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Abstract—We discuss application of nonlinear PDE based cells. The filtering models are discussed in section Il. iBact
methods to filtering of 3-D confocal images of embryogenesis. ||| introduces a modified version of standard edge detector
We focus on the mean curvature driven and the regularized 4 fijter membranes data. In section IV we analyse behavior

Perona-Malik equations, where standard as well as newly . .
suggested edge detectors are used. After presenting the resalt of the methods in processing our 3-D data set. We evaluate

mathematical models, the practical results are given and dis- duantitatively the filtering results using the mean Haudor
cussed by visual inspection and quantitatively using the mean distance of isosurfaces to a gold standard.
Hausdorff distance.

I[I. NONLINEAR PDESBASED MODELS
l. INTRODUCTION Let the input processed 3-D image be modelled by a real
The biological processes leading to organism formatiofunction Iy(x), Ip : © — R, whereQ) C R? represents
and development of individuals is a fundamental issue fer tha spatial rectangular domain. Observing that the Gauss
biomedical research but is nowadays largely not understoddinction is a fundamental solution of the linear heat equmti
Achieving of an integrated understanding of such processes
needs to analyze the cells individually and in a living enabry Iy=AI=V-(VI) @)

Such goal represents a challenge for imaging techniqugshas been possible [2], [3] to replace the classical con-
and image processing algorithms. In fact, recent advancgsiution of an image with the Gaussian kernel of a given
in imaging strategies open the way to toto 3D+time variancev = /20 by solving the linear heat equation
imaging of live animals with a resolution at cellular levelfor a corresponding time = o and initial condition
and enough contrast to allow segmentation and trackingx70) = Iy(x). Applying (1) to an image means to diffuse
of individual cells. However, a noise is intrinsically lie# its graylevels in an isotropic way. Despite the fact that (1)
to the scanning technique and image analysis algorithmigduces the noise superimposed to the image, it blurs edges
applied consequently to the time series of 3D zebrafisind moves their position. To overcome these shortcomings,
images need to remove spurious, noisy, structures. Theeimagerona and Malik [4] introduced the first nonlinear diffusio
filtering has to be always a first step in a chain of imagenodel calledanisotropic diffusionin the computer vision
processing operations, and it is very important to desigfommunity
appropriate filters and chose their optimal parametersrfpr a I, =V - (g(|VI))VI), 2)
particular type of data. The goal of this paper is to apply
the methods of nonlinear diffusion filtering to 3-D confocalmaking the diffusion coefficieny dependent on the image
images [1] of zebrafish embryogenesis in order to perforﬁ@atures. This model can behave IocaIIy as the backward
the segmentation [14] and the tracking [15] of individuaheat equation, depending on the intensity o], which
is an ill-posed problem from a matematical point of view.
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image gradient and usesas a wheighting term to slow down In both (7) and (8) the Gaussian variance acts like a scale
the diffusion on high image gradients. Sinke= V- % parameter that determines the minimal size of details that
is the mean curvature of level sets bf (4) represents a ¢an be preserved. The parameters instead related to the

geometrical diffusion of the image isosurfaces driven tjrth image contrast and it acts like a scale parameter by which

mean curvature, with an image dependent stopping functi¢he graylevels of the image features are mapped intogthe

g. We call this modebklowed mean curvature flow function. _
The last equation which we consider in this paper is sd3Y Using (8), we leave the useful signal of membranes
called geodesic mean curvature flow unaltered as much as possible. Indeed, despite of the fact

that (7) strongly reduces the noise, it smooths excessively
Iy = g(|VGo + I)|VI|K +Vg([VGo +1]) - VI, (5)  the membranes. This behaviour is particularly evident eher

which can be derived from (4) by adding the image depedl€ signal is weak and the thickness of the membranes
dent advective term. The equation was introduced simult&s thin. An example is shown in Fig. 1. Although (7)
neously in [10], [11], [13] for image segmentation, for the@Moves slightly better .the noise, t.he membranes. appear
filtering purposes (5) was suggested in [12], [17]. The imag@lurred and part of thg information is Io§t. We verified in
dependent velocity term drives the graylevel isosurfages [14] that such information about boundaries is important to
the direction of—Vg, i.e. towards local edges. It can becorrectly segment the membranes. Mathematical religbilit

written in divergence form of such nonlinear models for image processing where the
V7 edge indicator may depend on image intensity is given in

L=V (VG 1Dl T ) @) el
V1| Numerical schemes for solving presented PDEs models

to see (6) as a geometrical generalization of (2). can be based either on the explicit, see e.g. [17], or the
. IMAGE DENOISING seml_-lr_npllc!t [61, [71, [_8]_, [18] time dlsc_re_t|zat|ons andn
] i ) ~ the finite difference, finite volume or finite element space

We have applied the models introduced in the previougiscretizations. Since in case of explicit schemes one has
section to an in vivo zebrafish embryo nuclei and membrangs take care about the CFL stability condition, we use
3-D images acquired with a confocal microscope Leica SPgami-implicit schemes, that are unconditionally stabler F
AOBS.'Every volume has a size of 512x512x30 voxels, Withhe nuclei images, the implementation of such schemes is
a spacing of 0.58x0.58x1.04°. The data represent stagesjescribed in details in [18].
of development of zebrafish embryo nuclei and membranes
that cover a period 4-6 hours, from the sphere to the shield IV. FILTERING RESULTS
stage. In the entire period of development, the whole embryo

is similar to a sphere with a diameter of 700The data have In this section we discuss visually and quantitatively

. : . the behaviour of the models on nuclei images, while for
a physical dimension of 300 x 300 x 3¢ and cover only membranes we discuss the results by visual inspection. In

the top part of the embryo. . : . ;
The nuclei data are composed of well contrasted objecttsbe Fig. 2 we show a detail of an isosurface representation of

. . . . . nuclei, whereas such kind of visualization is not apprdpria
with an enough good signal to noise ratio and region bprap

. . : Ror membranes, where the isosurfaces are never closed. A
approximately uniform. The membranes images are more . . . : : g
etail of a slice selected in the xy plane is shown in Fig. 3.

complex and difficult to handle. They are hollow and form
O\,
Ny

an "interlacement” continuos in the whole volume. Very

often the constrast is very low or the fluorescent signal is

completely absent. The membranes thickness is very smal

in the best case composed by no more ti3ad voxels.

Therefore, we adopted a different strategy, depending en th

kind of data, to represent the image features. _L
As introduced in the previous section, in all the methods -

we use, the image features are given through the function

g. In the case of nuclei we represeptas a standard edge

indicator, i.e., as a smooth nonincreasing function of the

original image gradient,
1
g(x) : 2 - (7)
(GxV1I)
1+ —©5

However, for the membranegs we found useful to express

(a) Original data (b) Standard edge dete¢e) New edge detector
tor

it as a smooth nonincreasing function of the image intensity (d) Data filtered usinge) Data filtered using
namely eq.(7) eq.(8)
1
g(x) (8) Fig. 1. The original data and the edge indicators. On theobothe data

GxI)? ’

1+ ( 3 filtered using both functions.



Observing figures, we can see that all the methods reduce
the noise superimposed to the image preserving at the same
time its features. We used small values of variamée order

to ehnance the contrast and preserve the small structures
of membranes. The slowed mean curvature flow and the
modified Perona-Malik models show good behaviour after 10
filtering steps, both for nuclei and membranes images, while
the geodesic mean curvature flow requires 15 filtering steps.
In all the computations our voxel siZe = 0.01. Then the

time stepr = 0.0001 (to be close to relatiom ~ h? which is
standard for solving parabolic equations). In Fig. 2 we used
further parameters as followgt = 2,0 = 5-10~* for the ‘ S b V(S
modified Perona-Malik and smcf model$,= 1,0 = 1073 (c) Mod. P-M (d) Gmcf
Tor g.me model. For f"ter'”93the memtirfne images pr_e.sentqglg. 2. Isosurface representation of original and filteractlei (by
in Fig. 3 we useds = 107°,0 = 107" for the modified isosurface value 28).

Perona-Malik and smcf models, whil§ = 1074, 0 =
5-10~* for gmcf model.

Concerning membrane images, it is worth to note that,
although the noise intensity is often comparable with the
intensity of membranes and the thickness of membranes is
very small, the methods are able to distinguish between the
noise inside membranes and the membranes itself. Visually
the behaviour of all the methods is really satisfactory and
comparable. To find a way how to evaluate quantitatively
the filtering by different methods for this kind of data will
be an objective of our further research.

Concerning nuclei images, by the visual inspection, cf.
Fig. 2, we can conclude that the methods strongly reduce
the noise and smooth small variations in image intensity
without changing the shape of nuclei. However, we would
like to compare the models also quantitatively. To that goal
we have selected a subvolume of the first unfiltered frame
of the embryogenesis time sequence and constructed a gold
standard by a manual segmentation. Then we calculated
the mean Hausdorff distance[20] between the manually sefjg. 3. A slice in the xy plane of original and filtered membrarise
mented surface of nuclei in the gold standard and isosigfac@ice has been selected in the middle of volumes.
of original and filtered data, respectively.

(a) Original (b) Smcf

(c) Mod. P-M (d) Gmcf

Given two finite point setsd = {ai1,...,a,} and B = ) ) ) )
{b1,...,b,} the mean Hausdorff distands defined as accumulate around the boundaries of nuclei. The ideal image
smoothing and enhancement would give a profile of image
MHD(A, B) = max (mhd(A, B),mhd(B, A)), intensity perfectly steep on the nuclei boundaries.

where Such profile would correspond to a totally flat graph of the
12 mean Hausdorff distance. Therefore, by means of the mean

mhd(A,B) = =) min |la; - b] Hausdorff distance to gold standard computed for the caigin

Pzt and filtered data, it is possible to quantitavely evaluate th
is called mean directed Hausdorff distancand || - | is capability of smoothing and enhancement of the methods.

some underlying norm (usually Euclidean) on the point®articularly, a reduction of the MHD by filtering shows the
of sets A, B. The mhd(B, A) is defined similarly. The capability of smoothing, while the flatness of the MHD graph
mean Hausdorff distance is widely used to measure tfie related to enhancement.
mismatch between two point sets usually to perform an Observing the image histogram and by the visual inspec-
image matching. In our case the setsand B are given tion we estimated the level of intensity 28 as the closest to
by discrete points that forms the nuclei surface in the golthe real boudaries of nuclei. We selected isosurface levels
standard and the image intensity isosurfaces either imnadig around this value, from 15 to 45, with step 5, in order
or in filtered volumes, respectively. to evaluate the mean Hausdorff distances. For every such
An appropriate image filtering should produce not onlysosurface either in original or filtered data, we found a
image smoothing and noise removal but also image enucleus surface in the gold standard and we calculated their
hancement. Then the level sets of the image intesity shouldean Hausdorff distance. At the end we averaged the mean



Hausdorff distances over all nuclei in the subvolume. To
check correct selection of the pairs of nuclei in the gold
standard and other data we visualize them overlapped withi
their bounding boxes, see Fig. 4 in case of original data. Th
values of the mean Hausdorff distances are reported in Tab
I, and Fig. 4 shows the related graphs. We can easily observe

that our choice of isosurface value 28 as the closest to tif@. 4. Left: the plot of 11 nuclei of the gold standard (whiteerlapped

real boundaries of nuclei has been correct. In the origin%&

ith the corresponding component of isosurface 25 in theimalglata set
lue). Right: the graph of the mean Hausdorff distance ferdtiginal and

data, the isosurfaces with values between 25 and 30 gi¥igered data.

the smallest (and approximately the same) mean Hausdorff
distance to the gold standard. This fact is expressed insdlmo
flat graph of the mean Hausdorff distance in this intervas It
worth to note that the interval of the flatness for originaiada

is very narrow (in spite of the graphs for modified Perona-
Malik, smcf and gmcf filtering results), which means that
correct representation of nuclei in the noisy data is very
sensitive to the choice of correct isosurface level. Letate n
that all the methods show good capability of smoothing, the
mean Hausdorff distance with respect to the gold standard is
reduced in the whole range of chosen isosurfaces. The graph
of the slowed mean curvature flow is almost parallel to that of
original data, meaning that it performs a pure edge presgrvi
smoothing. The graph of modified Perona-Malik method ist®!
similar, but less convex and slightly more flat for lower [6]
isourfaces. Therefore, this method tends to more accueulat
the image graylevels in that range of image intensity. Thei7
regions closely outside the nuclei contour moves towards
the nuclei boundaries. This kind of behaviour is very strong
in the geodesic mean curvature flow, that completely flatten!
the regions of a low intensity, enhancing thus edge position
around nuclei. Further details and deep discussion about
the evaluation of such methods using the mean Hausdor
distance can be found in [18].

V. CONCLUSIONS

In this paper we have presented PDEs edge preserving et
noising methods and we applied them to 3-D confocal images
of zebrafish embryo. We have introduced a modified versida?
of classical edge detector to filter membranes data. Ouy stud
shows that nonlinear diffusion methods are well suited fon3]
processing such type of data. Using the mean Hausdorff
distance measurement we show their good capabilities for
smoothing and enhancement as well. [14]
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