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Abstract
The paper concerns a novel concept based on the iterative approach applied for solving 
the nonlinear satellite-fixed geodetic boundary value problem (NSFGBVP) using the finite 
element method (FEM). We formulate the NSFGBVP that consists of the Laplace equation 
defined in the 3D bounded domain outside the Earth, the nonlinear boundary condition 
(BC) prescribed on the disretized Earth’s surface, and the Dirichlet BC given on a spheri-
cal boundary placed approximately at the altitude of GOCE satellite mission and additional 
four side boundaries. The iterative approach is based on determining the direction of actual 
gravity vector together with the value of the disturbing potential. Such a concept leads to 
the first iteration where the oblique derivative boundary value problem is solved, and the 
last iteration represents the approximation of the actual disturbing potential and the direc-
tion of gravity vector. As a numerical method for our approach, we implement the FEM 
with triangular prisms. High-resolution numerical experiments deal with the local gravity 
field modelling in the Andean, Himalayan and Alpine mountain range, where we focus 
on the contribution to the disturbing potential solution by solving the nonlinear geodetic 
boundary value problem in comparison with the solution to the oblique derivative geodetic 
boundary value problem. The obtained results showed the maximal contribution of the 
presented approach 0.0571 [m2

s
- 2 ] (Andes), 0.0702 [ m2

s
- 2 ] (Himalayas), 0.0066 [m2

s
- 2 ] 

(Alps) in the disturbing potential, that is located in the areas of the highest values of the 
deflection of vertical.

Keywords Nonlinear satellite-fixed geodetic boundary value problem · Finite element 
method · Pentahedral elements · Iterative approach · Local gravity field modelling

1 Introduction

The nonlinear boundary value problems (BVPs) arise in a variety of areas of engineering 
tasks, and in our study we will focus on those that concern the gravity field modelling. The 
first application of a nonlinear BVP for the Laplace equation to gravity was given by Backus 
in Backus (1968). Then Grafarend and Niemeier discussed the free nonlinear BVP exactly 
solved by metric continuation in Grafarend and Niemeier (1971), and developed and extended 
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this approach in the report published by Grafarend in Grafarend (1989). Koch and Pope (1972) 
presented a uniqueness proof for the nonlinear geodetic BVP. Few years later Bjerhammar 
and Svensson (1983) used the general implicit function theorem and gave a solution of the 
existence and uniqueness problem in the nonlinear case. An interesting study discussing an 
expansion of the nonlinear boundary condition into a Taylor series, based upon some refer-
ence potential field approximating the geopotential, was shown by Heck in Heck (1989). In 
the same year, Sacerdote and Sansó (1989) further developed the idea used by Bjerhammar 
and Svensson for an iterative solution and they found explicit convergence conditions. They 
calculated the respective constant governing the convergence in the ideal case of a spherical 
boundary. Díaz et al. (2006, 2011) showed the existence and uniqueness of a viscosity solu-
tion for the Backus problem. Recently, Macák et al. (2016) published a numerical approach 
for solving the nonlinear satellite-fixed geodetic boundary value problem (NSFGBVP) by the 
finite volume method (FVM).

In this paper, we solve the same NSFGBVP as defined in Macák et al. (2016), however, 
for its solution, we implement the finite element method (FEM) and apply it to a very detailed 
local gravity field modelling in Andean, Himalayan and Alpine mountain ranges using large-
scale parallel computations. Moreover, in this approach we use the triangular discretization 
of the bottom boundary, which is natural for approximating the complicated Earth’s surface, 
while in Macák et al. (2016) only ellipsoidal approximation has been applied. In this way, we 
utilize the main advantages of numerical approaches applied to gravity field modelling, such 
as a straightforward refinement of the discretization, opportunity to consider real complicated 
topography as well as feasibility for high-resolution modelling. We expect that taking into 
account the proposed iterative procedure will improve the solution in the areas of the highest 
values of the deflection of vertical.

The paper is organized as follows. In the Sect. 2, we formulate the NSFGBVP and derive 
the iterative procedure for our approach. In the Sect. 3, we present its solution by the FEM 
using the pentahedral elements (i.e. triangular prisms). The Sect. 5 deals with the high-resolu-
tion local gravity field modelling and presents a discussion on the obtained results. The paper 
ends with conclusion and summary.

2  Formulation of the nonlinear satellite‑fixed geodetic boundary 
value problem and the iterative procedure

Let us consider the bounded domain � depicted in Fig.  1, similarly as it was defined in 
Fašková et al. (2007, 2010). The domain � is placed in the external space above the Earth and 
is bounded by the bottom surface �  representing a chosen part of the Earth’s surface, the cor-
responding upper part of the boundary at altitude of the GOCE satellite mission and additional 
four side boundaries.

In the � domain, we suppose the nonlinear satellite-fixed geodetic BVP (NSFGBVP) for 
the disturbing potential T(x) that was defined in Macák et al. (2016) and is formulated in the 
following form

(1)�T(x) =0 x ∈ �,

(2)|∇(T(x) + U(x))| =g(x) x ∈ � ,

(3)T(x) =TSAT (x) x ∈ �� − � .
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where U(x) denotes the normal gravity potential (Hofmann-Wellenhof and Moritz 2006), 
g(x) the magnitude of total gravity vector and TSAT is, in general, the disturbing potential 
generated from a satellite-only global geopotential model (GGM) based on the spherical 
harmonics. The Eq. 2) represents the nonlinear boundary condition (BC).

The derivation of the iterative procedure has been published in Macák et al. (2016), but 
since it is very crucial for better understanding as well as readability of this paper, we pre-
sent the main ideas also here.

We rewrite the norm of the gradient on the left-hand side of BC (2) in the form

and insert (4) into (2) to obtain

If we denote by v(x) the unit vector

i.e., the vector defining the direction of the gravity vector, the Eq. 5) becomes

and after some rearrangement we get

Since the vector v(x) is unknown and depends on T(x) , BC (8) is still nonlinear, but its form 
allows to use an iterative approach for determining v(x) and T(x) such that BVP defined as 
(1) - (3) is fulfilled.

Then the iterative procedure for solving NSFGBVP is defined as follows

(4)|∇(T(x) + U(x))| = ∇(T(x) + U(x))

|∇(T(x) + U(x))| ⋅ ∇(T(x) + U(x))

(5)
∇(T(x) + U(x))

|∇(T(x) + U(x))| ⋅ ∇(T(x) + U(x)) = g(x).

(6)v(x) =
∇(T(x) + U(x))

|∇(T(x) + U(x))| ,

(7)v(x) ⋅ ∇(T(x) + U(x)) = g(x),

(8)v(x) ⋅ ∇(T(x)) = g(x) − v(x) ⋅ ∇(U(x)) x ∈ � .

Fig. 1  Brief sketch of the com-
putational domain � (highlighted 
in blue) for the local gravity 
field modelling. The boundary 
�  , visualised by green hatch-
ing, represents the approxima-
tion of the chosen part of the 
Earth’s surface, B and L denote 
ellipsoidal latitude and longitude, 
respectively
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for n = 0, 1, 2,… , where

We start the iterations by choosing T0(x) = 0 and consequently for v0(x) we get

where s(x) represents the direction of the normal gravity vector. In this way, in every itera-
tion we solve the geodetic BVP for Tn+1(x) with the prescribed oblique derivative vector 
vn(x) , while in the first one it is given by

where �(x) = |∇(U(x))| denotes a magnitude of the normal gravity vector and �g(x) stands 
for the gravity disturbance.

In the following iterations, we improve the direction of the unit vector v(x) and so reduce 
the linearization error. To stop the iteration process, we use as a criterion the difference 
between two successive iterations and stop the procedure, if in each point we get

where � is a user-specified small real number. Then the last iteration represents the approxi-
mation of the disturbing potential T(x) and direction of gravity vector v(x) in (1) - (3), and 
the sum Tn+1(x) + U(x) represents the approximation of actual gravity potential Wn+1(x) in 
every point of the computational domain �.

3  The FEM solution to the nonlinear satellite‑fixed geodetic BVP

We can see that in each step of our iterative process (9) - (11) we deal with the oblique deriva-
tive BVP defined as

To solve (16) - (18), we apply the FEM, see (Brenner and Scott 2002) or (Reddy 2006). 
Since the boundary �  , i.e., the discretized Earth’s surface is complicated and irregular, 

(9)�Tn+1(x) =0 x ∈ �,

(10)vn(x) ⋅ ∇(Tn+1(x)) =g(x) − vn(x) ⋅ ∇(U(x)) x ∈ � ,

(11)Tn+1(x) =TSAT (x) x ∈ �� − � ,

(12)vn(x) =
∇(Tn(x) + U(x))

|∇(Tn(x) + U(x))| .

(13)v0(x) =
∇(U(x))

|∇(U(x))| = s(x),

(14)s(x) ⋅ ∇(T1(x)) = g(x) − �(x) = �g(x),

(15)|Tn(x) − Tn+1(x)| < 𝜀,

(16)�T(x) =0 x ∈ �,

(17)v(x) ⋅ ∇(T(x)) =g(x) − v(x) ⋅ ∇(U(x)) = �(x), x ∈ � ,

(18)T(x) =TSAT (x) x ∈ �� − � .
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it is natural to choose triangular prisms, namely the finite pentahedral element �e with 
six nodes and five faces. We discretize the whole computational domain � into n

1
 , n

2
 , n

3
 

elements in latitudinal, longitudinal and height direction, respectively. Then to specify 
the position of an element �e we use indices k, l, m, where k = 1, ..., n

1
 , l = 1, ..., n

2
 and 

m = 1, ..., n
3
.

Let us consider an arbitrary element �e from our finite element distretization with indi-
ces k = 1, ..., n

1
 , l = 1, ..., n

2
 and m = 2, ..., n

3
 . We multiply (16) by a weight function w and 

using Green’s identity (we omit  (x) to simplify the notation in the following equations) we 
obtain the weak formulation of (16) over an arbitrary above-defined element �e

where n denotes the unit normal to ��e.
Due to the oblique derivative BC (17) prescribed on the bottom boundary �  , we derive the 

weak formulation for elements with indices k = 1, ..., n
1
 , l = 1, ..., n

2
 and m = 1 separately. 

We follow the idea of Macák et al. (2020) or Minarechová et al. (2021). We split the oblique 
vector v into one normal, n , and two tangential, t

1
, t

2
 , components, and we insert this decom-

position into (17)

From (20) we express the normal derivative

where ∂T/∂t1 and ∂T/∂t2 denote derivatives of the disturbing potential in the direction of t1 
and t2, respectively, moreover we assume that c

1
≠ 0 , and we insert (21) to (19) to get

After some rearrangement, we obtain

where n is the normal vector and t
1
 , t

2
 are tangent vectors to 𝛤 e ⊂ 𝜕𝛺e ⊂ R3 , where � e 

denotes the bottom boundary of an element �e.
Then for a pentahedral element �e with six nodes we can write

(19)∫
�e

∇T ⋅ ∇w dxdydz = ∫
��e

∇T ⋅ nw d�,

(20)∇T ⋅ v = c
1
∇T ⋅ n + c

2
∇T ⋅ t

1
+ c

3
∇T ⋅ t

2
= �.

(21)∇T ⋅ n =
�

c
1

−
c
2

c
1

�T

�t
1

−
c
3

c
1

�T

�t
2

,

(22)

∫
�e

∇T ⋅ ∇w dxdydz =

= ∫
� e

(
�

c
1

−
c
2

c
1

�T

�t
1

−
c
3

c
1

�T

�t
2

)
w d� + ∫

��e⧵� e

∇T ⋅ nw d�.

(23)
∫
�e

∇T ⋅ ∇w dxdydz +
c
2

c
1
∫
� e

�T

�t
1

w d� +
c
3

c
1
∫
� e

�T

�t
2

w d� =

= ∫
� e

�

c
1

w d� + ∫
��e⧵� e

∇T ⋅ nw d�,
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i.e. we approximate the unknown value T as Te using a linear combination of basis func-
tions �j with coefficients Te

j
, j = 1, ..., 6 . We substitute (24) into the weak formulation (19) 

and consider �i for weight function w. We obtain the ith equation in the form

where ∂ψ/∂x, ∂ψ/∂y, ∂ψ/∂z are directional derivatives,  qn = ∇T ⋅ n denotes the projection 
of the vector ∇T  along the unit normal n.

For the row of elements �e given by indices k = 1, ..., n
1
 , l = 1, ..., n

2
 and m = 1 , we 

follow the same way and after inserting (24) into (23) and considering w = �i , we obtain 
the ith equation in the form

where index j = 1, ..., 3 refers to nodes of the element �e that lie on the bottom boundary �  
of the computational domain �.

Now we can write (25) and (26) in a compact matrix form

where Ke = [Kij] denotes the element stiffness matrix, Te = (T
1
, ...,T

6
) is a column vector 

of unknowns and Qe denotes the right-hand side vector.
To evaluate Ke and Qe we proceed in the following way. We choose one basis function 

�i per vertex Ne
i
 , see (Reddy 2006) or (Brenner and Scott 2002), and we differentiate the 

basis functions with respect to a position of each node in cartesian coordinates. To evalu-
ate boundary integrals over a boundary � e in (26), we approximate tangential derivatives 
like in the finite difference method. This idea has been applied also in Macák et al. (2020); 
Minarechová et al. (2021).

Afterwards, we assemble all element equations using two principles (Reddy 2006), 
namely "continuity of primary variables at the interelement nodes" and "balance of sec-
ondary variables in a weighted-integral sense at the interface between two elements", and 
we take into account the Dirichlet BC (18) for nodes that lie on the �� − �  . We have 

(24)T ≈ Te =

6∑
j=1

Te
j
�j,

(25)

6∑
j=1

Te
j ∫

�e

(
��j

�x

��i

�x
+

��j

�y

��i

�y
+

��j

�z

��i

�z

)
dxdydz =

=

6∑
j=1

∫
��e

qn �i dxdy,

(26)

6�
j=1

Te
j

⎡
⎢⎢⎣ ∫
�e

�
��j

�x

��i

�x
+

��j

�y

��i

�y
+

��j

�z

��i

�z

�
dxdydz

⎤
⎥⎥⎦
+

+

3�
j=1

Te
j

⎛⎜⎜⎝
c
2

c
1
∫
� e

��j

�t
1

�i dxdy +
c
3

c
1
∫
� e

��j

�t
2

�i dxdy

⎞⎟⎟⎠
=

=

3�
j=1

∫
� e

�j

c
1

�i dxdy +

6�
j=1

∫
��e⧵� e

qn �i dxdy,

(27)Ke Te = Qe
,
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Fig. 2  The testing numerical 
experiment - the disturbing 
potential is obtained as a differ-
ence between the gravitational 
potential generated by the sphere 
S, representing the simplified 
Earth and depicted by black 
colour, and the gravitational 
potential generated by sphere S∗ 
representing the normal body and 
depicted by red colour

obtained the global linear system of equations with a column vector of unknown global 
nodal values T

where the matrix K is sparse and positive definite, and entries of the column vector Q are 
zeros except for the nodes with the prescribed BC (17).

4  Testing numerical experiment

To test and study the behaviour of the proposed numerical scheme, we performed one 
theoretical experiment. In this simplified testing case, the disturbing field was gener-
ated between two identical homogeneous spheres with the radius R = 6378 [km] but with 
centers mutually shifted by 100 [km] in the direction of the z-axis, see Fig.  2, where 
the black sphere, denoted by S, represents the simplified "Earth" and the red sphere, 
denoted by S∗ , the "normal body". Then the computational domain was bounded by lati-
tude 80◦S and 80◦N , longitude 0◦ and 160◦ and the upper boundary has been placed at 
the altitude of 240 [km] above S. The generated gravitational potential, used to obtain the 
Dirichlet BC and the exact solution of (1), was calculated as GM/r, where GM denotes 
the geocentric gravitational constant and r denotes the distance from the origin O or O∗ . 
To obtain BC on the bottom boundary, we used the derivative of this exact solution in 
the form −GM∕r2 . We started (see Table  1) with the resolution 81 × 41 × 11 , i.e. with 
the number of nodes in longitudinal, latitudinal and radial direction, respectively. After-
wards, we performed four successive refinements and in each refinement we have calcu-
lated four iterations. We can see that with the refinement, we obtained the convergence 
of the method, and moreover it is obvious that the second iteration of our solution is 
very close to the "reference" value (see Table  1), so the following iterations bring only 
small improvement of the results. In this case, the "reference" value is used to designate 

(28)KT = Q,
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the values obtained with the exactly calculated vector v(x) (see eq. (17)), so this value 
includes only the discretization error.

5  High‑resolution local gravity field modelling

We applied the developed concept to local gravity field modelling in three areas, namely 
the Andean, Himalayan and Alpine mountain range, where we expected a significant 
contribution of our approach due to rugged mountain terrain. In all three experiments, 
the input surface gravity disturbances were interpolated from Global Gravity Model plus 

Table 1  Statistics of residuals between the FEM solution and the exact solution on the bottom boundary in 
the testing experiment (units: m2

s
−2)

The "Reference" values are obtained with exactly calculated vector v(x) (see Eq. (17))

No. of nodes No. of it Min Max Mean St. deviation

81 × 41 × 11 1 0.0000 1521.5100 968.5280 466.2330
2 − 90.0984 102.0790 2.2471 58.0754
3 − 90.2256 101.8830 2.2131 58.0730
4 − 90.2256 101.8830 2.2131 58.0730
Reference − 90.1907 101.8410 2.2131 58.0729

161 × 81 × 21 1 0.0000 898.8630 569.7670 266.1540
2 − 20.5623 23.2282 0.5822 14.6225
3 − 20.5749 23.2025 0.5717 14.6219
4 − 20.5749 23.2025 0.5717 14.6219
Reference − 20.5746 23.2021 0.5717 14.6219

321 × 161 × 41 1 0.0000 588.4360 363.7640 175.6500
2 − 5.1203 5.7858 0.1485 3.6690
3 − 5.1239 5.7783 0.1450 3.6680
4 − 5.1239 5.7783 0.1450 3.6680
Reference − 5.1238 5.7782 0.1450 3.6678

641 × 321 × 81 1 0.0000 433.3740 259.1610 132.6990
2 − 1.2796 1.4463 0.0378 0.9187
3 − 1.2807 1.4438 0.0365 0.9187
4 − 1.2807 1.4438 0.0365 0.9187
Reference − 1.28071 1.4438 0.0365 0.9187

1281 × 641 × 161 1 0.0000 355.8600 206.4710 111.7940
2 − 0.3198 0.3619 0.0099 0.2300
3 − 0.3201 0.3610 0.0091 0.2299
4 − 0.3201 0.3610 0.0091 0.2299
Reference − 0.3201 0.3610 0.0091 0.2299
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database (GGMPlus) (Hirt et al. 2013) on land areas and complemented by DTU21_GRAV 
data (Andersen and Knudsen 2019) on marine areas. The bottom surface was the discre-
tized Earth’s surface created from a digital elevation model provided within the GGMPlus 
database. The upper boundary was placed at the altitude of 230 km above the reference 
ellipsoid that corresponds to the mean altitude of the GOCE satellite orbits. The disturb-
ing potential on the side boundaries and top boundary was generated from EIGEN-6C4 
model (Förste et  al. 2014), that is a static combined GGM up to d/o 2190. To solve the 
nonsymmetric linear system, BiCGSTAB(l) linear solver with l = 8 , cf. (Sleijpen and Fok-
kema 1993), was implemented and the stopping criterion was set to 10−8 . To save memory, 
we stored only nonzero coefficients. All these large-scale parallel computations were per-
formed on 4 nodes of our cluster with 1.0 TB of distributed memory (each node consists 
of four 8-core CPUs with 256 GB RAM). Thanks to the NUMA (Non-Uniform Memory 
Access) architecture of each node, we implemented a hybrid parallelization and the NUMA 
optimization using 32 MPI processes, each with 4 OpenMP threads (together 128 cores).

5.1  The Andean mountain range

The computational domain � for the Andean mountain range is bounded by longitude 
278

◦ and 300◦ , and by latitude 56◦S and 12◦N . The meshing was set to the number of 
division: 1100 × 3400 × 300 (longitude x latitude x height) creating 1 127 094 801 
nodes, including 3 744 501 nodes on the Earth’s surface. These nodes formed 2 244 
000 000 pentahedral elements. The corresponding horizontal resolution on the Earth’s 
surface was 0.02◦ × 0.02

◦ . A numerical solution of NSFBVP using the developed FEM 
approach on such a 3D unstructured mesh took about 15 h of the CPU time. Since the 
residuals between the third and the second iteration were smaller than 0.00001 [ m2

s
−2 ], 

see Fig.  3d) and Table  2, we stopped our computation after the third iteration. The 
obtained numerical solution with the differences between two successive solutions is 
depicted in Fig. 3. One can observe that the highest values of differences are in the areas 
with the highest values of deflection of vertical and they reach up to −0.0571 [ m2

s
−2 ] in 

the disturbing potential which corresponds approximately to 5.7 [mm] in the quasigeoi-
dal height, see Table 2.

5.2  The Himalayan mountain range

The computational domain � for the experiment in Himalayan region is between 60◦E 
and 110◦E longitude, and bounded by latitude 20◦N and 50◦N . The meshing was set to: 
2000 × 1200 × 320 (longitude x latitude x height) creating 771 427 521 nodes, including 
2 403 201 nodes on the Earth’s surface. In this way, we obtained 1 536 000 000 pentahe-
dral elements. The horizontal resolution on the Earth’s surface has been 0.025◦ × 0.025

◦ . 
The computation (i.e. all three solutions) took about 8,5 h of the CPU time. The obtained 
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solution with the differences between two successive solutions is depicted in Fig. 4. The 
corresponding statistics is presented in Table 3. One can observe that the highest values 
of differences are again in the areas of the steepest changes of the disturbing potential, 
with values  up to −0.0702 [ m2

s
- 2 ], see Table  3, which corresponds approximately to 

7.0 [mm] in the quasigeoidal height. (Table 4) 

5.3  The Alps mountain range

The computational domain � for the last experiment located in Alps region is bounded 
by longitude 4.799◦E and 17.503◦E , and by latitude 42.999◦N and 49.203◦N , see Fig. 5. 
The horizontal resolution on the Earth’s surface was 0.004◦ × 0.004

◦ , while the number of 
divisions in radial direction was set to 600. The total number of nodes in the computational 
domain was 2 963 353 104, including 4 930 704 nodes on the earth’s surface, and forming 
5 911 171 200 pentahedral elements. Again, based on the differences obtained between the 
third and the second iteration, see Table 3, we stopped the computation after the third itera-
tion. The highest values of differences in the disturbing potential have been approximately 
−0.0066 [m2

s
- 2] , i.e. approximately to 0.6  [mm] in the quasigeoidal height, see Table 3 

and Fig. 5. 

6  Conclusion and summary

We  developed an iterative approach based on the finite element method applied for 
solving the nonlinear satellite-fixed geodetic boundary value problem. In this concept, 
we determined the direction of actual gravity vector together with the value of the 
disturbing potential. To solve it, we implemented the finite element method with tri-
angular prisms. For the numerical experiments we chose three mountainous locations, 
namely in Andean, Himalayan and Alpine mountain ranges. As an input data we used 
the surface gravity disturbances generated from Global Gravity Model plus database 

Table 2  Andean mountain range: Statistics of residuals [ m2
s
- 2 ] between the second iteration T2nd and the 

first iteration denoted by T1st , and the third T3rd and the second T2nd iteration obtained on the bottom bound-
ary �  . STD denotes the standard deviation of residuals

Residuals Min Max Mean Median STD

T
2nd − T

1st − 0.0571 0 −0.0048 −0.0025 0.0063

T
3rd − T

2nd − 8.03e−06 1.12e−05 1.02e−08 2e−08 4.91e−07

Fig. 3  The Andean mountain range: a The input surface gravity disturbances [mGal]; b The disturbing 
potential solution T1st [m2

s
- 2] ; c The contribution of the second iteration, i.e. (T2nd − T

1st) [m2
s
- 2] , where 

T
2nd denotes the disturbing potential solution after the second iteration; d The contribution of the third itera-

tion, i.e. (T3rd − T
2nd) [m2

s
- 2] , where T3rd denotes the disturbing potential solution after the third iteration

▸
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(lands) combined with DTU21_GRAV model (seas), and the disturbing potential gen-
erated from EIGEN-6C4 model. The obtained maximal contribution to disturbing 
potential when taking into account the nonlinear boundary condition with compari-
son to the oblique derivative boundary condition was 0.0571 [m2

s
- 2 ] (Andes), 0.0702 

[ m2
s
- 2 ] (Himalayas), 0.0066  [m2

s
- 2 ] (Alps). These values correspond to 5.7 [mm] 

(Andes), 7.0 [mm] (Himalayas), 0.6 [mm] (Alps) in the quasigeoidal heights, and they 
are located in the areas of the highest values of the deflection of vertical. The obtained 
results confirm the validity of the presented approach.

Fig. 4  The Himalayan mountain range: a The input surface gravity disturbances [mGal]; b The disturbing 
potential solution T1st [m2

s
- 2] ; c The contribution of the second iteration, i.e. (T2nd − T

1st) [m2
s
- 2] , where 

T
2nd denotes the disturbing potential solution after the second iteration; d The contribution of the third itera-

tion, i.e. (T3rd − T
2nd) [m2

s
- 2] , where T3rd denotes the disturbing potential solution after the third iteration

▸

Table 3  Himalayan mountain range: Statistics of residuals [ m2
s
- 2 ] between the second iteration T2nd and 

the first iteration denoted by T1st , and the third T3rd and the second T2nd iteration obtained on the bottom 
boundary �

Residuals Min Max Mean Median STD

T
2nd − T

1st −0.0702 0 −0.0066 −0.0040 0.0070

T
3rd − T

2nd −1.58e−05 4.84e−06 −8.93e−08 −1e−08 5.80e−07

Table 4  The Alps: Statistics of residuals [ m2
s
−2 ] between the second iteration T2nd and the first iteration 

denoted by T1st , and the third T3rd and the second T2nd iteration obtained on the bottom boundary �

Residuals Min Max Mean Median STD

T
2nd − T

1st −0.0066 0 −0.0012 −0.0008 0.0011

T
3rd − T

2nd -1.3e−07 1.9e−07 6.1e−09 0 2.4e−08
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