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Abstract— We designed a set of procedures for achieving the
tracking of cell nuclei and the identification of cell divisions
in live zebrafish embryos using 3D+time images acquired by
confocal laser scanning microscopy (CLSM). Our strategy
includes image signal enhancement with feature preserving
denoising algorithm, automated identification of the nuclei po-
sition, extraction of the optical flow from 3D images sequences
and tracking of nuclei.

I. INTRODUCTION

Understanding the cell morphodynamics underlying mor-
phogenetic processes is a fundamental issue for bio-medical
research. Such a goal can be achieved through the automated
tracking of cell nuclei and cell divisions from 3D+time in
vivo imaging [1]. These tasks are the basis for the recon-
struction of the cell lineage tree described as the branching
process of cell divisions and its deployment in space and
time. The complete reconstruction of the cell lineage tree
from the egg cell to the adult stage has only been achieved
for the worm Caenorhabditis elegans. However, in that case,
the total cell number in the adult is less than one thousand
and the cell lineage is largely invariant. Because of their very
large cell number, this challenge has not been taken up so
far for vertebrate organisms. Nevertheless, recent advances
in imaging strategies open the way to in toto 3D plus time
imaging providing data suitable for in vivo cell tracking and
cell morphodynamics reconstruction. The zebrafish (Danio
rerio) is a vertebrate model that has been chosen for its
transparency allowing in vivo inspection at the cellular level
deep into the tissues by confocal laser scanning microscopy
[2]. The zebrafish exhibits typical vertebrate differentiated
cell types and has been largely validated for investigations
related to humans including cancerogenesis and a number
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Fig. 1. Workflow showing the data reconstruction steps to estimate the
cells position and movements: 3D+time images acquisition; the noise level
reduction and relevant information extraction.

of genetic diseases [3]. Achieving the automated recon-
struction of the zebrafish embryo cell morphodynamics is
highly relevant for investigating stem cells populations, early
steps of cancerogenesis or drug effects in vivo. Such a
goal requires engineering live zebrafish embryos to highlight
sub-cellular structures to be imaged by time lapse laser
scanning microscopy, designing image processing algorithms
and computational methods. We define in this paper a set of
algorithms to identify the 3D location of cell nuclei, estimate
cell movements and identify cell divisions. The workflow is
summarized in Fig. 1.

The rest of the paper is organized as follows: Section II
briefly explains the image acquisition method. Section III
introduces a nonlinear edge-preserving filtering method used
to increasy the signal to noise ratio in 3D images. Section
IV shows how a fully automated method identifying spheres
in 3D images can be used to recognize nuclei. In Section
V, we examine a procedure based on level-sets methods to
estimate the movements of cells. Section VI explains the
tracking procedure and detection of cell divisions.

II. IMAGE ACQUISITION

Zebrafish embryos have been labelled through injec-
tion at the one cell stage of RNAs encoding farnesylated
mcherry fluorescent protein (membrane staining) and histone
H2B/eGFP fusion protein (nuclei staining) respectively. That
staining produces very high contrast images containing high
intensity membrane (nucleus) regions versus low intensity
regions without membranes (nuclei). The image data set used
in this paper to design and validate our reconstruction strat-
egy has been obtained by confocal laser scanning microscopy
with a SP2 Leica upright microscope with a 40x/0.8NA
water objective and 488nm and 561nm laser light excitation.



Fig. 2. Zebrafish embryo. Scale bar: 100 µm. The boxes represent the
region of the embryo obtained by confocal laser scanning microscopy. Left:
embryo at 3.5 hours post fertilization. Right: embryo at 7.5 hours post
fertilization.

2D images are acquired parallel to the focal plane xy. The
images size is (512 x 512) pixels (8 bits per pixel). Images
are taken at regularly spaced z depth in the specimen to
build a z stack. The number of section in each volume is
30. The voxel size is (0,58 x 0,58 x 1) µm. Repeating this
procedure through time generates a sequence of 3D images.
The 49 volumes have been taken every 5 minutes from 3.5hpf
(hours post fertilization at 28◦C) for 4 hours (at 25◦C) from
the animal pole (Fig. 2) [4].

III. FILTERING

Image enhancement and denoising is a critical step in
order to preserve the shape information in digital images.
Furthermore, in laser scanning microscopy imaging, noise is
due to different causes, and is difficult to model. In particu-
lar, the variation of the fluorescent molecules concentration
(synthesized from the injected RNA) superimposes a de
facto noise level that is difficult to model. The use of tra-
ditional preprocessing algorithms (moving average, median
and Gaussian filtering) do reduce the noise superimposed
on the image but do not maintain a good definition of the
edges or image features. The goal of the filtering process is
to reduce the noise from the images without loosing useful
details like the edges. For that reason we have been using
a noise removal method based on the Perona and Malik
anisotropic diffusion filter [5]. This filter can be viewed
as a diffusion process that favours intra-region smoothing
while inhibiting inter-region smoothing. A 3D image can
be represented by a function I : DI → T where DI

is a subset of Z3 and T is an ordered set of grey-level
values. The filtered 3D volume is the solution of a nonlinear
diffusion equation (1) with the original 3D volume I0 as
initial condition and reflecting boundary conditions.

It (x, t) = div (g (|∇I(x, t)|)∇I (x, t)) (1)

where g is a simple edge indicator

g (|∇I(x, t)|) =
1

1 +
(
‖∇I(x,t)‖

K

)2 (2)

The edge indicator function g is a non-increasing function
of |∇I(x, t)|, thus, the value of g is closer to 1 in flat areas
(|∇I(x, t)| → 0) and closer to 0 in areas with large changes
in image intensity, i.e. the local edge features. The variable

K is a parameter defining the sensitivity of filtering to the
image contrast.

IV. 3D NUCLEI RECOGNITION

In order to recognize all the cell nuclei in each 3D image
with a fully automated procedure we have developed a 3D
version of the Hough transform for the identification of
spherical shapes. The Hough transform is an algorithm which
can be used to isolate features of a particular shape within an
image [6]. It is commonly used for the detection of regular
curves such as lines, circles or ellipses. The algorithm uses
the duality between points on a curve and parameters of that
curve.

Before applying the Hough transform, the volumes are
transformed into an edge representation using the Canny
edge detection algorithm [7] which has mainly three advan-
tages that make it optimal as a preprocessing step of the
Hough transform: it is able to locate and mark all real edges,
it minimizes the distance between the detected edge and real
edge and it produces only one response per edge.

A sphere with center (x0, y0, z0) and radius r is the set of
points (x, y, z) where (x− x0)

2+(y − y0)2+(z − z0)2 = r2

and the parameter space of the spheres with a fixed radius
is a three dimensional space defined by (x0, y0, z0). We also
know that the center of a sphere is located r units from the
point (x, y, z) in the direction of the gradient of the image
in (x, y, z).

The Hough transform accumulates in a 3 dimensional
array the votes of the edge points of the image. The coordi-
nates of those votes represent the parameters of the spheres
that we are looking for. Therefore, coordinates with the
highest value, are most likely representing the parameters
of a sphere in the image space. Thus, the set of points
C = {c = (x, y, z) : c is a center of a nucleus} is defined
by the local maximums in the accumulator array.

V. VECTOR FIELD EXTRACTION

Optical flow techniques have been used to estimate pixel
correspondence between images obtained at two different
times. Therefore, optical flow can give important information
about the movement of the objects in the images [8]. This
movement is represented by a vector field V : DI → R3.

The brightness of the cells in the confocal volume of the
zebrafish embryo remain almost constant over time, meaning
that

dI(x, t)
dt

= 0 (3)

Taking the first order Tailor expansion of (3), we obtain the
optical flow constraint equation: ∇I(x, t) ·

−→
V + It(x, t) = 0,

where
−→
V = (u, v, w)T is the displacement at x. Therefore

the component of the movement in the direction of the image
gradient is [9]:

Vn =
It(x)
|∇I(x)|

(4)

Then, the optical flow constraint just is enough to de-
termine the component of the flow field in the orthogonal



direction of the image gradient but not to retrieve the entire
vector field. Vemuri et al. [10] overcame this problem by
developing a neat and elegant surface evolution approach to
achieve the smooth deformation field between two 3D images
expressed in a level-sets framework.

Registering two consecutive 3D images I1 and I2 is
equivalent to determine the evolution of the level-sets of I1
along its normal direction ∇I until it becomes the target
image I2. This evolution can be written as:

It(x, t) = S ‖ ∇I(x, t) ‖ (5)
with I(x, 0) = I1(x)

where S is the speed term. Choosing the speed term S
equal to I2(x)−I(x, t) makes this curve evolution stop when
the image I reaches the level-sets of the target image I2.

Equation (5) does not give explicitly the transformation
vector field between the two images that can be achieved
using an analogous surface evolution in vector form:

−→
V t = (I2 − I(

−→
V (x, t)))

∇I(
−→
V (x, t))

‖ ∇I(
−→
V (x, t)) ‖

(6)

with
−→
V (x, 0) =

−→
0

where
−→
V (x) = (x+ u, y + v, z + w).

Since the movement of cells in the embryo depends locally
on the neighbouring cells, the vector field we are expecting
should behave as a fluid deformation. In order to achieve a
smooth vector field the images are convolved with a Gaussian
kernel Gσ before taking its gradient, therefore, expressions
(6) and (5) are modified into:

It(x, t) = (I2(x)− I(x, t)) ‖ ∇Gσ ∗ I(x, t) ‖ (7)

with I(x, 0) = I1(x) and

−→
V t = (I2 − I(

−→
V (x, t)))

∇Gσ ∗ I(
−→
V (x, t))

‖ ∇Gσ ∗ I(
−→
V (x, t)) ‖

(8)

with
−→
V (x, 0) =

−→
0 and the gradient is approximated by using

the upwind schemes [9].

VI. TRACKING

We developed a greedy algorithm able to perform the
tracking of nuclei and identify the cell divisions combining
the information of the nuclei centers with the optical flow.

A cell lineage tree can be interpreted as a binary tree where
the first cell of the embryo is represented by the root node
and the relationship of mother cells and the two daughter
cells are represented by edges.

The imaging procedure started when the embryo had
already more than 1000 cells, thus, we created as many trees
as nuclei identified in the first set of images.

The algorithm builds the trace of nuclei sequentially from
consecutive frames. It first calculates the sets of nuclei
centers Cτ and Cτ+1 using the Hough transform and the

Fig. 3. Section xy of the 3D volume captured by CLSM in a labelled
zebrafish embryo. The embryo is excited with 488nm laser light (left) to
reveal the nuclei and excited with 561nm laser light (right) to reveal the
membranes.

Fig. 4. Denoising procedure. Denoised version of the 3D images shown in
Fig. 3 using 4 steps of the anisotropic diffusion filter. Left: nucleus channel.
Right: membrane channel.

optical flow Vτ from frames τ to τ + 1. Then it moves each
point in Cτ with the vector field Vτ to build a new set of
points C ′τ . The points of C ′τ are an estimation of the position
of the cells in the frame τ+1. At last for each point j ∈ Cτ+1

the algorithm looks for the nearest point i′ in C ′τ and adds
the edge (i, j) to the tree.

A newborn daughter cell is supposed to be really close
to the position of its mother, thus, if a cell iτ has two cells
jτ+1 and kτ+1 as nearest neighbours, this characteristic is
recorded in the tree and a cell division is recognized.

VII. RESULTS

The images acquired by CLSM are shown in Fig. 3 and
show labelled membranes or nuclei. The signal found in
the nuclei or membranes is not smooth and the images are
processed with an anisotropic diffusion filter that reduce
noise inside and outside nuclei and membranes preserving
the edges information (Fig.4).

The filtered version of nuclei images are treated with the
Hough transform to identify the 3D position of nuclei. Visual
inspection allows concluding that the procedure leads to a
low number of false positive or false negative nuclei de-
tection (Fig. 5). We also observed that the Hough transform
successfully detects mitotic (undergoing division) nuclei that
are no longer spherical.

In order to capture the cells movement we computed, using
the level-sets framework, the optical flow of 3D volumes



Fig. 5. Nuclei recognition: the 3D images are rendered using a volume
ray casting algorithm. A white sphere is rendered everywhere the Hough
transform recognizes a nucleus.

Fig. 6. 3D optical flow of consecutive frames. The vector field represented
with coloured arrows is an estimation of the movement of the cells.
Parameters: 10 iterations with Gσ = 4.

acquired at consecutive time steps. Fig. 6 shows a portion
of the embryo and the vector field calculated with level-sets
method.

We used a backtracking procedure to track hundreds of
cells, recognize cell divisions and track the relationship
between mother and daughter cells (Fig. 7). These results
where validated by systematic visual inspection.

VIII. CONCLUDING REMARKS

We presented a set of procedures to achieve the automated
reconstruction of the cell lineage tree in living embryos.
These steps include efficient low-level algorithms to filter
the 3D confocal images, identify the location of nuclei and
estimate the motion of cells in the sequence of images. The
nuclei position and the vector field are combined to perform
the tracking of cells and identify cell divisions.

Fig. 7. Tracking result experience. 3D+time images rendered using a
volume ray casting algorithm. The time step between frames is 5 minutes.
White spheres are rendered everywhere the Hough transform finds a nucleus.
A marker (255) shows a cell mitosis. From left to right and top to bottom:
prophase, prometaphase, metaphase, telophase.
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