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Abstract
The numerical approach for solving the fixed gravimetric boundary value problem (FGBVP) based on the finite element
method (FEM) with mapped infinite elements is developed and implemented. In this approach, the 3D semi-infinite domain
outside the Earth is bounded by the triangular discretization of the whole Earth’s surface and extends to infinity. Then the
FGBVP consists of the Laplace equation for unknown disturbing potential which holds in the domain, the oblique derivative
boundary condition (BC) given directly at computational nodes on the Earth’s surface, and regularity of the disturbing
potential at infinity. In this way, it differs from previous FEM approaches, since the numerical solution is not fixed by the
Dirichlet BC on some part of the boundary of the computational domain. As a numerical method, the FEM with finite and
mapped infinite triangular prisms has been derived and implemented. In experiments, at first, a convergence of the proposed
numerical scheme to the exact solution is tested. Afterwards, a numerical study is focused on a reconstruction of the harmonic
function (EGM2008) above the Earth’s topography. Here, a special discretization of the Earth’s surface which is able to fulfil
the conditions that arise from correct geometrical properties of finite elements, and it is suitable for parallel computing is
implemented. The obtained solutions at nodes on the Earth’s surface as well as nodes that lie approximately at the altitude of
the GOCE satellite mission have been tested.

Keywords Fixed gravimetric boundary value problem · Oblique derivative boundary condition · 3D semi-infinite domain ·
Finite element method · Mapped infinite element · Global gravity field modelling · Reconstruction of the EGM2008

1 Introduction

In mathematical modelling, there are some problems which
are obviously unbounded like the object of our study - grav-
ity of the Earth. However, also many other engineering
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problems, where, e.g., one concentrates only on a small sub-
domain of an extremely large domain may be also termed as
infinite domain problems, since in these cases, the total area
or volume can be for practical purposes taken as infinite.
These mathematical models then occur in various engineer-
ing applications, e.g. in elasticity [21, 29], potential problems
[10], fluid flow [17, 39, 42], etc. In the finite element analy-
sis these problems are solved in various ways, all of which
have advantages and disadvantages. The simplest way is to
truncate the domain by adding some artificial boundary with
the prescribed artificial BC at some large but finite distance,
see e.g. [12, 14]. In our approach, we will use the so-called
mapped infinite elements (MIE), which were originally pio-
neered by Bettess in [2]. We will show that such an approach
provides an efficient and effective alternative to other well-
known numerical approaches.

Gravity field modelling is usually performed as solving
the so-called geodetic boundary value problems (BVPs). In
our study, we will focus on one of them, namely the fixed
gravimetric boundary value problem (FGBVP) that repre-
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sents an exterior oblique derivative BVP for the Laplace
equation, cf. Koch and Pope [20], Freeden and Kersten [15],
Bjerhammar and Svensson [4], Holota [16]. As the oblique
derivative boundary conditions (BC) given on the discretized
Earth’s surface will be taken surface gravity disturbances.
The detailed overview of various procedures for solving the
oblique derivative BVP can be found, e.g., in Minarechová
et al. [34].

With an expansion of high-performance computing (HPC)
facilities in the last decades, approaches based on numerical
methods have become a powerful and efficient tool finding
applications also in gravity field modelling. The pioneer-
ing studies on numerical methods applied to gravity field
modelling were based on the finite element method (FEM),
cf. Meissl [32] or Shaofeng and Dingbo [38]. Later, the
finite difference method (FDM) was applied by Keller [18],
and the indirect boundary element method (BEM) approach
was developed by Klees [19] and Lehmann and Klees [22].
Afterwards, the direct BEM approach was introduced by
Čunderlík et al. [7] and Čunderlík and Mikula [8]. The
oblique derivative BVP treated by BEM was discussed in
Čunderlík et al. [9]. At that time, also new studies on FEM
were published, cf. Fašková et al. [12, 14] and Mráz et al.
[35]. The FEM with MIE for BVP with Neumann BC has
been introduced by Šprlák et al. [41]. The first application of
the finite volume method (FVM) to gravity field modelling
was introduced by Fašková [13] and its parallel implemen-
tation by Minarechová et al. [33]. The FVM applied to the
oblique derivative BVP has been studied in Macák et al. [24,
26, 27]. Lately,Medl’a et al. [31] presented the FVM for solv-
ing the oblique derivative BVP on 3D unstructured meshes
above the real Earth’s topography and Droniou et al. [11]
analysis of FVM for elliptic equations with oblique deriva-
tives. Recently, Yin and Sneeuw in [43] published a new
approach to the gravitational field modelling by using CFD
(Computational fluid dynamics) techniques based on FEM,
andMacák et al. in [28] andMinarechová et al. in [34] applied
the FEM for local solutions of the oblique derivative BVP.

In previous numerical approaches based on FEMor FVM,
see for example [12–14, 24, 26–28, 31, 33, 34, 41], a con-
dition of the regularity at infinity has been abandoned by
introducing an artificial upper boundary approximately at
altitudes of the GOCE satellite orbits. Here the FEM or FVM
numerical solutions have been fixed by the prescribedDirich-
let BC in terms of the disturbing potential. In this paper
we avoid this drawback and the presented FEM approach
is developed to solve the original FGBVP including the con-
dition of the regularity at infinity. This is a main contribution
of this study in comparison with the previous ones.

The paper is organized as follows. In Section 2, we formu-
late the FGBVPwith the oblique derivative BC. In Section 3,
we derive a numerical scheme of the FEM with MIE for the
FGBVP. Then numerical experiments are presented in Sec-

tion 4 that aim to test accuracy of the developed approach.
Here we also describe a special triangular discretization of
the Earth’s surface that is suitable for FEM. The paper ends
with Conclusion and summary.

2 Formulation of the FGBVPwith the oblique
derivative BC

Let us consider the FGBVP, cf. [4, 16, 20]:

�T (x) = 0, x ∈ �, (1)

∇T (x) · s(x) = −δg(x), x ∈ �, (2)

T (x) → 0, as |x| → ∞, (3)

where the computational domain�, see Fig. 1, is bounded by
the boundary�, i.e., the Earth’s surface, from the bottom and
extends to infinity. T (x) stands for the disturbing potential
defined as a difference between the real and normal gravity
potential at any point x = (x, y, z), δg(x) is the gravity
disturbance, and the vector s(x) = −∇U (x)/|∇U (x)| is the
unit vector normal to the equipotential surface of the normal
potential U (x) at any point x.

3 Solution to the FGBVPwith the oblique
derivative BC by the FEMwithMIE

In our approach, we follow the fundamental principles of
FEM presented by Reddy in [37] with the theory of MIE

Fig. 1 The semi-infinite computational domain � for global gravity
field modelling. It is bounded from the bottom by the boundary �

discretizing the Earth’s surface, and extends to infinity in the vertical
direction
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Fig. 2 Brief sketch of the computational domain � meshed with finite
elements depicted by green, and one layer of mapped infinite elements
depicted by grey

published by Bettes in [2, 3], Marques and Owen in [29] or
Zienkiewicz et al. in[44, 45].

3.1 Discretization of the computational domain

The FEM is a numerical method that assumes discretization
of the whole computational domain� by a union of elements
�e, e = 1, ...,N , whereN denotes the number of elements
in the domain �. In our FEM approach, we divide the semi-
infinite computational domain � into two parts, see Fig. 2,
where the lower one, denoted by �FE , is meshed with finite
elements and the upper one,�MI E , is meshed with one layer
of infinite elements.

For our purpose - to fit irregular boundary�, we have cho-
sen triangular prisms, i.e., finite pentahedral elements with
six nodes and five faces, and corresponding mapped infi-
nite pentahedral elements with nine nodes and five faces, see

Fig. 3. In this way, we divide the computational domain �

into n1, n2, n3 elements in the latitudinal, longitudinal and
vertical direction, respectively, and to specify the position of
an element �e we use indexes k, l, m, where k = 1, ..., n1 ,
l = 1, ..., n2 and m = 1, ..., n3.

3.2 Derivation of the weak formulation on the
element

Let us consider an arbitrary element �e from our finite
element discretization with indexes k = 1, ..., n1, l =
1, ..., n2 and m = 2, ..., n3. We multiply the differential
equation (1) by a weight function w and using Green’s iden-
tity (we omit (x) to simplify the notation in the following
equations) we obtain the weak formulation (WF) of (1) over
an arbitrary above defined element �e

∫

�e

∇T · ∇w dxdydz =
∫

∂�e

∇T · nw dσ, (4)

where n denotes the unit normal to ∂�e.
Since on the bottom boundary � the oblique derivative

BC (2) is prescribed, for the row of elements that lie on
this boundary (see Fig. 4, elements depicted by yellow), i.e.,
k = 1, ..., n1, l = 1, ..., n2 and m = 1, we modify (4) in
such a way that has been also presented, for instance, in [28]
or [34].We split the oblique vector s into one normal and two
tangential components

s = c1n + c2t1 + c3t2, (5)

where n is the normal vector and t1, t2 are tangent vectors to
�e ⊂ ∂�e ⊂ R3, where �e denotes the bottom boundary of
an element �e.

Then we replace vector s in (2) by (5) to obtain

∇T · s = c1∇T · n + c2∇T · t1 + c3∇T · t2 = −δg. (6)

Fig. 3 Types of elements used
in our computations: a) the finite
pentahedral elements with six
nodes, and b) the mapped
infinite pentahedral elements
with nine nodes. Isoparametric
coordinates are within intervals
0 ≤ ξ ≤ 1, 0 ≤ η ≤ 1 and
−1 ≤ ζ ≤ 1

a) b)
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Fig. 4 Brief sketch of the computational domain � for derivation of
the WF. Due to the oblique derivative BC prescribed on � (depicted
by red), for the row of elements depicted by yellow we have to derive
a different WF in comparison to the rest of the elements depicted by
green

From (6) we express the normal derivative

∇T · n = −δg

c1
− c2

c1

∂T

∂t1
− c3

c1

∂T

∂t2
, (7)

where we assume that c1 �= 0, since in practical experiments
we always use a ’nonzero’ horizontal resolution of the grid
points that discretized the real Earth’s surface. In such man-
ner, s is never perpendicular to n, so the assumption c1 �= 0
is always fulfilled.

Now, we insert (7) to (4) to get
∫

�e

∇T · ∇w dxdydz =

=
∫

�e

(−δg

c1
− c2

c1

∂T

∂t1
− c3

c1

∂T

∂t2

)
w dσ +

∫

∂�e\�e

∇T · nw dσ.

(8)

After some rearrangement, we have
∫

�e

∇T · ∇w dxdydz + c2
c1

∫

�e

∂T

∂t1
w dσ + c3

c1

∫

�e

∂T

∂t2
w dσ =

=
∫

�e

−δg

c1
w dσ +

∫

∂�e\�e

∇T · nw dσ.

(9)

Thus we have obtained the weak formulation (4) or (9) of
the BVP (1) - (3) on every element �e of our finite ele-

ment discretization. The studyofweak solution of the oblique
derivative BVP is included in the book by Lieberman [23].

3.3 Solution by the Finite Element Method

For a finite pentahedral element�e with six nodes, see Fig. 3
a), we can write

T ≈ T e =
6∑
j=1

T e
j ψ j (x, y, z), (10)

i. e., we take an approximation of the unknown value T as
T e, a linear combination of basis functions ψ j with coef-
ficients T e

j , j = 1, ..., 6. Then we substitute it into the
weak formulation (4), namely for elements �e with indexes
k = 1, ..., n1, l = 1, ..., n2 and m = 2, ..., n3 − 1 (see
Fig. 5, elements depicted by green), and consider ψi for
weight function w. We obtain the i th equation in the form

6∑
j=1

T e
j

∫

�e

∂ψ j

∂x

∂ψi

∂x
+ ∂ψ j

∂ y

∂ψi

∂ y
+ ∂ψ j

∂z

∂ψi

∂z
dxdydz =

=
6∑
j=1

∫

∂�e

qn ψi dxdy,

(11)

where qn = ∇T · n denotes the projection of the vector ∇T
along the unit normal n.

For the row of elements �e given by indexes k =
1, ..., n1, l = 1, ..., n2 and m = 1 (see Fig. 5, elements

Fig. 5 Brief sketch for a derivation of the i th equation on every element.
The i th equation depends on the vertical position of the element �e
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depicted by yellow), we follow the sameway and after insert-
ing (10) into (9) and considering w = ψi , we obtain the i th

equation in the form

6∑
j=1

T e
j

⎛
⎝

∫

�e

∂ψ j

∂x

∂ψi

∂x
+ ∂ψ j

∂ y

∂ψi

∂ y
+ ∂ψ j

∂z

∂ψi

∂z
dxdydz

⎞
⎠+

+
3∑
j=1

T e
j

⎛
⎝ c2

c1

∫

�e

∂ψ j

∂t1
ψi dxdy + c3

c1

∫

�e

∂ψ j

∂t2
ψi dxdy

⎞
⎠ =

=
3∑
j=1

∫

�e

−δg j

c1
ψi dxdy +

6∑
j=1

∫

∂�e\�e

qn ψi dxdy,

(12)

where index j = 1, ..., 3 refers to nodes of the element
�e that lie on the bottom boundary � of the computational
domain�. As we can see in Eq. (12), there are 2 tangent vec-
tors corresponding to the nodes lying on the bottomboundary
of the element belonging to �.

Finally, for the mapped infinite pentahedral element �e

with nine nodes, see Fig. 3 b), we can write

T ≈ T e =
9∑
j=1

T e
j ψ j (x, y, z). (13)

We substitute (13) for elements �e with indexes k =
1, ..., n1, l = 1, ..., n2 and m = n3 (see Fig. 5, elements
depicted by grey) into (4), consider ψi for weight function
w and we obtain the i th equation in the form

9∑
j=1

T e
j

∫

�e

∂ψ j

∂x

∂ψi

∂x
+ ∂ψ j

∂ y

∂ψi

∂ y
+ ∂ψ j

∂z

∂ψi

∂z
dxdydz =

=
9∑
j=1

∫

∂�e

qn ψi dxdy,

(14)

where qn = ∇T ·n again denotes the projection of the vector
∇T along the unit normal n.

3.3.1 Shape andmapped functions

The basis functionψi is the piecewise quadratic function and
it is uniquely determined by choosing value 1 at Ni and 0 at
every N j , i �= j , cf. [5]. In our approach, we will work with
isoparametric coordinates ξ, η, ζ in local coordinate system,
so we rewrite (10) and (13) in the form

T ≈ T e =
6∑
j=1

T e
j ψ j (x, y, z) =

6∑
j=1

T e
j ψ j (ξ, η, ζ ), (15)

T ≈ T e =
9∑
j=1

T e
j ψ j (x, y, z) =

9∑
j=1

T e
j ψ j (ξ, η, ζ ), (16)

Table 1 The shape functions ψi (ξ, η, ζ ) for the finite pentahedral ele-
ment with six nodes Ni defined by isoparametric coordinates ξ , η and
ζ

Ni ξ η ζ Shape functions ψi (ξ, η, ζ )

N1 0 0 -1 (1 − ξ − η) (1 − ζ ) /2

N2 1 0 -1 ξ (1 − ζ ) /2

N3 0 1 -1 η (1 − ζ ) /2

N4 0 0 1 (1 − ξ − η) (1 + ζ ) /2

N5 1 0 1 ξ (1 + ζ ) /2

N6 0 1 1 η (1 + ζ ) /2

where the transformation between local coordinates ξ, η, ζ

and global coordinates x, y, z is given by

⎡
⎢⎣

∂ψi
∂ξ
∂ψi
∂η
∂ψi
∂ζ

⎤
⎥⎦ =

⎡
⎢⎣

∂x
∂ξ

∂ y
∂ξ

∂z
∂ξ

∂x
∂η

∂ y
∂η

∂z
∂η

∂x
∂ζ

∂ y
∂ζ

∂z
∂ζ

⎤
⎥⎦

⎡
⎢⎣

∂ψi
∂x
∂ψi
∂ y
∂ψi
∂z

⎤
⎥⎦. (17)

Then the shape functions ψi (ξ, η, ζ ) for finite pentahe-
dral element with six nodes (see Fig.3 a)) in local coordinate
system that is used to mesh �FE are defined in Table 1.

Since in FGBVP (1) - (3), the computational domain �

tends to infinity only in the vertical direction, we start by
explaining MIE on one-dimensional problem and then we
will apply this idea on our FGBVP.

Let us have the one-dimensional element �e which extends
from node N1 with coordinate x1 through N2 with coordinate
x2 to the point N3 infinity, see Fig 6. Then let us have the
so-called Pole that is the point O with coordinate x0 and lies
on the line that passes through points N1, N2 and N3. The
relationship between coordinates x0, x1 and x2 is given by

x2 = 2x1 − x0. (18)

It is obvious that the position of the Pole has an impact
on the results and has to be chosen very carefully, since an
incorrect Pole position can lead to a distortion of the map-

Fig. 6 Brief sketch of one-dimensional MIE �e
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ping, cf. [2, 3, 44, 45]. However, due to geometry of our
computational domain �, see Fig. 1, it is natural to have
O = [0, 0, 0], so we will not discuss the problem of incor-
rect Pole position in detail. Then this element is mapped onto
the parent element defined in the local coordinate system in
the range −1 < ζ < 1 using formula

x(ζ ) = M1(ζ )x1 + M2(ζ )x2, (19)

where

M1(ζ ) = −2ζ

1 − ζ
, (20)

M2(ζ ) = 1 + ζ

1 − ζ
. (21)

It is obvious from (19)-(21) that ζ = −1, 0, 1 correspond
to the global positions of x1, x2,∞, respectively. Then for
infinite pentahedral element with nine nodes Ni , we obtain
the mapping functions Mi (ξ, η, ζ ) by multiplying (21) with
the shape functions ψi (ξ, η, ζ ) where directions ξ and η are
finite. These mapping functions Mi (ξ, η, ζ ) can be seen in
Table 2.

We remain that for more details about MIE, see e.g. [2, 3]
or [44, 45].

Now we can write (11) and (12) in a compact matrix form

Ke Te = Qe, (22)

where Ke = [Ki j ] stands for an element stiffness matrix,
Te = (T1, ..., T6) is a column vector of unknowns and Qe

denotes the right-hand side vector.
To evaluate element matrices and vectors we proceed the

following way. We choose one basis function ψi per vertex
Ne
i and we differentiate the basis functions with respect to

a position of each node. To calculate two integrals over a
boundary� in Eq. (11) which include a tangential derivative,

Table 2 Themapping functions Mi (ξ, η, ζ ) for the infinite pentahedral
element with nine nodes Ni which extends to infinity in the vertical
direction. Values ξ , η and ζ denote isoparametric coordinates of nodes

Ni ξ η ζ Mapping functions Mi (ξ, η, ζ )

N1 0 0 -1 (1 − ξ − η) (−2ζ )/(1 − ζ )

N2 1 0 -1 ξ(−2ζ )/(1 − ζ )

N3 0 1 -1 η(−2ζ )/(1 − ζ )

N4 0 0 0 (1 − ξ − η) (1 + ζ )/(1 − ζ )

N5 1 0 0 ξ(1 + ζ )/(1 − ζ )

N6 0 1 0 η(1 + ζ )/(1 − ζ )

N7 0 0 1 -

N8 1 0 1 -

N9 0 1 1 -

we approximate derivatives in tangential direction like in the
FDM, i.e., using values of basis functions at nodes Ni of
element e we have

∂ψ
(e)
j

∂t1
≈ ψ

(e)
j (N2) − ψ

(e)
j (N1)

d(N1, N2)
, (23)

∂ψ
(e)
j

∂t2
≈ ψ

(e)
j (N3) − ψ

(e)
j (N1)

d(N1, N3)
, (24)

where d denotes the distance between two neighbouring
nodes. The similar idea of approximating derivatives in tan-
gential direction like in the FDM, however for hexahedral
elements, has been presented in [34].

3.4 Assembly of element equations

Finally, we assemble all element equations using two princi-
ples, see Reddy [37]:

(i) continuity of primary variables at the interelement
nodes. It means that nodal values T e

j and T e+1
j of two

adjacent elements�e and�e+1 at the connecting nodes
have to be the same.

(ii) balance of secondary variables in a weighted-integral
sense, see Reddy [37].

In this manner, we obtain the global linear system of equa-
tions with a column vector of unknown global nodal values
T

KT = Q, (25)

where the matrix K is sparse, since most of its entries are
zero, and positive definite, andQ is the column vector whose
entries are also almost zero except that for nodes with the
prescribed oblique derivative BC (2).

4 Numerical experiments

To test the proposed numerical scheme, we present sev-
eral numerical experiments. In them, results of the proposed
method are compared to either exact, in testing experiments,
or EGM2008, in experiments with gravity data, solutions.
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Fig. 7 Piecewise affine mapping
of rectangle (meshed with
n = 4) onto regular octahedron

In testing experiments, the numerical scheme is qualified
according to the value of the experimental order of con-
vergence (EOC), see e.g. [28], that can be determined by
comparing numerical solutions and exact solutions on subse-
quently refined grids. In experiments with the reconstruction
of EGM2008 data, the obtained numerical solution is com-
paredwith the disturbing potential generated fromEGM2008
directly and is qualified according to the statistics of residu-
als. To solve the nonsymmetric linear system, BiCGSTAB(l)
linear solver with l = 8, cf. [40], has been implemented.
To save the memory, only nonzero coefficients were stored.
These large-scale parallel computations were performed on
4 nodes of our cluster with 1.0 TB of distributed memory
(each node consists of four 8-core CPUswith 256GBRAM).
Thanks to theNUMA(Non-UniformMemoryAccess) archi-
tecture of each node, we have implemented an MPI and
OpenMP parallelization, see [25].

4.1 Discretization of the bottom boundary

As we have mentioned in the beginning, the FEM requires
elements to meet some geometrical specifications, as well as
detailed global gravity modelling requires parallel comput-
ing. In this section, we describe the generation of the bottom
boundarymesh, which is suitable for the presented numerical
approach. The final triangle mesh is geometrically a standard
octahedron sphere, usually created by subdividing the faces
of an octahedron. However, we use a numbering of vertices
and faces, which is suitable for a parallelisation. The mesh

generation is based onmapping of a rectangle to regular octa-
hedron, see Fig. 7. The process of mesh generation is then
performed in several steps described below.

1. Planar square mesh. At first, we create a regular 4 n-
square mesh of the rectangle [0, 4] × [0, 1], see Fig. 7 a).
In thisway,we have obtained themesh that consists of 4n2

squares and (4n+1)(n+1) nodes N j = (N j,1, N j,2, 0)T ,
where N j,1, N j,2 denote x and y coordinate, respectively.
Then this rectangle is divided into 8 auxiliary triangles
T1, . . . , T8, see Fig. 7 a).

2. Mapping to octahedron. Then we map the rectangle onto
the regular octahedron by a piecewise affine mapping
φ : R3 → R

3. It means that each triangle Ti with cor-
responding nodes N j is mapped onto the face T ′

i of the
octahedron, see Fig. 7, by the affine mapping φi : R3 →
R
3 defined as

φi (X) = Mi (X − Gi ) + G ′
i , for X ∈ Ti , (26)

where Gi , G ′
i denote the centroids of the triangles Ti ,

T ′
i , respectively, and Mi is a 3× 3 matrix. Therefore, the

mapping φ is defined as φ(X) := φi (X) for X ∈ Ti . The
nodes N j on rectangle are mapped to the nodes N ′

j :=
φ(N j ) on the octahedron.
The construction of the matrix Mi is done as follows. Let
X1X2X3 denote a domain triangle with centroid Gi and
X ′
1X

′
2X

′
3 a range triangle with centroid G ′

i . Then X̄k :=
Xk − Gi and X̄ ′

k := X ′
k − G ′

i denote the coordinates of

Fig. 8 Affine transformation φi
of a triangle X1X2, X3
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Fig. 9 Final splitting and
numbering of nodes and mesh
triangles is depicted on
rectangle. Duplicate nodes are
highlighted by green

vertices w.r.t. centroid, see Fig. 8. If we plug the vertices
Xk and X ′

k = φi (Xk) into the equation (26), we obtain a
linear system Mi X̄k = X̄ ′

k , k = 1, 2, 3 with 9 equations
and 9 unknown elements of the matrix Mi . Unfortunately,
the equations are not linearly independent, because X̄1 +
X̄2 + X̄3 = 0 and X̄ ′

1 + X̄ ′
2 + X̄ ′

3 = 0. To obtain an
independent system of equations, we can include, e.g.,
normal vectors X̄1 × X̄2, X̄ ′

1 × X̄ ′
2 instead of X̄3, X̄ ′

3,
respectively. Therefore, we have to solve the system

Mi X̄1 = X̄ ′
1,

Mi X̄2 = X̄ ′
2,

Mi (X̄1 × X̄2) = (X̄ ′
1 × X̄ ′

2).

If we define 3 × 3 matrices

X̄ := [
X̄1, X̄2, X̄1 × X̄2

]
and X̄ ′ := [

X̄ ′
1, X̄

′
2, X̄

′
1 × X̄ ′

2

]
,

we see that the matrix Mi is given by Mi = X̄ ′ X̄−1.
3. Gluing. The mapping φ glues the triangle edges on the

boundary of the rectangle. There are 5 gluings together
of pairs of triangle edges, 4 of them are indicated by grey
arrows in Fig. 7, left. The last one glues the left and right
side of the rectangle. As a result, corresponding nodes N ′

j
need to be identified, see Fig. 9.

4. Normalisation to unit sphere. The nodes N ′
j on the

octahedron are mapped to the unit sphere simply by nor-
malisation N̂ j := N ′

j/‖N ′
j‖.

5. Scaling to the WGS84 ellipsoid. Finally, we scale the
unit sphere to the ellipsoid to obtain final nodes Vj :=
diag(a, a, b)N̂ j , where diag stands for diagonal matrix,
and a is the semi-major axis and b is the polar semi-minor
axis of the WGS84 ellipsoid.

6. Splitting quads. In the last step, we split each quad diago-
nally to create two triangles. The direction of splitting as

well as numbering of the triangles and nodes is shown in
Fig. 9.

In numerical computations we use meshes with n = 2l ,
where l is the level of refinement of the mesh. Examples
of two coarse meshes (level l = 2, 4) are visualised in
Fig. 10. Mesh statistics for levels l = 1, . . . , 10 is presented
in Table 3.

4.2 Testing numerical experiments

As usual in numerical mathematics, at first we test the sta-
bility and behaviour of the numerical scheme derived in
Section 3 by investigating its EOC. In these testing numer-
ical experiments we have chosen the well-known example,
gravitational potential generated by a homogeneous sphere,

Table 3 Mesh statistics for meshes with the refinement level l. The
number of divisions of rectangle in y direction is calculated as n = 2l ,
the number of quads as 4n2, the number of triangles as 8n2, the number
of vertices (nodes) on the rectangle as (4n + 1)(n + 1) and the number
of duplicate vertices on ellipsoid as 5n − 1

l n No. of quads No. of triangles No. of nodes No. of dupl. nodes

1 2 16 32 27 9

2 4 64 128 85 19

3 8 256 512 297 39

4 16 1024 2048 1105 79

5 32 4096 8192 4257 159

6 64 16384 32768 16705 319

7 128 65536 131072 66177 639

8 256 262144 524288 263425 1279

9 512 1048576 2097152 1051137 2559

10 1024 4194304 8388608 4199425 5119

Fig. 10 Quad and triangular
meshes for levels l = 2 and
l = 4
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Table 4 Testing experiment 1: Statistics of residuals [m2s−2] between
the obtained nodal numerical solution and the exact solution at the
bottom boundary �, where Min, Max, Mean denote the minimum,
maximum and mean value of residuals, respectively. STD stands for

the standard deviation calculated as
√
1/N

∑N
i=1(residualsi )

2, where
N is the number of nodes

No. of nodes Min Max Mean Median STD EOC

64x16x4 -0.5678 0.2036 -0.1057 -0.1239 0.1690 -

128x32x8 -0.1705 0.0460 -0.0282 -0.0317 0.0434 1.9597

256x64x16 -0.0490 0.0109 -0.0072 -0.0078 0.0112 1.9533

512x128x32 -0.0138 0.0027 -0.0018 -0.0019 0.0028 2.0134

1024x256x64 -0.0038 0.0007 -0.0005 -0.0005 0.0007 2.0076

Table 5 Testing experiment 2: Statistics of residuals [m2s−2] between
the obtained numerical solution and the exact solution on the bottom
boundary �

H�FE No. of nodes Min Max Mean Median STD

500 [km] 256x64x16 -0.0490 0.0109 -0.0072 -0.0078 0.0112

1000 [km] 256x64x32 -0.0487 0.0109 -0.0072 -0.0078 0.0111

2000 [km] 256x64x64 -0.0486 0.0108 -0.0072 -0.0079 0.0111

4000 [km] 256x64x128 -0.0485 0.0107 -0.0072 -0.0079 0.0110

8000 [km] 256x64x256 -0.0485 0.0106 -0.0072 -0.0079 0.0110

where the bottom boundary is the sphere with radius R =
6 371 [km]. There, for the simplicity, the Neumann BC in
the form −GM/R2, where GM stands for the Geocentric
gravitational constant, is taken into account. Then differ-
ent sized computational domains or different meshing is
involved. Results are compared with the exact solution in
the form GM/R.

4.2.1 Testing experiment 1

In the first testing experiment, the height of the finite domain
�FE has been 500 [km], so the finite/infinite element inter-
face has been at height 6 871 [km]. Then the center of the
infinite elements (which corresponds to the point x2 in Fig. 6)
has been at height 13 742 [km].Wehave startedwith themesh
made up of 64×16×4 nodes, see Table 4, and then we have
performed four successive refinements. Results have been
compared with the exact solution in the form GM/R.

The statistics of residuals [m2s−2] on the bottomboundary
� computed between the obtained numerical solution and
the exact solution can be found in Table 4. One can observe
that by refining the mesh, the obtained numerical solution
converges to the exact one and that the proposed method is
second order accurate, see the EOC column.

4.2.2 Testing experiment 2

For the second testing experimentwe have chosen the domain
and mesh consisting of 256 × 64 × 16 nodes from Testing
experiment 1, see Section 4.2.1. Then we have fixed the size
of elements while redoubling the radius of the finite element
domain. It means that with a doubling of the height of the
finite element domain, the number of elements in the vertical
direction, see in Table 5, redoubled as well to remain the size
of elements. Again, we have compared obtained results with
the exact solution in the form GM/R.

The statistics of residuals on the bottomboundary� can be
seen in Table 5. We can observe that in case of homogeneous
sphere, the height of the domain doesn’t have impact on the
solution on the bottom boundary � (Table 6).

4.3 Global gravity fieldmodelling with the EGM2008
data as the reconstruction of the harmonic
function

The bottom boundary � has been the discretized Earth’s
surface created with Becker et al. [1] data. The horizontal
resolution has been set in accordance with Table 3 presented
in Section 4.1, namely 512×128, seeTable 7, and 1024×256,
see Table 8. The input surface gravity disturbances as BC (2)
have been generated from Earth Gravitational Model 2008
(EGM2008) [36]. Then the height of�FE , denoted by H�FE ,
has increased gradually from 1000 [km] through 2000, 4000,
5000, 8000 to 16000 [km]. Moreover, for each H�FE we
have tested five different heights of elements: 200, 100,
50, 25, 12.5 [km] (see Tables 7 and 8). Then the obtained
numerical solution on the bottom boundary � and at altitude
H=200 [km] has been compared to the disturbing potential
generated from EGM2008 directly. Statistics of residuals for
successive refinements can be found in Tables 7 and 8. In
them, we can observe an initial rapid decrease of the stan-

Table 6 Experiment with
gravity data: Statistics of
residuals [m2s−2] on the bottom
boundary � and at H = 200
[km]

H�FE = 5000 [km] 0 H = 200 [km]
No. of nodes �H Min Max Mean STD Min Max Mean STD

512x128x57 40 -180.58 174.43 -10.19 14.58 -50.94 26.19 -9.93 7.59

1024x256x112 20 -75.47 76.29 -5.54 4.97 -22.60 2.21 -5.39 2.47

2048x512x222 10 -35.37 23.19 -1.67 1.82 -7.94 1.64 -1.62 1.25

4096x1024x442 5 -36.32 9.39 -0.85 1.16 -4.87 2.18 -0.82 1.03
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Table 7 Experiment with
gravity data with the horizontal
resolution fixed to: 512 × 128:
Statistics of residuals [m2s−2]
on the bottom boundary � and
at H = 200 [km]

H�FE = 1000 [km] 0 H = 200 [km]
No. of nodes �H Min Max Mean STD Min Max Mean STD

512x128x7 200 -114.010 96.589 -11.318 19.412 -82.176 40.908 -10.998 17.823

512x128x12 100 -149.230 139.525 -10.387 20.015 -70.451 39.610 -10.094 17.517

512x128x22 50 -178.549 169.058 -9.751 21.007 -68.898 40.102 -9.478 17.444

512x128x42 25 -191.266 181.196 -9.478 21.553 -68.379 40.362 -9.213 17.420

512x128x82 12.5 -195.152 184.804 -9.394 21.735 -68.230 40.444 -9.132 17.413

H�FE = 2000 [km] 0 H = 200 [km]

No. of nodes �H Min Max Mean STD Min Max Mean STD

512x128x12 200 -105.005 99.781 -11.716 12.712 -62.381 30.497 -11.401 9.832

512x128x22 100 -146.266 138.745 -10.787 13.770 -54.996 25.310 -10.500 9.454

512x128x42 50 -175.587 167.300 -10.151 15.221 -54.467 28.980 -9.884 9.377

512x128x82 25 -188.304 179.464 -9.879 15.981 -54.259 30.407 -9.620 9.352

512x128x162 12.5 -192.191 183.080 -9.795 16.230 -54.194 30.809 -9.539 9.345

H�FE = 4000 [km] 0 H = 200 [km]

No. of nodes �H Min Max Mean STD Min Max Mean STD

512x128x22 200 -104.412 104.273 -11.865 11.473 -58.356 29.203 -11.552 8.126

512x128x42 100 -145.673 143.271 -10.938 12.699 -52.199 23.443 -10.652 7.755

512x128x82 50 -174.995 169.470 -10.302 14.272 -51.760 25.690 -10.036 7.681

512x128x162 25 -187.715 180.041 -10.029 15.083 -51.553 26.413 -9.772 7.655

512x128x322 12.5 -191.602 183.153 -9.945 15.348 -51.488 26.620 -9.691 7.648

H�FE = 5 000 [km] 0 H = 200 [km]

No. of nodes �H Min Max Mean STD Min Max Mean STD

512x128x27 200 -104.433 104.667 -11.879 11.424 -57.691 29.619 -11.567 8.054

512x128x52 100 -145.693 143.668 -10.951 12.660 -51.443 23.859 -10.666 7.687

512x128x102 50 -175.017 169.868 -10.316 14.238 -51.023 26.106 -10.050 7.612

512x128x202 25 -187.736 180.440 -10.043 15.050 -50.817 26.829 -9.786 7.586

512x128x402 12.5 -191.623 183.553 -9.959 15.316 -50.752 27.037 -9.705 7.579

H�FE = 6 000 [km] 0 H = 200 [km]

No. of nodes �H Min Max Mean STD Min Max Mean STD

512x128x32 200 -104.450 104.827 -11.884 11.408 -57.330 29.788 -11.572 8.031

512x128x62 100 -145.711 143.828 -10.957 12.648 -50.996 24.027 -10.672 7.666

512x128x122 50 -175.035 170.029 -10.322 14.227 -50.586 26.275 -10.056 7.591

512x128x242 25 -187.754 180.601 -10.049 15.040 -50.379 26.999 -9.792 7.564

512x128x482 12.5 -191.641 183.714 -9.965 15.306 -50.314 27.206 -9.711 7.557

H�FE = 8 000 [km] 0 H = 200 [km]

No. of nodes �H Min Max Mean STD Min Max Mean STD

512x128x42 200 -104.460 104.925 -11.889 11.400 -57.004 29.891 -11.576 8.018

512x128x82 100 -145.721 143.928 -10.961 12.642 -50.561 24.132 -10.676 7.654

512x128x162 50 -175.045 170.129 -10.326 14.221 -50.162 26.381 -10.060 7.578

512x128x322 25 -187.765 180.701 -10.053 15.034 -49.955 27.104 -9.796 7.551

512x128x642 12.5 -191.652 183.814 -9.969 15.299 -49.890 27.312 -9.714 7.543

H�FE = 16 000 [km] 0 H = 200 [km]

No. of nodes �H Min Max Mean STD Min Max Mean STD

512x128x82 200 -104.445 104.947 -11.890 11.395 -56.787 29.912 -11.577 8.011

512x128x162 100 -145.706 143.950 -10.962 12.637 -50.254 24.156 -10.677 7.647

512x128x322 50 -175.031 170.152 -10.327 14.216 -49.861 26.405 -10.061 7.569

512x128x642 25 -187.750 180.723 -10.054 15.029 -49.655 27.129 -9.797 7.542

512x128x1282 12.5 -191.637 183.837 -9.970 15.295 -49.589 27.336 -9.716 7.534
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Table 8 Experiment with
gravity data with the horizontal
resolution fixed to: 1024 × 256:
Statistics of residuals [m2s−2]
on the bottom boundary � and
at H = 200 [km]

H�FE = 1000 [km] 0 H = 200 [km]
No. of nodes �H Min Max Mean STD Min Max Mean STD

1024x256x7 200 -94.444 55.892 -8.033 16.760 -60.892 42.143 -7.783 16.349

1024x256x12 100 -67.653 42.543 -6.887 16.152 -50.765 41.010 -6.669 16.038

1024x256x22 50 -70.701 65.150 -5.808 16.117 -48.038 42.105 -5.621 15.934

1024x256x42 25 -70.669 65.146 -5.809 16.109 -48.006 42.072 -5.622 15.926

1024x256x82 12.5 -75.076 83.793 -4.821 16.296 -46.328 43.222 -4.663 15.875

H�FE = 2000 [km] 0 H = 200 [km]

No. of nodes �H Min Max Mean STD Min Max Mean STD

1024x256x12 200 -89.120 43.966 -8.389 7.688 -41.025 13.784 -8.146 6.462

1024x256x22 100 -60.473 22.189 -7.283 6.734 -27.434 7.735 -7.070 6.041

1024x256x42 50 -63.443 53.274 -6.205 6.735 -25.287 8.476 -6.024 5.835

1024x256x82 25 -68.544 74.323 -5.507 7.026 -24.206 9.211 -5.347 5.742

1024x256x162 12.5 -70.771 81.381 -5.218 7.198 -23.778 9.527 -5.066 5.710

H�FE = 4000 [km] 0 H = 200 [km]

No. of nodes �H Min Max Mean STD Min Max Mean STD

1024x256x22 200 -91.212 46.271 -8.576 5.880 -40.105 13.547 -8.333 3.974

1024x256x42 100 -65.149 21.924 -7.432 4.459 -28.441 2.256 -7.221 3.182

1024x256x82 50 -68.597 52.273 -6.355 4.471 -24.494 1.741 -6.175 2.779

1024x256x162 25 -73.682 73.322 -5.656 4.890 -22.240 1.843 -5.497 2.558

1024x256x322 12.5 -75.903 80.380 -5.367 5.130 -21.349 1.946 -5.217 2.476

H�FE = 5000 [km] 0 H = 200 [km]

No. of nodes �H Min Max Mean STD Min Max Mean STD

1024x256x27 200 -91.502 46.555 -8.589 5.867 -41.290 13.838 -8.346 3.943

1024x256x52 100 -65.912 22.493 -7.446 4.452 -29.225 2.535 -7.235 3.156

1024x256x102 50 -69.411 52.015 -6.368 4.459 -25.276 2.032 -6.189 2.740

1024x256x202 25 -74.494 73.063 -5.670 4.873 -23.021 2.141 -5.511 2.507

1024x256x402 12.5 -76.714 80.121 -5.381 5.112 -22.129 2.244 -5.231 2.418

H�FE = 6000 [km] 0 H = 200 [km]

No. of nodes �H Min Max Mean STD Min Max Mean STD

1024x256x32 200 -91.680 46.717 -8.595 5.889 -41.912 14.004 -8.352 3.970

1024x256x62 100 -66.509 22.782 -7.452 4.486 -29.640 2.702 -7.241 3.194

1024x256x122 50 -69.837 51.885 -6.374 4.488 -25.689 2.199 -6.195 2.777

1024x256x242 25 -74.920 72.933 -5.676 4.896 -23.433 2.312 -5.517 2.541

1024x256x482 12.5 -77.139 79.990 -5.387 5.132 -22.541 2.415 -5.237 2.450

H�FE = 8000 [km] 0 H = 200 [km]

No. of nodes �H Min Max Mean STD Min Max Mean STD

1024x256x42 200 -91.858 46.874 -8.598 5.928 -42.458 14.163 -8.355 4.020

1024x256x82 100 -67.058 23.043 -7.455 4.537 -30.005 2.863 -7.245 3.258

1024x256x162 50 -70.211 51.785 -6.378 4.534 -26.054 2.358 -6.199 2.842

1024x256x322 25 -75.293 72.834 -5.680 4.935 -23.797 2.475 -5.521 2.605

1024x256x642 12.5 -77.512 79.891 -5.391 5.167 -22.905 2.578 -5.240 2.514

H�FE = 16000 [km] 0 H = 200 [km]

No. of nodes �H Min Max Mean STD Min Max Mean STD

1024x256x82 200 -91.992 46.985 -8.600 5.965 -42.803 14.275 -8.357 4.070

1024x256x162 100 -67.405 23.229 -7.457 4.584 -30.238 2.977 -7.246 3.317

1024x256x322 50 -70.448 51.749 -6.379 4.577 -26.286 2.471 -6.200 2.903

1024x256x642 25 -75.529 72.798 -5.681 4.970 -24.029 2.590 -5.522 2.666

1024x256x1282 12.5 -77.748 79.854 -5.392 5.200 -23.137 2.693 -5.242 2.574
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Fig. 11 Residuals between the
FEM solutions and the
disturbing potential obtained
from EGM2008 directly. In the
left column, one can see
residuals at �, in the right
column at height 200 [km].
Resolutions are: a), b)
512x128x57, c), d)
1024x256x112, e), f)
2048x512x222, g), h)
4096x1024x442

Γ H = 200 [ κμ ]

a) b)

c) d)

e) f)

g) h)

dard deviation of residuals with an increase of H�FE , see
the STD columns, which stagnates at approximately H�FE

= 5000 [km]. Also in case of H�FE = 1000 [km], we can
see that the standard deviations of residuals are very similar
for both horizontal resolutions, however, with an increase of
H�FE the difference between them is growing and stagnates
at appropriately H�FE = 5000 [km]. We can also observe an
improvement of mean value of residuals when refining the
mesh in the vertical direction.Also, it is not surprising that the
standard deviation of residuals is better at H=200 [km] than
at �, since the disturbing potential solution smooths with
increasing heights. When we look closely at the Table 7, we
can observe that if we are interested only in a solution on�, it
is better to have fewer elements in the vertical direction. On
the other hand, for the solution at H = 200 [km] it is better to
have more elements in the vertical direction (see Min, Max
and STD columns). According to our opinion, this strange
behaviour is caused by a very coarse grid in the horizontal
direction, what is then confirmed by Table 8.

Based on the these results, we have decided to execute
a more detailed experiment using only H�FE = 5000 [km].
To study the convergence of the numerical solution, we have
chosen successive resolutions with the number of all nodes
512 × 128 × 57, 1024 × 256 × 112, 2048 × 512 × 222
and the most detailed one 4096 × 1024 × 442, where the
finest resolution corresponds to our maximum computing

capabilities. In the vertical direction, we have decided to have
amore detailed solution in to 200 [km] (the height of elements
�H is presented in the second column of Table 6) and then
we have doubled it. The obtained residuals are visualised
in Fig. 11 and their corresponding statistics is presented in
Table 6. We can observe an improvement of all statistical
characteristics when refining the computational grid, which
proves the validity of the presented FEM approach to the
global gravity field modelling.

5 Conclusion and summary

In the presented paper, a novel numerical approach for
solving the original FGBVP including the condition of the
regularity at infinity was developed. Here, the numerical
scheme based on the FEM with finite and mapped infinite
elements was derived and implemented. In numerical exper-
iments, at first, a convergence of the proposed numerical
scheme to the exact solution in different situations was stud-
ied. It was shown that in the case of potential generated by
a homogeneous sphere, the proposed numerical approach is
second order accurate. Then a numerical study focused on a
reconstruction of the harmonic function (EGM2008) above
the discretized Earth’s topography was done. The obtained
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numerical solutions were tested at nodes on the Earth’s sur-
face as well as nodes lying approximately at the altitude of
the GOCE satellite mission. Gained results showed a practi-
cal contribution of the presented approach to global gravity
field modelling.
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