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Abstract—In this paper we present new fast and stable
Lagrangean approach to medical image segmentation. The La-
grangean approach consists in discretization of intrinsic partial
differential equation for the evolving curve position vector. Since
only a curve discretization by grid points is used it can be
very fast provided that topological changes which may occur
during the curve evolution from the initial guess to a final
segmentation result are also resolved in a very fast way. The curve
evolution model which we use for the Lagrangean segmentation
includes expanding force in the normal direction, the advective
term driving the curve from both sides to an edge and the
curvature regularization. The numerical procedures are based
on stable semi-implicit scheme in curvature part and on inflow-
implicit/outflow explicit method in advective part which corre-
sponds to tangential redistribution of grid points. The tangential
velocity which is used to stabilize Lagrangean computations keeps
the evolving curve uniformly discretized and this fact allows the
fast O(n) solution of the topological changes. We present all
deatails of our model, numerical procedures and we show their
behaviour in medical image segmentation. In our model we do
not need to take any special care of initial condition and the
segmentation is done in less that 1 second.

I. INTRODUCTION AND CONTINUOUS LAGRANGEAN
CURVE EVOLUTION MODEL

In this paper we present new Lagrangean approach to
segmentation of objects in medical images. The medical image
segmentation is very important for diagnosis and planing of
patient treatment. The segmentation results thus should be
precise and reliable, as automatic as possible and also fast
procedures are highly desirable.

We consider the evolution of segmentation curve driven by
the following equation

∂x

∂t
= V(x, t) , (1)

where x denotes curve position vector and

V(x, t) = µ1((1− λ)g2N− λ∇g1) + µ2g3kN , (2)

denotes our velocity vector field where N denotes the outer
unit normal vector of the evolving curve and kN represents
the curvature vector. In the vector field there are also three
functions g1, g2, g3 which are used to drive the segmentation
curve in the normal direction (g2N) by the suitable edge
attracting advective vector field (−∇g1) and by curvature term
(g3kN). Moreover, we introduced parameters µ1, µ2 > 0
which weight the advection and curvature terms and λ ∈ [0, 1]

which weights the edge attracting vector field and the velocity
in the normal direction.

The first important term in (2) is −∇g1 which attracts
the evolved curve to the edge in the image provided that
the curve is in the edge local neighbourhood. The function
g1 = g1(|∇Gσ ∗ I0|, k1)

g1(s, k) =
1

1 + k1s2
. (3)

depends on a scaling parameter k1 and on the term |∇Gσ ∗I0|
which represents the norm of the image intensity I0 gradient
smoothed by a convolution with a kernel Gσ . The importance
of this edge attracting vector field was emphasized in [1], [3]
where the so-called geodesic active contours were introduced
in the level set formulation, and since then it has been used
in many successful image processing models like subjective
surfaces and their generalized versions [11]. The regularization
by curvature is used to get the final curve more smooth
and also with a goal to close the gaps if they arise in the
boundaries of segmented objects. If we considered only the
image intensity gradient and the curvature terms as above
and placed the initial segmentation curve to the region where
the vector field is weak, that evolving curve did not move or
even worse it could shrink to a point because of influence of
the curvature. This phenomenon must be overcame because
we want to start the segmentation process just from one user
given point inside the segmented object. To that goal, let us
denote by ρ the value representing the greylevel intensity of
the segmented object. This can be defined as the average of
the image intensity values inside initial segmentation curve
represented by a small circle around the user specified point.
Then we add new term with the function g2 = g2(I0, ρ, k2)
defined as follows

g2(s, ρ, k2) =
1

1 + k2(s− ρ)2
(4)

where k2 is again a scaling parameter. This term takes bigger
values in the regions with intensity values similar to ρ and
lower values in other regions with the image intensity different
from the indicated mean intensity of the segmented object. By
this term we introduced the influence of the image intensity
values of the segmented object into our model and evolve
the segmentation curve in the normal direction by the speed
g2. Thanks to that we obtain very good results by using the
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Lagrangean approach although the initial curve is far away
from the segmented object edges in the image. It also helps to
speed up the segmentation process and approaching the final
segmentation curve position.

Since in the continuous Lagrangean approach only the
normal component of the movement gives the shape of the
evolving curve, it is natural to ignore the tangential component
of the edge attracting vector field −∇g1 and we can define
the curve evolution model (1)-(2) in the form

∂x

∂t
= βN , (5)

where the normal velocity β is defined by

β = µ1((1− λ)g2 − λ∇g1 ·N) + µ2g3k . (6)

On the other hand, from the numerical point of view
it is necessary to add suitable velocity of grid points in
tangential direction in order to prevent the evolving curve
from selfintersections and to allow fast detection and solution
of topological changes. In the next section we present such
tangential velocity and derive the discrete stable and fast
Lagrangean algorithm which includes detection and solution
of the topological changes during the curve evolution.

II. FAST AND STABLE DISCRETE LAGRANGEAN
ALGORITHM FOR IMAGE SEGMENTATION

In this section we present all details of our Lagrangean
approach to segmentation of 2D images by means of plane
curve evolution. First we introduce definitions and notations
necessary to deal with the evolving curves in Lagrangean
formulation and we define our final model including tangential
velocity. Then we define asymptotically uniform tangential
redistribution of curve representing grid points and derive the
discrete numerical scheme for solution of our model which has
no restriction on time step regarding solvability of the arising
linear systems. Finally we describe how to solve topological
changes in evolving curve(s) with O(n) complexity where n
is the number of discrete points representing the segmentation
curve.

A. Plane curve evolution

Let Γ be the plane curve, Γ : S1 → R2, parametrized by
u ∈ S1, where S1 is a circle with unit length, thus u ∈ [0, 1]
and Γ = {x(u), u ∈ S1}, where x(u) is position vector of the
curve Γ for parameter u.

Example of a closed curve discretization is displayed in
Figure 1, where x0,x1, ...,xn are discrete curve points which
correspond to the uniform discretization of the unit circle with
step h = 1/n and x0 = xn. Let |xu| > 0, where xu =(
dx1

du ,
dx2

du

)
and g = |xu| =

√(
dx1

du

)2
+
(
dx2

du

)2
. Let us denote

by s the unit arc-length parametrization of the curve Γ. Then
ds = |xu|du = gdu and du = 1

gds. The unique definition of
the unit tangent T and normal N vectors to the plane curve Γ
can be done as follows: T = ∂x

∂s (= ∂sx = xs), N = x⊥s and
T∧N = 1, where T∧N denotes the determinant of the matrix

Fig. 1. Curve discretization corresponding to unit circle distribution

with columns T and N. From the Frenet-Serret formulas we
have Ts = kN and Ns = −kT, where k is the curvature.
From there it follows that kN = Ts = (xs)s = xss.

In our approach, the curve Γ is given by its position vector
x, so its evolution can be described by the evolution of this
vector in time. The motion of any point on the curve can be de-
composed into the normal and tangential directions. Although
it is well-known that the tangential motion does not change the
shape of the evolving curve, on the other hand we know that
it is helpful in stabilization of the numerical algorithms based
on the Lagrangean approaches. So we consider a general form
of the curve evolution in the form

xt = βN + αT. (7)

where β = w + εk, where w = µ1((1 − λ)g2 − λ∇g1 ·N),
ε = µ2g3 and α is a ”free” parameter, which can be suitably
chosen as discussed in the next subsection. By using the above
definitions and considerations we get our curve evolution
model in the form of intrinsic partial differential equation for
the curve position vector x

xt = (w + εk)N + αT = wN + εkN + αT =

εxss + αxs + wx⊥s , (8)

where x = (x1, x2), and therefore (8) is a system of two
equations for the components of the position vector x1 and
x2. These equations are coupled together by the derivative
with respect to s, because both components of the position
vector x occur in the term ds. The curvature term represents
the intrinsic diffusion along the curve, the tangential velocity
term represents the intrinsic advection along the curve and the
external driving forces in the normal direction are given by
the third term of the right hand side of (8).

B. Suitable choice of tangential velocity α

In this subsection we present a derivation of the tangential
component of the velocity that causes asymptotically uniform
redistribution of curve grid points which stabilizes the discrete
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Lagrangean numerical scheme and allows fast detection and
solution of topological changes in the Lagrangean approach.

To that goal, we derive an equation for the evolution of
g = |xu| which has in discrete scheme an important relation
to distances between neighbouring curve grid points. For its
time evolution we can write

gt = |xu|t =
xu
|xu|

· (xu)t. (9)

For a smooth curve evolution, by using the general curve
evolution equation (7), we obtain

(xu)t = (xt)u = (βN + αT)u = g(βN + αT)s.

The Frenet-Serret formulas yield

g(βN + αT)s = g(βsN + βNs + αsT + αTs) =

g((βs + αk)N + (−βk + αs)T).

Since
xu = gxs = gT. (10)

we can derive the evolution equation for g as follows

gt =
xu · (xu)t
|xu|

= gT · g((βs + αk)N + (−βk + αs)T)

g
=

−gkβ + gαs = −gkβ + g
dα

ds
=

−gkβ +
dα
1
gds

= −gkβ +
dα

du
= −gkβ + αu.

Thus, for any evolving curve satisfying (7) with arbitrary
parameters α and β we get the formula which describes the
evolution of its local length g

gt = −gkβ + gαs = −gkβ + αu. (11)

From there we can see that for α = 0 we get the simple
differential equation gt = −rg, where r = kβ with the
solution

g(t) = g(0)e−rt, (12)

at any u ∈ S1. Such exponential decrease of the local lengths
causes accumulation of numerical grid points in places with
high curvature k and normal velocity β or it can even cause
a formation of swallow-tails and curve selfintersections in a
naive Lagrangean numerical implementations.

On the other hand, by integration of the equation (11) along
the curve we get equation for evolution of the total curve
length∫

S1

gtdu =
d

dt

∫
S1

gdu = −
∫
S1

gkβdu+

∫
S1

αudu, (13)

so for any curve Γ we have

d

dt

∫
Γ

ds = −
∫

Γ

kβds+ α(1)− α(0). (14)

Let us denote by L =
∫

Γ
ds the total length of the curve and

by 〈kβ〉Γ = 1
L

∫
Γ
kβds the mean value of kβ. Since α(1) −

α(0) = 0 for closed curves, we get the ordinary differential
equation for the total curve length

dL

dt
= −L〈kβ〉Γ. (15)

Let us consider a numerical discretization of the ratio g
L

with the approximation of g = |xi−xi−1|
h . Then we get

g

L
≈
|xi−xi−1|

h

L
=
|xi − xi−1|

Lh
=
|xi − xi−1|

L
n

, (16)

where the numerator denotes distance between two neigh-
bouring points and denominator a distance of neighbouring
points if the curve would be uniformly discretized (since n
denotes the total number of curve points and its segments).
We can simply see that one can get the curve with uniformly
redistributed discrete grid points if such ratio |xi−xi−1|

L
n

→ 1

for all discrete segments representing distances between neigh-
bouring points. In the continuous formulation we should have
that g

L → 1 with increasing time and if we define a quantity
θ = ln( gL ) we need that θ → 0 with increasing time. Using
the above relations we get evolution equation for θ

θt = (ln(
g

L
))t =

L

g

gtL− gLt
L2

=

(−gkβ + gαs)L+ gL〈kβ〉Γ
gL

=

−kβ + 〈kβ〉Γ + αs

which can be controlled by the choice of α, or better say by
the choice of αs. If we choose

αs = kβ − 〈kβ〉Γ, (17)

then θt = 0 and the initial curve points distribution will be
preserved during the evolution, i.e. the tangential velocity α
preserves the initial distribution of points [2], [4], [7]. On the
other hand, if we choose

αs = kβ − 〈kβ〉Γ + ω(e−θ − 1), (18)

then θ fulfils differential equation θt = ω(e−θ − 1) and for
solution of such differential equation we get θ → 0, for t →
∞. The relaxation parameter ω controls redistribution velocity
and such tangential velocity is called the asymtotically uniform
redistribution [8], [9], [10]. Thus, the suitable choice of α is
given by the formula

αs = kβ − 〈kβ〉Γ + ω(e− ln( g
L ) − 1) =

= kβ − 〈kβ〉Γ + ω(
L

g
− 1). (19)

C. Numerical discretization of intrinsic PDE

Let us consider our general intrinsic differential equation
(8)

xt = εxss + αxs + wx⊥s . (20)

and integrate it on the segment [xi− 1
2
,xi+ 1

2
], where xi− 1

2

denotes the middle point between the points xi−1 and xi, i.e.
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xi− 1
2

= xi−1+xi

2 :∫ x
i+1

2
x
i− 1

2

xtds = ε
∫ x

i+1
2

x
i− 1

2

xssds+∫ x
i+1

2
x
i− 1

2

αxsds+
∫ x

i+1
2

x
i− 1

2

wx⊥s ds.

Let us denote by hi = |xi − xi−1| the length of the linear
approximation of the i-th discrete curve segment. Then we
have |xi− 1

2
− xi+ 1

2
| = hi+hi+1

2 . Let us consider that ε, α
and w are given by constant values εi, αi and wi in the curve
segment around the point xi. Let us denote by m the time step
numbering and by τ the length of discrete time step. Let us
approximate the time derivative by the finite difference. Using
the Newton-Leibniz formula and semi-implicit approach we
get

hm
i +hm

i+1

2

xm+1
i
−xm

i

τ =

εmi [xm+1
s ]

x
i+1

2
x
i− 1

2

+ αmi [xm+1]
x
i+1

2
x
i− 1

2

+ wmi ([xm]
x
i+1

2
x
i− 1

2

)⊥.

from where
hm
i +hm

i+1

2

xm+1
i
−xm

i

τ =

εmi [xm+1
s ]

x
i+1

2
x
i− 1

2

+ αmi (xm+1
i+ 1

2

− xm+1
i− 1

2

) + wmi (xm
i+ 1

2

− xm
i− 1

2

)⊥

and by approximating the arc-length derivative in the first
bracket on the right hand side by the finite difference we obtain
the most simple semi-implicit scheme, cf. [9],

hm
i +hm

i+1

2

xm+1
i
−xm

i

τ =

εmi

(
xm+1
i+1
−xm+1

i

hm
i+1

− xm+1
i
−xm+1

i−1

hm
i

)
(21)

+αmi

(
xm+1
i+1
−xm+1

i−1

2

)
+ wmi

(
xm
i+1−x

m
i−1

2

)⊥
.

As one can see, we have obtained two cyclic tridiagonal
systems of linear equations for position vector components
xm+1
i = ((xm+1

i )1, (x
m+1
i )2), where i = 1, ..., n and xm+1

0 =
xm+1
n resp. xm+1

n+1 = xm+1
1 .

The tangential velocity αmi is computed as follows. We set
αm0 = 0, i.e. the point x0 will not be moving in tangential
direction, but only in the normal direction. Then we get
disretization of (19):

αmi − αmi−1

hmi
= kmi β

m
i − 〈kβ〉mΓ + ω

(
Lm

nhmi
− 1

)
(22)

from where we obtain

αmi = αmi−1 +hmi k
m
i β

m
i −〈kβ〉mΓ hmi +ω

(
Lm

n
− hmi

)
(23)

where the curvature kmi , the normal component of velocity
βmi , for i = 1, ..., n, the mean value 〈kβ〉mΓ and the total
length Lm are computed by using the following formulas (see
[9]):

kmi = sgn (Ri−1 ∧Ri+1)
1

2hmi
arccos

(
Ri+1.Ri−1

hmi+1h
m
i−1

)
,

βmi =
εmi−1 + εmi

2
kmi +

wmi−1 + wmi
2

,

〈kβ〉mΓ ≈ 1

Lm

n∑
l=1

hml k
m
l β

m
l ,

Lm =

n∑
l=1

hml ,

where Ri = ((Ri)1, (Ri)2)T = xm−1
i − xm−1

i−1 .
The above constructed system (21) is cyclic tridiagonal and

can be written in the following form

−
(
−α

m
i

2
+
εmi
hmi

)
xm+1
i−1 +(

hmi+1 + hmi
2τ

+
εmi
hmi+1

+
εmi
hmi

)
xm+1
i

−
(
αmi
2

+
εmi
hmi+1

)
xm+1
i+1 =

hmi+1 + hmi
2τ

xmi + wmi

(
xmi+1 − xmi−1

2

)⊥
(24)

It can be solved by the cyclic tridiagonal solver which uses
Sherman-Morrison formula in order to generalize the classical
Thomas algorithm to the matrices with non-zero elements in
matrix corners. As in the case of the Thomas algorithm, the
solvability is guarranteed by the diagonal dominance of the
system matrix. In case of (24) it means

|aii| ≥
∑
i6=j

|aij |, (25)

where aij denotes matrix element in the i-th row and j-th
column. We can rewrite the system (24) to the simple form

−Ami xm+1
i−1 +Bmi xm+1

i − Cmi xm+1
i+1 = Dm

i , (26)

where Dm
i is right hand side and Ami = −α

m
i

2 +
εmi
hm
i

, Cmi =
αm

i

2 +
εmi
hm
i+1

and Bmi = (Hm
i + Ami + Cmi ), where Hm

i =
hm
i+1+hm

i

2τ . The diagonal dominance (25) yields the condition
|Bmi | ≥ | − Ami | + | − Cmi | = |Ami | + |Cmi |. Since in the
semi-implicit approach the system parameters are fixed from
the previous time step this condition can be fulfilled only by
the proper choice of the time step τ according to the next
condition

τ ≤ 1

2

hmi+1 + hmi

| ε
m
i

hm
i
− αm

i

2 |+ |
εm
i

hm
i+1

+
αm

i

2 | − (
εm
i

hm
i

+
εm
i

hm
i+1

)
, (27)

which must be tested for all i = 1, .., n in every time step.
Such test is timeconsuming itself and moreover it can give
different values of τ for different curves arising e.g. after a
topological change. The smallest τ then must be chosen which
again slowed down the speed of this semi-implicit scheme. For
this reason it is usefull to modify the scheme, in order to get
a method which is not constrained by the choice of the length
of discrete time step.
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D. Numerical scheme without restriction on time step

In this subsection we design new scheme for the Lagrangean
curve evolution which is not constrained by the choice of the
time step. The presented scheme is motivated by [5], [6]. If
Ami and Cmi in (26) were positive, the system would always
be diagonally dominant and thus solvable. A negative values
of Ami and Cmi can be caused by the intrinsic advection term
of the model which corresponds to the tangential velocity α.
We will show how to solve this problem by using the so-called
inflow-implicit/outflow-explicit scheme I2OE suggested in [5],
[6]. The main idea is a splitting of the advection to the inflow
and outflow parts. The inflow part contributes by a good sign
to the elements out of the matrix diagonal. So we consider
this part implicitly. On the other hand, the outflow part we
take explicitly. This approach has the second order accuracy
in space and time in case of the scalar advection equation and,
moreover, for the curve evolution it keeps the grid points on
the circle for the constant tangential velocity. Thanks to such
scheme we get always diagonally dominant M-matrix and the
solvability of the system is not restricted by the choice of time
step length τ .

Let us consider the advection equation

qt + vqx = 0, (28)

where q : Ω × [0, T ] → R is an unknow function and v(x)
is a scalar velocity field. We solve the equation (28) in a
domain Ω ⊂ R and in time interval [0, T ]. Let us denote
by pi a finite volume (in our case it will be a segment of the
curve[xi− 1

2
,xi+ 1

2
] around the point xi), with length h. The

equation (28) can be rewriten as

qt + (vq)x − qvx = 0. (29)

If we integrate (29) on the finite volume pi, we get

hqt + vi+ 1
2
q̄i+ 1

2
− vi− 1

2
q̄i− 1

2
− q̄i(vi+ 1

2
− vi− 1

2
) = 0, (30)

hqt + vi− 1
2
(q̄i − q̄i− 1

2
) + (−vi+ 1

2
)(q̄i − q̄i+ 1

2
) = 0, (31)

where vi = v(xi), vi− 1
2

= v(xi− 1
2
), vi+ 1

2
= v(xi+ 1

2
), and

q̄i, q̄i− 1
2

and q̄i+ 1
2

are representative values of solution inside
and on the boundaries of the finite volume pi. We get these
values by a reconstruction from the numerical solution qi for
i = 1, ...n, obtained by the scheme.

If vi− 1
2
> 0, it represents the inflow into the finite volume

from the left side. If vi+ 1
2
< 0, it represents the inflow to the

finite volume from the right side. If the signs are opposite,
they represent outflows from the finite volume. Let us define

bini− 1
2

= max(vi− 1
2
, 0), bouti− 1

2
= min(vi− 1

2
, 0), (32)

bini+ 1
2

= max(−vi+ 1
2
, 0), bouti+ 1

2
= min(−vi+ 1

2
, 0).

Let approximate the time derivative by the finite difference
and a simple reconstruction q̄mi = qmi , q̄m

i− 1
2

=
qmi +qmi−1

2 and

q̄m
i+ 1

2

=
qmi +qmi+1

2 . If we take the inflow implicitly and the

outflow explicitly we get the I2OE scheme:
h
τ q

m+1
i + 1

2b
in
i− 1

2

(qm+1
i − qm+1

i−1 ) + 1
2b
in
i+ 1

2

(qm+1
i − qm+1

i+1 ) =

h
τ q

m
i − 1

2

(
bout
i− 1

2

(qmi − qmi−1) + bout
i+ 1

2

(qmi − qmi+1)
)

which can be written in the form

−
(

1
2b
in
i− 1

2

)
qm+1
i−1 −

(
1
2b
in
i+ 1

2

)
qm+1
i+1 +

+
(
h
τ + 1

2

(
bin
i− 1

2

+ bin
i+ 1

2

))
qm+1
i = (33)

h
τ q

m
i − 1

2

(
bout
i− 1

2

(qmi − qmi−1) + bout
i+ 1

2

(qmi − qmi+1)
)
.

Since we have the velocity αi given in the centers of finite
volumes (the points xi) and not on their boundaries we modify
the basic I2OE by the following definition of inflows and
outflows

bini− 1
2

= max(vi, 0), bouti− 1
2

= min(vi, 0), (34)

bini+ 1
2

= max(−vi, 0), bouti+ 1
2

= min(−vi, 0).

In the case of curve evolution equation (8), vi = −αi and the
unknowns are components of the position vector xi so we get
our final numerical scheme:

−
(
εmi
hmi

+
1

2
bini− 1

2

)
xm+1
i−1 −

(
εmi
hmi+1

+
1

2
bini+ 1

2

)
xm+1
i+1 +(

hmi+1 + hmi
2τ

+
εmi
hmi+1

+
εmi
hmi

+
1

2
bini− 1

2
+

1

2
bini+ 1

2

)
xm+1
i =

hmi+1 + hmi
2τ

xmi −
1

2
bouti− 1

2
(xmi − xmi−1)−

1

2
bouti+ 1

2
(xmi − xmi+1) + wmi

(
xmi+1 − xmi−1

2

)⊥
. (35)

E. Topological changes

By the topological change we mean splitting of the evolving
segmentation curve into several separate parts. Such situations
can occur during the evolution mainly due to a noise or
other spurious inner structures inside the segmented object. To
solve the topological changes in the Lagrangean approach is
usually very time consuming because the standard approaches
has computational complexity O(n2) where n is the number
of curve grid points. Such complexity is due to a standard
strategy for the topological change detection which consists
in computing distances between all grid points of the curve.
Then, if the smallest computed distance is realized not among
the neighbouring grid points and it is below a specified
threshold, it indicates that the curve should be split to two
curves in those points. The number of operations in such
approach is

∑n−2
i=2 (n − i) = n2−3n

2 and it slowes down
computing time significantly. The advantage of the Lagrangean
approach (in comparison to level-set methods) that the number
of unknowns is proportional only to n (in the level-set method
it is proportional to a dimension of image, i.e. it is much
higher) is lost in evolutions where topological changes may
occur.

Our goal is to develop new method for the topological
changes detection with much lower complexity. We follow
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the same strategy to find two not-neighbouring points with the
smallest distance below some threshold. But we find this cou-
ple in completely different and fast way. As it was emphasized
in the previous sections, our curve is asymptotically uniformly
discretized which means that all distances are around their
mean value. The global length is increasing or decreasing
(after a topological change) during the evolution. If the mean
distance is greater than 1 (the size of one pixel) we densify
the curve (i.e. we put new point in the middle of curve
segment and thus the number of points is doubled). On the
other hand, if the mean distance is less than 0.4 we coarse
the discretization and remove half of the grid points. By this
procedure we guarantee that generically there are maximally
3 grid points in one pixel.

Our main new idea is to create a narrow strip (with thickness
1) of pixels along the curve. If there is no topological change
occuring, this strip should not be crossed by two distant pieces
of the curve. On the other hand, if there are two distant
points inside one pixel of this strip, it indicates the topological
change. So our algorithm is as follows:

1. we traverse all curve grid points and mark the pixels in
which they lie by j = 0.

2. we traverse again subsequently all points and ask whether
the pixel value j where the point belongs is equal to 0. If yes,
set it to i, where i is the number of grid point. If it is not 0,
it means that the value in pixel was set by another point j. If
i− j ≤ 2 then go to another point. If i− j > 2 then there are
more than two points between the points i and j, and i and
j belong to one pixel. It is clear that such situation indicates
the splitting of the curve.

3. if such splitting was detected, we do a test of distances
between the sets of points {i − 2, i − 1, i, i + 1, i + 2} and
{j − 2, j − 1, j, j + 1, j + 2}. If the smallest distance is less
than a given threshold (in our case the mean distance) then
the curve is split in two points where this smallest distance
was computed.

From the above description it is clear that the number of
operations is proportional only to number of grid points and
thus our algorithm has complexity O(n). Our procedure is
illustrated by figure 2.

III. NUMERICAL EXPERIMENTS

In this section we present the results of segmentation of
medical images by the proposed mathematical model and
numerical scheme. The images are filtered by a few steps of
linear diffusion (which corresponds to the Gaussian convolu-
tion) and the segmentation is stopped when the curve motion
is very small. The coefficients k1, k2, µ1, µ2 were chosen
according to data which are segmented, g3 = 1, and they are
not changed in one segmentation process. After the stopping
of the curve with one set of parameters, it is possible to run
the segmentation process again with modified parameters ε
and λ , e.g. one can increase the influence of the curvature
or influence of the vector field −∇g1. Usually we run first
the segmentation with ε = 0.001 and λ = 0.5. After the first

Fig. 2. Detection of topological changes. In the upper figure, the points x4
and x19 are detected as indicators of the topological change, they are distant
but in one pixel. The smallest distance in their local neighbourhood is then
computed in the points x5 and x18 where the topological change is realized
and two new curves are created each of which contains x5 and x18.

stopping we usually increase ε to 0.1 and then also λ is set
to 1.

In the first experiments we have segmented parts of brain
in the image with dimensions 512 x 512 pixels.

In figure 3 the segmentation of truncus encepalicus is
presented. This segmentation took approximately 0.30 second
with τ = 0.25 and we used with 2200 time steps until the
final segmentation result was obtained.

In figure 4 we present the segmentation of cerebellum in
more detailed way. One can see that during the segmentation
process the evolving curve has a complicated shape due to a
noise and also that topological changes occur (see the first
and third image in the second raw and the first image in
the third raw). The small curves arising after the topological
changes are shinked to a point due to the curvature term and
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orientation of normal. Only the largest one stays as the result
of segmentation. The segmentation process with one set of
model parameters (ε = 0.001, λ = 0.5) was stopped when the
curve did not move longer in the shape similar to the one from
the left image in the third raw. Then new set of parameters
was chosen to obtain the final result presented on the right
side of the third raw (ε = 0.1). The overal number of time
steps with size τ = 0.2 was 2500 and the computations took
approximately 0.42 seconds.

Fig. 3. The initial condition for the segmentation of truncus encepalicus (up)
and the result of the segmentation (down).

Next we perform segmentation of tumor of lobus occipitalis
lateris dextri telencephali in the image with dimensions 256 x
256 pixels and the result is presented in figure 5. One can see
that the segmentation algorithm has reached the complicated
tumor shape. This segmentation took 0.15 second (τ = 0.25
and 900 time steps).

Next experiment represents the segmentation of prostate in
the image with dimensions 168x168 pixels (figure 6). This
segmentation took approximately 0.6 second (τ = 0.2 and

Fig. 5. The initial condition for the segmentation of tumor of lobus occipitalis
lateris dextri telencephali (up) and the result of segmentation (down).

3500 timesteps).
In the last experiment we present the segmentation process

for the bladder (figure 7), again one can see that topological
changes occur. This segmentation took 0.95 seconds (τ = 0.2
and 3500 time steps).

IV. CONCLUSION

In this paper we presented new approach to medical image
segmentation. We developed fast algorithm based on evolving
curves in the Lagrangean formulation. Our method allows fast
detection of topological changes which is necessary step in
order to make the Lagrangean approach efficient. The results
were documented on real images where CPU times were
always less than 1 second.
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Fig. 4. The initial condition and evolved curve during segmentation of cerebellum.
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[7] K. Mikula, D. Ševčovič, Evolution of plane curves driven by a nonlinear
function of curvature and anisotropy, SIAM J. Appl. Math., 61 (2001),
pp. 1473–1501.
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Fig. 6. Segmentation of the prostate.

Fig. 7. Segmentation of the bladder.
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