit circle in the curvature driven case µ = 1, δ = 0 at
time points t = 0, 0.1, 0.2, 0.3, 0.4 using time step τ = 0.0005, M = 250. The exact
radius of a shrinking circle is described by r(t) =

√

r(0)2 − 2t, t ∈ [0, T ], T = r(0)2/2.
Again, the evolving zero level set of the numerical and the exact solution coincide,
error in L2((0, 0.25), L2(S

1))-norm is equal to 0.00006257. Although the time step τ

is 10 times bigger than the usual stability constrain for explicit schemes (h2

2 , h = 0.01
in this experiment), the error in curve evolution is proportional to h2.

To show the second order accuracy of our method for the mean curvature flow
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M τ steps Error EOC

40 0.064 10 3.81e-4
80 0.004 40 8.92e-5 2.09
160 0.001 160 2.18e-5 2.03

Table 6.5

Errors in L2((0, 0.16), L2(Ω))-norm, and EOC comparing numerical and exact solutions of the
mean curvature flow in 3D case.

in a more detailed way, we present results for a 3D testing example where the exact
solution of equation (4.1) is given by [22]

φ(x, y, z, t) = (x2 + y2 + z2 − 1)/4 + t .(6.1)

The problem is solved in Ω = [−1.25, 1.25]3 and for T = 0.16. The Dirichlet bound-
ary conditions on ∂Ω given by (6.1) are used. The grid size is h = 2.5/M using a
subsequent grid refinement with M = 40, 80, 160. The time steps are chosen pro-

portionally to 8 × h2

2 (i.e., several times bigger than the usual stability constrain of
explicit schemes), and ε = 10−12 in (4.9). The errors are measured on the whole
domain using L2((0, T ), L2(Ω))-norm, and the results are reported in Table 6.5.

6.2. Nontrivial 2D example. In the next nontrivial experiment, we evolve an
initial curve in the form of a slightly rotated quatrefoil. The quatrefoil is zero level
set of initial level set function constructed by the formula

φ(x, y) = −1 +
√

x2 + y2/rL, rL = 0.6 + 0.4 sin
(

4 arctg
( y

x

))

.

In this experiment, µ = 0.0005, δ = −1, M = 250, and, as we see later, some
topological changes of the evolving curve will occur. In Figure 6.3, the isolines and
the 3D graph of the initial level set function are plotted.

The subsequent level lines, corresponding to the evolving curve, are plotted in the
right picture of Figure 6.6 (the valid CFL condition, 40 time steps took 72 seconds of
CPU time) and in pictures of Figure 6.4 (the CFL condition violated, the CPU times
were 44 seconds and 24 seconds, see the text in caption of Figure 6.4). Note that at
the time t = 0.15 one can observe the curve has split into 5 disconnected components
which then extinct later independently.

In Figures 6.5 and 6.6 we illustrate a good behaviour of the basic finite volume
scheme (2.16) when starting with a piecewise constant initial level set function. The
graph of initial (binary) level set function is plotted in the right picture and the level
set in the left picture of Figure 6.5. Comparing the results in Figure 6.6 for discon-
tinuous and smooth initial level set functions, one can see a very good agreement.

In fact, this example suggests that the flux-based level set method might be used
in a localized form like in [26], because the numerical gradient of level set function is
zero everywhere except in a narrow band near the interface. This property results in
a trivial form of the scheme (2.16) for nodes faraway from the interface that is easy
to eliminate from the system of linear equations. Of course, in this case we can not
directly use the time steps that violate the CFL condition.

In the last example of this subsection we evolve the same nontrivial initial quatre-
foil curve by the mean curvature flow, and we compare numerical solutions given by
the scheme (4.8) and by a conceptually completely different numerical method based
on Lagrangean approach [20]. We use parameters µ = 1, δ = 0, τ = 0.001, M = 250



FLUX-BASED LEVEL SET METHOD 17

-1 -0.5 0 0.5 1

-1

-0.5

0

0.5

1

-1

-0.5

0

0.5

1

-1

-0.5

0

0.5

1

0

2

4

-1

-0.5

0

0.5

1

Fig. 6.3. Level lines (the left picture) and the 3D graph (the right picture) of the initial function,
the zero level line of which is a quatrefoil, which we let evolve by (1.4) with µ = 0.0005 and δ = −1,
cf. Figure 6.4.
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Fig. 6.4. The left picture shows the time evolution of zero level line at time points
0, 0.05, 0.1, 0.15, 0.20 with the time step τ = 0.01, (the CPU time for 20 time steps = 44.4 sec-
onds) starting with smooth initial level set function, cf. Figure 6.3, and similarly for the right
picture, but with the time step τ = 0.025 (the CPU time for 8 steps = 23.84 seconds). In both cases
the CFL condition was violated.

and ε = 10−6 in (4.9). The results are plotted in Figure 6.8. We see that although
the level set function is distorted a lot with respect to its initial shape, cf. Fig. 6.3,
and we do not use any redistancing strategy, both numerical solutions correspond
accurately to each other. Our observation is that it is not necessary to keep strictly
the unit slope along interface (and thus to do redistancing) using the flux-based level
set method.

6.3. 3D experiment. In this subsection we present experiment where we evolve
initial surface given by a special spherical 3D Legendre polynomial (see Figure 6.9 top
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Fig. 6.5. The isoline (the left picture) and the 3D graph (the right picture) of the piecewise
constant initial level set function, the zero level line of which is a quatrefoil.
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Fig. 6.6. The left picture shows the time evolution of zero level line when starting with the
piecewise constant initial function, cf. Figure 6.5, using the time step τ = 0.0025. The right picture
shows the evolution of zero line when starting with smooth initial level set function, cf. Figure 6.3,
using the time step τ = 0.005. 6.4.

left) represented by the relation r = rL, where

r =
√

x2 + y2 + z2, rL = 0.6

∣

∣

∣

∣

3
(y

r

)2

− 1

∣

∣

∣

∣

.(6.2)

We construct a piecewise constant initial level set function which is equal to −1 if
r < rL and to 1 if r ≥ rL, and shrink this surface using µ = 0, δ = −1. We split the
computational domain [−1.25, 1.25]3 to 803 cells, and we use time step τ = 0.005 for
which the CFL condition is fulfilled. In Figure 6.9, topological changes in shrinking
surface are nicely observable from 3D isosurface visualizations and from 2D cuts of
evolving zero level set.

7. Conclusions. We introduced the new flux-based level set method for evolving
interfaces. It is based on the finite volume discretization of the nonlinear degenerate
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advection-diffusion level set equation. It enables to solve the problem in a stable
and efficient way. Using the recursive flux redistribution among control volumes
and the semi-implicit treatment of intrinsic diffusion, we remove the standard CFL
condition on time step and improve significantly the CPU times without deteriorating
the precision of the method. The method was presented for 2D and 3D curve and
surface evolutions depending on curvature and subject to constant driving force and
spatially varying velocity field. We use first order upwind scheme in advective part
of (1.4) which is known as L∞ stable method. Although higher order schemes are
well-known for these type of problems, in many applications, see e.g. [33, 29, 32], the
first order schemes are widely used in practice. Removing the CFL stability condition
for them is then highly desirable, e.g., when advective part dominates the curvature
part since the precision of the semi-implicit scheme for the (mean) curvature motion
is reasonable also for larger time steps.

We describe our method for general grids, but in this paper we restricted our
computations only to structured meshes. An extension of our finite volume method to
second order approximation for general unstructured and adaptively refined grids was
recently done in [10]. Development of the second order method has been motivated
by the second order accuracy in intrinsic diffusion part and ambition to get the same
order of approximation also in the advective part and by a requirement to get better
area (volume) conservation properties. Moreover, the adaptive grid refinement is
natural tool for our method to concentrate computational effort locally along a moving
interface as it is usual in other froms of local level set methods [26].
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Fig. 6.7. Numerical solutions of the example with expanding and rotating circle. The top left
picture shows the evolution of the zero level line starting with the smallest circle (right) and ending
with the largest circle (left) using the grid with M = 320. The top right picture shows for the same
grid the initial zero line (the left circle) and the final zero lines of the exact and numerical solution.
All other pictures illustrate the area loss of the method on coarser grids, particularly for M = 20
(middle left), M = 40 (middle right), M = 80 (bottom left), and M = 160 (bottom right).
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Fig. 6.8. The left pictures show the comparison of numerical solutions to the mean curvature
flow obtained by Lagrangian method (the points) [20] and by the flux-based level set method (the
lines) plotted in time points 0.01, 0.04 and 0.1. The right pictures show the shapes of evolving level
set function.
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Fig. 6.9. Evolution of 3D Legendre function, F = −1, h = 2.5/80, τ = 0.005, time
points 0, 10, 20, 40 visualized as 3D isosurfaces, and 2D cuts of evolving isosurface at time points
0, 10, 20, 30, 40, 50, 60.


