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Abstract— We discuss application of nonlinear PDE based
methods to filtering of 3-D confocal images of embryogenesis.
We focus on the mean curvature driven and the regularized
Perona-Malik equations, where standard as well as newly
suggested edge detectors are used. After presenting the related
mathematical models, the practical results are given and dis-
cussed by visual inspection and quantitatively using the mean
Hausdorff distance.

I. INTRODUCTION

The biological processes leading to organism formation
and development of individuals is a fundamental issue for the
biomedical research but is nowadays largely not understood.
Achieving of an integrated understanding of such processes
needs to analyze the cells individually and in a living embryo.
Such goal represents a challenge for imaging techniques
and image processing algorithms. In fact, recent advances
in imaging strategies open the way toin toto 3D+time
imaging of live animals with a resolution at cellular level
and enough contrast to allow segmentation and tracking
of individual cells. However, a noise is intrinsically linked
to the scanning technique and image analysis algorithms
applied consequently to the time series of 3D zebrafish
images need to remove spurious, noisy, structures. The image
filtering has to be always a first step in a chain of image
processing operations, and it is very important to design
appropriate filters and chose their optimal parameters for any
particular type of data. The goal of this paper is to apply
the methods of nonlinear diffusion filtering to 3-D confocal
images [1] of zebrafish embryogenesis in order to perform
the segmentation [14] and the tracking [15] of individual
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cells. The filtering models are discussed in section II. Section
III introduces a modified version of standard edge detector
to filter membranes data. In section IV we analyse behavior
of the methods in processing our 3-D data set. We evaluate
quantitatively the filtering results using the mean Hausdorff
distance of isosurfaces to a gold standard.

II. NONLINEAR PDES BASED MODELS

Let the input processed 3-D image be modelled by a real
function I0(x), I0 : Ω → R, where Ω ⊂ R

3 represents
a spatial rectangular domain. Observing that the Gauss
function is a fundamental solution of the linear heat equation,

It = ∆I = ∇ · (∇I) (1)

it has been possible [2], [3] to replace the classical con-
volution of an image with the Gaussian kernel of a given
variance v =

√
2σ by solving the linear heat equation

for a corresponding timet = σ and initial condition
I(x, 0) = I0(x). Applying (1) to an image means to diffuse
its graylevels in an isotropic way. Despite the fact that (1)
reduces the noise superimposed to the image, it blurs edges
and moves their position. To overcome these shortcomings,
Perona and Malik [4] introduced the first nonlinear diffusion
model calledanisotropic diffusionin the computer vision
community

It = ∇ · (g(|∇I|)∇I), (2)

making the diffusion coefficientg dependent on the image
features. This model can behave locally as the backward
heat equation, depending on the intensity of|∇I|, which
is an ill-posed problem from a matematical point of view.
Therefore Catt́e, Lions, Morel and Coll [5], [6] proposed
to use the convolution of∇I with the Gaussian kernel to
evaluate the diffusion coefficient, keeping all the advantages
of the original model and avoiding its drawbacks

It = ∇ · (g(|∇Gσ ∗ I|)∇I). (3)

We will refer to (3) asmodified Perona Malikmodel in the
course of this paper.

Another, geometrical generalization of (1) was suggested
by Alvarez, Lions and Morel [9]

It = g(|∇Gσ ∗ I|)|∇I|∇ ·
( ∇I

|∇I|

)

. (4)

Since the right hand side can be rewritten asg(|∇Gσ∗I|)Iηη,
where Iηη represents the tangential component of∆I, it
provides a smoothing only in the direction orthogonal to the



image gradient and usesg as a wheighting term to slow down
the diffusion on high image gradients. SinceK = ∇·

(

∇I
|∇I|

)

is the mean curvature of level sets ofI, (4) represents a
geometrical diffusion of the image isosurfaces driven by their
mean curvature, with an image dependent stopping function
g. We call this modelslowed mean curvature flow.

The last equation which we consider in this paper is so-
calledgeodesic mean curvature flow

It = g(|∇Gσ ∗ I|)|∇I|K + ∇g(|∇Gσ ∗ I|) · ∇I, (5)

which can be derived from (4) by adding the image depen-
dent advective term. The equation was introduced simulta-
neously in [10], [11], [13] for image segmentation, for the
filtering purposes (5) was suggested in [12], [17]. The image
dependent velocity term drives the graylevel isosurfaces in
the direction of−∇g, i.e. towards local edges. It can be
written in divergence form

It = |∇I|∇ ·
(

g(|∇Gσ ∗ I|)| ∇I

|∇I|

)

(6)

to see (6) as a geometrical generalization of (2).

III. IMAGE DENOISING

We have applied the models introduced in the previous
section to an in vivo zebrafish embryo nuclei and membranes
3-D images acquired with a confocal microscope Leica SP2
AOBS. Every volume has a size of 512x512x30 voxels, with
a spacing of 0.58x0.58x1.04µ3. The data represent stages
of development of zebrafish embryo nuclei and membranes
that cover a period 4-6 hours, from the sphere to the shield
stage. In the entire period of development, the whole embryo
is similar to a sphere with a diameter of 700µ. The data have
a physical dimension of 300 x 300 x 30µ3 and cover only
the top part of the embryo.
The nuclei data are composed of well contrasted objects,
with an enough good signal to noise ratio and regions
approximately uniform. The membranes images are more
complex and difficult to handle. They are hollow and form
an ”interlacement” continuos in the whole volume. Very
often the constrast is very low or the fluorescent signal is
completely absent. The membranes thickness is very small,
in the best case composed by no more than3, 4 voxels.
Therefore, we adopted a different strategy, depending on the
kind of data, to represent the image features.

As introduced in the previous section, in all the methods
we use, the image features are given through the function
g. In the case of nuclei we representg as a standard edge
indicator, i.e., as a smooth nonincreasing function of the
original image gradient,

g(x) =
1

1 + (G∗∇I)2

β

. (7)

However, for the membranesg, we found useful to express
it as a smooth nonincreasing function of the image intensity,
namely

g(x) =
1

1 + (G∗I)2

β

. (8)

In both (7) and (8) the Gaussian variance acts like a scale
parameter that determines the minimal size of details that
can be preserved. The parameterβ is instead related to the
image contrast and it acts like a scale parameter by which
the graylevels of the image features are mapped into theg

function.
By using (8), we leave the useful signal of membranes
unaltered as much as possible. Indeed, despite of the fact
that (7) strongly reduces the noise, it smooths excessively
the membranes. This behaviour is particularly evident where
the signal is weak and the thickness of the membranes
is thin. An example is shown in Fig. 1. Although (7)
removes slightly better the noise, the membranes appear
blurred and part of the information is lost. We verified in
[14] that such information about boundaries is important to
correctly segment the membranes. Mathematical reliability
of such nonlinear models for image processing where the
edge indicator may depend on image intensity is given in
[16].

Numerical schemes for solving presented PDEs models
can be based either on the explicit, see e.g. [17], or the
semi-implicit [6], [7], [8], [18] time discretizations andon
the finite difference, finite volume or finite element space
discretizations. Since in case of explicit schemes one has
to take care about the CFL stability condition, we use
semi-implicit schemes, that are unconditionally stable. For
the nuclei images, the implementation of such schemes is
described in details in [18].

IV. FILTERING RESULTS

In this section we discuss visually and quantitatively
the behaviour of the models on nuclei images, while for
membranes we discuss the results by visual inspection. In
the Fig. 2 we show a detail of an isosurface representation of
nuclei, whereas such kind of visualization is not appropriate
for membranes, where the isosurfaces are never closed. A
detail of a slice selected in the xy plane is shown in Fig. 3.

(a) Original data (b) Standard edge detec-
tor

(c) New edge detector

(d) Data filtered using
eq.(7)

(e) Data filtered using
eq.(8)

Fig. 1. The original data and the edge indicators. On the bottom the data
filtered using both functions.



Observing figures, we can see that all the methods reduce
the noise superimposed to the image preserving at the same
time its features. We used small values of varianceσ in order
to ehnance the contrast and preserve the small structures
of membranes. The slowed mean curvature flow and the
modified Perona-Malik models show good behaviour after 10
filtering steps, both for nuclei and membranes images, while
the geodesic mean curvature flow requires 15 filtering steps.
In all the computations our voxel sizeh = 0.01. Then the
time stepτ = 0.0001 (to be close to relationτ ≈ h2 which is
standard for solving parabolic equations). In Fig. 2 we used
further parameters as follows:β = 2, σ = 5 · 10−4 for the
modified Perona-Malik and smcf models,β = 1, σ = 10−3

for gmcf model. For filtering the membrane images presented
in Fig. 3 we usedβ = 10−3, σ = 10−4 for the modified
Perona-Malik and smcf models, whileβ = 10−4, σ =
5 · 10−4 for gmcf model.

Concerning membrane images, it is worth to note that,
although the noise intensity is often comparable with the
intensity of membranes and the thickness of membranes is
very small, the methods are able to distinguish between the
noise inside membranes and the membranes itself. Visually
the behaviour of all the methods is really satisfactory and
comparable. To find a way how to evaluate quantitatively
the filtering by different methods for this kind of data will
be an objective of our further research.

Concerning nuclei images, by the visual inspection, cf.
Fig. 2, we can conclude that the methods strongly reduce
the noise and smooth small variations in image intensity
without changing the shape of nuclei. However, we would
like to compare the models also quantitatively. To that goal,
we have selected a subvolume of the first unfiltered frame
of the embryogenesis time sequence and constructed a gold
standard by a manual segmentation. Then we calculated
the mean Hausdorff distance[20] between the manually seg-
mented surface of nuclei in the gold standard and isosurfaces
of original and filtered data, respectively.

Given two finite point sets,A = {a1, . . . , ap} and B =
{b1, . . . , bq} the mean Hausdorff distanceis defined as

MHD(A,B) = max (mhd(A,B),mhd(B,A)) ,

where

mhd(A,B) =
1

p

p
∑

i=1

min
b∈B

‖ai − b‖

is called mean directed Hausdorff distanceand ‖ · ‖ is
some underlying norm (usually Euclidean) on the points
of sets A,B. The mhd(B,A) is defined similarly. The
mean Hausdorff distance is widely used to measure the
mismatch between two point sets usually to perform an
image matching. In our case the setsA and B are given
by discrete points that forms the nuclei surface in the gold
standard and the image intensity isosurfaces either in original
or in filtered volumes, respectively.

An appropriate image filtering should produce not only
image smoothing and noise removal but also image en-
hancement. Then the level sets of the image intesity should

(a) Original (b) Smcf

(c) Mod. P-M (d) Gmcf

Fig. 2. Isosurface representation of original and filtered nuclei (by
isosurface value 28).

(a) Original (b) Smcf

(c) Mod. P-M (d) Gmcf

Fig. 3. A slice in the xy plane of original and filtered membranes. The
slice has been selected in the middle of volumes.

accumulate around the boundaries of nuclei. The ideal image
smoothing and enhancement would give a profile of image
intensity perfectly steep on the nuclei boundaries.
Such profile would correspond to a totally flat graph of the
mean Hausdorff distance. Therefore, by means of the mean
Hausdorff distance to gold standard computed for the original
and filtered data, it is possible to quantitavely evaluate the
capability of smoothing and enhancement of the methods.
Particularly, a reduction of the MHD by filtering shows the
capability of smoothing, while the flatness of the MHD graph
is related to enhancement.

Observing the image histogram and by the visual inspec-
tion we estimated the level of intensity 28 as the closest to
the real boudaries of nuclei. We selected isosurface levels
around this value, from 15 to 45, with step 5, in order
to evaluate the mean Hausdorff distances. For every such
isosurface either in original or filtered data, we found a
nucleus surface in the gold standard and we calculated their
mean Hausdorff distance. At the end we averaged the mean



Hausdorff distances over all nuclei in the subvolume. To
check correct selection of the pairs of nuclei in the gold
standard and other data we visualize them overlapped within
their bounding boxes, see Fig. 4 in case of original data. The
values of the mean Hausdorff distances are reported in Table
I, and Fig. 4 shows the related graphs. We can easily observe
that our choice of isosurface value 28 as the closest to the
real boundaries of nuclei has been correct. In the original
data, the isosurfaces with values between 25 and 30 give
the smallest (and approximately the same) mean Hausdorff
distance to the gold standard. This fact is expressed in almost
flat graph of the mean Hausdorff distance in this interval. Itis
worth to note that the interval of the flatness for original data
is very narrow (in spite of the graphs for modified Perona-
Malik, smcf and gmcf filtering results), which means that
correct representation of nuclei in the noisy data is very
sensitive to the choice of correct isosurface level. Let us note
that all the methods show good capability of smoothing, the
mean Hausdorff distance with respect to the gold standard is
reduced in the whole range of chosen isosurfaces. The graph
of the slowed mean curvature flow is almost parallel to that of
original data, meaning that it performs a pure edge preserving
smoothing. The graph of modified Perona-Malik method is
similar, but less convex and slightly more flat for lower
isourfaces. Therefore, this method tends to more accumulate
the image graylevels in that range of image intensity. The
regions closely outside the nuclei contour moves towards
the nuclei boundaries. This kind of behaviour is very strong
in the geodesic mean curvature flow, that completely flatten
the regions of a low intensity, enhancing thus edge position
around nuclei. Further details and deep discussion about
the evaluation of such methods using the mean Hausdorff
distance can be found in [18].

V. CONCLUSIONS

In this paper we have presented PDEs edge preserving de-
noising methods and we applied them to 3-D confocal images
of zebrafish embryo. We have introduced a modified version
of classical edge detector to filter membranes data. Our study
shows that nonlinear diffusion methods are well suited for
processing such type of data. Using the mean Hausdorff
distance measurement we show their good capabilities for
smoothing and enhancement as well.
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