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ABSTRACT. This paper is devoted to a finite volume scheme for coherence enhancing diffusion
filtering in 3D image processing. First, we derive the model, including a construction of its
diffusion tensor. Then we design an original semi-implicit finite volume scheme for this 3D
model with the help of the co-volume mesh. Our method is based on the choice of co-volumes
as diamond-shaped polygons around each side of a 3D finite volume. Finally we discuss com-
putational results in biomedical image processing illustrated in figures.
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1. Introduction

Nonlinear diffusion is an interesting topic of study because of the amazing diver-
sity of its applications, among which image processing has grown rapidly in recent
decades, cf. [WEI 99, PRR 00, PRR 02, MNW 02, DRM 07]. In this paper we
suggest an original 3D diamond-cell finite volume scheme for a 3D model of nonlinear
tensor anisotropic filtering. The model is given in the following form
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strong smoothing is desirable in a particular direction, e.g. along 2D edge surfaces in
3D images, where a low smoothing is expected in the perpendicular direction. It has a
capacity to improve the spatial coherence of structures, which can be deteriorated by
a high level of noise.

2. Derivation of the diffusion tensor

First we build a gradient of the intensity function
�

given by
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and � �� is a smoothing kernel. We denote ��� � ���� ��� 6 by � . Provided � � �
we choose

the triplet of vectors 
��! � � 6 � �#" � as follows�  %$ � ���� � � 6'& � ���� � � " & � ���� � � 6(& � "*) [5]

The direction of vector �! represents in every point a direction of the largest change in
image intensity. The other two vectors give a tangential plane to a level set of image
intensity which may represent a 2D surface edge in 3D image, provided that � is large,
and we call it a coherence plane + , cf. [MNW 02]. The coherence plane corresponds
to an eigenspace corresponding to eigenvalue

�
of the outer product � �,��.- � ���� .

The idea of the nonlinear diffusion tensor filtering is as follows. We obtain a
processed version
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-% �>�>� of an original image
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-% � with a scale parameter
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the solution of mathematical model [1]-[3], where � depends on solution
�

, satisfies
smoothness and symmetry properties. In order to enhance coherence, the diffusion
tensor � must steer a filtering process such that diffusion is strong and increasing
with the level of � along the coherence plane and is small in the direction of vector�0 . To that end, we choose the eigenvalues of the diffusion tensor � by1  � 27�32 4 
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and corresponding eigenspaces are given by �= and + . In such a way, and, applying
Gaussian smoothing with variance N we get the diffusion matrix � in the form
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and
U

is a transition matrix from the basis 
��= � � 6 � �#" � to 
_^` � ^ 6 � ^a" � . The exponential
function in [6] is used because it ensures that 1 6 does not exceed

4
, and the positive

parameter
2

guarantees that the process never stops; even if � tends to zero, there
still remains some small linear diffusion.
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, and, conversely if � 6eF

then 1 6'd 2
.
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In fact, the matrix � * is uniformly positive definite, it does not depend on the
concrete choice of � 6 and � " and, if � � � , in standard basis it has the form4�������� ���
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It depends explicitly on � ���� and can thus be evaluated in a direct and fast way using
the diamond-cell finite volume method (see also next section). Then the matrices, and
correspondingly the coherence and gradient directions, are spatially averaged using
convolution applied to the matrix elements. Since� � � 
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 �  � � 6 � � " � is any non-zero vector in ( " and

# � � are elements of the
matrix � * , we see that the diffusion tensor � is positive definite. At this point we dif-
fer from other possible approaches, see e.g. [WEI 99], where the so-called 3D struc-
ture tensor is first built using convolution applied to the outer product of the intensity
gradient, and its eigenvalues and eigenvectors are constructed and used for building
diffusion tensor. In the general 3D case this procedure is more complicated than our
method (with explicitly given matrix � * ) because it has to deal with eigenvector and
eigenvalue analysis of general )  ) matrices in every image pixel. However, it can
also be made fast using, e.g., AOS schemes [WEI 99,WES 02]. A similar approach
to ours (without explicitly stating the convolution by � O ) is also given in [MNW 02].

3. Finite volume scheme for 3D nonlinear tensor anisotropic diffusion

The goal of this section is to derive our method of calculation. Let the image be
represented by *   * 6  * " voxels (finite volumes) such that it looks like a mesh with*  rows, * 6 columns and * " layers. Let
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 � � * 6 + �  
 ��� * "-+ � , + be a
voxel size and let the image

� 
&% � be given by a bounded mapping
�/. "10 ( . We

consider the smoothing process in a time interval
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. Let
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denote the time discretization with
�89�� �'9 A  ;;:

, where
:

is a length of
discrete time step. In our scheme we will look for

� 9
an approximation of solution at

time
� 9

, for every * �T4 � )X)�) �8<>=@? � ) As usual in finite volume methods, we integrate
equation [1] over finite volume A , then provide a semi-implicit time discretization
and use a divergence theorem to get

� 9B � � 9 A  B: C 
 A � � �DFEHG-IKJLG,M�N-O � D 

� 9 A  � � 9 � � / BQP D #FR � � �
[8]
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where
� 9B

, A 4����
, represents the mean value of

� 9
on A and
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is a cubic finite

volume mesh. Further quantities and notations are described as follows: C 
 A � is a
3D measure of the finite volume A with boundary

� A , � B � � A�� 5 is a side of
the finite volume A , where

5 4�� �
is an adjacent finite volume to A such that a 2D
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 A	� 5 ��
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. Due to simplifying notations, we use � instead of � B � at

several places if no confusion can appear. � B is set of sides such that
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and let �
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and /
BQP D is

the normal unit vector to � outward to A .

Let our numerical solution be
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scheme we start the computation by defining initial values
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at the * -th time step. In order to obtain the scheme we write [8] in the form
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where C 
 � � is the measure of side � and
= 9D 
 � 9 � P  � denotes an approximation of the

exact averaged flux
 =�7 D 8;: D 
-� 9 A  � � 9 � � / BQP D #LR for any A and � 4 � B .

We construct
= 9D 
 � 9 � P  � with the help of a co-volume mesh, cf. e.g. [CVV 99,

DRM 07], for the 2D case. The co-volume
# D associated with � is constructed around

each finite volume side by joining four vertices of this side and midpoints of finite vol-
umes which are common to this side, cf. Fig.1. The co-volume boundary is given by
triangles >�?� � # D (we denote their vertices by

<  
 >� � , < 6 
 >� � and
< "�
 >� � ) and let/A@CB PEDD be the normal unit vector to >� outward to

# D . In order to approximate diffu-
sion flux, using divergence theorem, we first derive an approximation of the averaged
gradient on

# D � namely
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For each side � , let the values at %"J and %LK be denoted as

� J and
� K , and let the

values
��� 4

,
���"M

,
�"N 4

, and
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at the vertices % � 4 , % �"M , % N 4 , and % N�M , cf. Fig. 1, be
computed as the arithmetic mean of

� B
, where A are finite volumes which are com-

mon to the vertex. Since our mesh is uniform and squared, we can use the following
relations: C 
 # D � � � �" , C 
 >� � �PO 6Q + 6 and after a short calculation we are ready to
state

I 9D 
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where S T
BQP D is a unit vector parallel to % � 4 � % �"M such that 
-% � 4 � % �"M�� � S T BQP D � �and S V

BQP D is a unit vector parallel to % � 4 � % N 4 such that 
&% � 4 � % N 4 � � SWV B@P D � � .Replacing the exact gradient � �
9

by the numerical gradient I 9D.
 ��� in approximation

Figure 1. The vertices of co-volume ��� associated with side �
of
= 9D 
 � 9 � P  � we get the numerical flux in the form= 9D 
 � 9 � P  � � 
-� D I 9D 
 ���'� �0/ BQP D � [11]

where � D � � 9 A  D �ZY[ >� D � >� D 6 >� D M">� D 6 >� D6'6 >� D6 ">� D M" >� D6 " >� D"�" \] is an approximation of the mean value

of matrix � along � evaluated at the previous time step. To that end we take
� 9 A  � P  

for
the construction of the diffusion tensor. Because of the convolutions in (4) and (7), the
elements of matrix � D are

F��
functions.
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Figure 2. A finite volume � , its boundaries ���������! "�$#%�'&(�$)���*+�', and the fluxes outward
to the finite volume �

It is important to note that in [11] we always consider the matrix � D written in
the basis 
-/

BQP D � S T BQP D � SWV B@P D � , cf. [CVV 99, DRM 07] for an analogy with the
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2D model. Although it may look artificial, it will simplify further considerations. In
practice it means that, cf. Fig. 2, if the matrix � is given in standard basis on side � byY[ � D � � D 6 � D M"� D 6 � D6'6 � D6 "� D M" � D6 " � D"�" \] then it does not change in new basis on two sides � K and � J .

For two other sides � M and � 4 , in new basis it has the form
Y[ � D6'6 � D 6 � D6 "� D 6 � D � � D "� D6 " � D M" � D"�" \] ,

and for the last two sides � N and � � it becomes
Y[ � D"�" � D6 " � D M"� D6 " � D6'6 � D 6� D M" � D 6 � D � \] . Using such

matrix representations, definition [11] can be written in this compact form
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N �$��� � N � � A � N � � A � N � �6 �
�
N �$� � � N � � A � N � � A � N � �6 � \��]

	�
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�
� \] �

� >� D � � N � A � N 	� ; >� D 6 � N � �
� � N � � A � N � � A � N � �6 � ; >� D M" � N � �
� � N � � A � N � � A � N � �6 � )
Finally, let us summarize our semi-implicit finite volume scheme:

� 9B � � 9 A  B: �
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 A � �DFEHG-I�JLG-M N-O = 9D 
 � 9 � P  � C 
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Let us note that when we consider the arithmetic mean of the voxel values for the
values of

��� 4
,
���LM

,
�LN 4

and
�LNHM

in [13], we end up with
R��

point finite volume
scheme. We solve the resulting linear system by the Gauss-Seidel iterative method.

4. Numerical experiments

In this section we present computational results using real 3D images coming from
multiphoton laser scanning microscopy. It represents the membranes of sea urchin
cells in the early stages of embryogenesis and its size is

R ���  R ���  ����
voxels.

The images of the membranes are well suited for processing by this type of diffu-
sion, which is documented by comparing the edge detection results before and after
filtering in Figures 3-4. The edge detection is a well suited measure of the filtering
quality, because filtering usually serves as a preliminary step of segmentation, which
strongly depends on proper edge detection result. In the experiments we use + � � ) ��4 ,: � � ) � ��� ��4 , F � 4

,
2 � � ) � ��4 , �� � � ) � �����W4 , N � � ) � � R . The satisfactory results
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were obtained after a few filtering steps and in the presented experiments we did not
observe any instability problem, which is a usual drawback of explicit schemes, cf.
[WES 02].

Figure 3. 2D slice of 3D membranes image. Original image (left), edge detection of the
original image (in the middle), edge detection of the filtered image after � steps (right)

In Figure 3 and in its zoom in Figure 4, we can clearly see the enhancement of the
structure connectivity and improvement of the quality of the edge detection using 3
filtering steps. It is not possible to correctly recognize noisy membranes in the central
part of the original image (Figure 3 left). Comparing the edge detection of original
(middle) and after 3D filtering (right), we can see that membranes become visible
after diffusion and thus can also be segmented. A more detailed result is presented
in Figure 4. In the upper left part is a zoom of a noisy original, in the upper right
is a result of filtering. At the bottom there are two edge detections, on the left using
original, on the right using the filtered image. The connectivity and denoising of edges
given by the black pixels in the edge detection images is highly improved, especially
for the cells in the bottom part.
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