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Abstract— In this paper, we present a novel algorithm for
tracking cells in time lapse confocal microscopy movie of a
Drosophila epithelial tissue during pupal morphogenesis. We
consider a 2D + time video as a 3D static image, where
frames are stacked atop each other, and using a spatio-temporal
segmentation algorithm we obtain information about spatio-
temporal 3D tubes representing evolutions of cells. The main
idea for tracking is the usage of two distance functions - first
one from the cells in the initial frame and second one from
segmented boundaries. We track the cells backwards in time.
The first distance function attracts the subsequently constructed
cell trajectories to the cells in the initial frame and the second
one forces them to be close to centerlines of the segmented
tubular structures. This makes our tracking algorithm robust
against noise and missing spatio-temporal boundaries. This
approach can be generalized to a 3D + time video analysis,
where spatio-temporal tubes are 4D objects.

I. INTRODUCTION

Cell tracking in a developing organism means extracting
spatio-temporal trajectories of cells and detecting moments
of cell divisions. It is one of the most interesting topics in
the modern biology - a reliable backward tracking method
could answer some of the fundamental questions of develop-
mental biology: global and local movement of cells, origin
and formation of tissues and organs, cell division rate and
localization, etc.

In this paper, we present a new method for tracking cells
in 2D + time image sequences. We consider a time sequence
of 2D images as a 3D image, where separate frames are
stacked atop each other. We identify cell evolutions as a
set of spatio-temporal tubes. We achieve this via spatio-
temporal 3D segmentation. Having these tubes segmented,
tracking means, from a given point in tube interior, to find
a trajectory - within this tube - to the cell identifier in the
first video frame. In later sections, we will refer to these first-
frame cells as to the ”root cells”. Finding a correct trajectory
is achieved via computation and use of two constrained
distance functions. The distance function from root cells
forces trajectory to approach a root cell. The distance from
segmented boundaries keeps this trajectory centered.
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We test the algorithm on a video of the mono-layered
epithelium of the Drosophila pupa, which undergoes exten-
sive proliferation and morphogenesis to form the Drosophila
adult. Upon expression of E-Cadherin-GFP, which localises
the adherent junctions, its development can be followed by
confocal time-lapse microscopy [1]. The video was acquired
with Nikon Ti spinning disk microscopes equipped with a
HQ2 Ropper Camera in routine conditions for these kinds
of movies. It consists of 199 frames, has resolution 569 x
500 pixels and intensity ranges from 0 to 255, the cells often
divide but never merge and they also move to the right. In
fig. 1 one can see visualization of the image data.

II. ALGORITHM STEPS

Our algorithm consists of these consistent, but independent
steps:
A. Cell identification
B. Spatio-temporal segmentation
C. Computing the distance from root cells
D. Computing the distance from the borders of spatio-

temporal tubes
E. Extraction of cell trajectories

Fig. 1. Data example. In the upper row the 40th frame, in the lower row
the 140th frame. Left - whole frame, right - selected 100x100 pixel part of
the frame under magnification. White box denotes the selected part.
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These steps are modular - one can choose different
implementation for some of these steps (e.g. cell identi-
fication/segmentation), while still taking advantage of our
algorithm’s performance and robustness for the other steps.

A. Cell identification

Cells in an image are objects with area larger than a certain
threshold and smaller than some other threshold. Considering
isophotes of the image intensity function, we see that if we
approximate the contours of cells with a circle of radius r,
this radius lies between some bounds d1, d2, d1 < r < d2.
On the other hand, spurious noisy structures are represented
by contours of radii significantly less than d1, 0 < r � d1.
A Level-Set Center Detection (LSCD) algorithm is designed
with this property in mind, and we use it to identify cells in
an image [2], [3]. In LSCD, we look for a numerical solution
to the following equation:

ut + δ|∇u| − µ|∇u|∇ ·
(
∇u
|∇u|

)
= 0 (1)

where the initial condition is an input image and boundary
condition is zero Neumann. δ and µ are the coefficients of
advection in the inward normal direction and the curvature
regularization, respectively. Function u is defined as u : R2×
[0, T ]→ R. The result of the algorithm is the set of maxima
of u at the end of the evolution.

Depending on the signal-to-noise ratio of the image, one
should consider filtering of the data in the pre-processing,
to remove the image noise. Suitable filter is e.g. Geodesic
Mean Curvature Flow (GMCF) smoothing algorithm [4],
[5]. However, cell identification, as well as segmentation
(see next step), both use a curvature regularization, so they
implicitly contain smoothing and the filtering step is not
always necessary.

The LSCD method is used separately for every 2D frame
of the video. One can see the results of cell identification
algorithm in fig. 2.

B. Spatio-temporal segmentation

For segmentation, we use the spatio-temporal Generalized
Subjective Surface (GSUBSURF) algorithm [6], [7], [8], [3].
For this algorithm we need first to construct an initial con-
dition. This initial condition should approximate the spatio-
temporal tubes according to the information we already have
- the better it does, the less time steps of the algorithm
we need to perform. We call this initial condition ”initial
segmentation”. For each 2D frame, we create a disc of small
radius around each cell identifier and we set pixels inside
this disc to value 1, otherwise value stays at 0. GSUBSURF
is a numerical solution to this equation:

ut − wa∇g · ∇u− wcg|∇u|∇ ·
(
∇u
|∇u|

)
= 0 (2)

where g is an edge detector function, wa and wc are
advection and curvature parameters of the model. Here, u
is defined as u : R3 × [0, T ] → R. It takes an initial
segmentation profile and lets its isosurfaces evolve. We solve
this equation in the whole spatio-temporal 3D area.

Fig. 2. Cell identification visualization. In the upper row: local maxima of
the original image (left) and of LSCD-evolved image (right) are visualized,
viewed together with the original image as background. In the lower row:
the intensity level functions of the original image (left) and the image after
the LSCD evolution (right) are displayed.

During the evolution, shock profiles are created at the inner
edges of cells [6], [7], and thus, considering pixels bounded
by a specific isosurface, we obtain borders of spatio-temporal
3D tubes representing the result of our segmentation, cf. fig.
3 and 5.

An important property of our spatio-temporal segmenta-
tion is that even if a cell identifier in a 2D frame is missing,
we can still recover the shape of this cell by segmentation
function evolution in the time direction. Furthermore, the
spatio-temporal borders of cells are respected in GSUBSURF
evolution, so we get separated 3D tubes. Of course, in
real data, this separation may not be perfect, but this is
solved in later steps of our approach. Both initial and final
segmentation can be seen in fig. 3.

Fig. 3. Spatio-temporal segmentation result visualization. Left, one 2D
frame of initial segmentation - small discs created around the cell identifiers.
Right, one 2D slice of 3D segmentation result. It is a set of pixels for which
the segmentation function has values greater than or equal to the prescribed
value.

C. Distance from the root cells

To compute the distance from the root cells, we use the
time relaxed eikonal equation, which looks as follows:

dt + |∇d| = 1, d(x, t) = 0, x ∈ Ω0 (3)
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where d, d : R3 × [0, T ] → R, as time increases, appro-
ximates the distance from the points where zero Dirichlet
condition is prescribed. In this step of the algorithm, Ω0 is
given by the root cell identifiers. We will refer to this distance
function as d1. Technically, this equation is solved as in [9].

If we pick a point in our segmented set of spatio-temporal
tubes, we want it to follow a path ”down”, i. e. in the
direction of decrease of this distance function, until it reaches
a root cell identifier - see fig. 4. This path is our first naive
approach to the trajectory extraction. If the spatio-temporal
tubes were perfectly isolated from each other, just following
d1 would be sufficient to get the approximate trajectories.

D. Distance from the borders of the spatio-temporal tubes

Following just d1 often forces paths to follow borders of
the spatio-temporal tubes, rather than their centers - this can
be seen in fig. 4, especially in the top left image. This is
not the most accurate path. Furthermore, if tubes are not
perfectly isolated, paths can slip through holes in borders
and give wrong tracking results - see fig. 4, top right image
in the figure. The main idea of this step is to force the paths
to follow the approximate centers of cells, while following d1
distance down. Let us define a cell center as a point in cell
with maximal distance from border of its spatio-temporal
tube. To find this point, we again need to find a distance
function.

The distance from the borders of the spatio-temporal tubes
is also computed by the eikonal equation. This time, the
points with zero Dirichlet condition are the border points of
the spatio-temporal tubes. We denote this distance function
as d2.

An important property of this path modification is that
if the spatio-temporal tubes meet, no slipping through this
meeting point occurs - see fig. 4, in the lower row.

E. Extraction of cell trajectories

For a given point in a 3D spatio-temporal tube, we
extract its cell trajectory by minimizing d1 in a steepest-
descent manner while maintaining d2 maximized. In other
words, trajectories go through the spatio-temporal 3D tube,
backwards in time, to the root cell identifier, while staying
in the cell center in each time frame.

Logically, a cell evolution can be represented as a binary
tree. It is rooted at the root cell identifier and it branches out
into two children each time the cell divides. As the video
starts with many root cells existing already, we should rather
talk about a binary forest - forest simply means a set of
trees. Tree is constructed in such a way that if we choose a
particular node as a representation of a cell, just by following
line of its ancestors down to the root, we obtain a trajectory
of this cell.

From the data structure point of view, the whole forest
consists of nodes. These nodes, besides carrying their tem-
poral and two spatial coordinates, also carry a reference to
the parental node, left child node and right child node. As in
most of the frames a cell does not divide, we use a standard
of always following a left branch of a tree - a right child can

Fig. 4. An illustration of the distance function properties. Image represents
1D + time simulated evolution of the three artificial cells, where the central
one divides at about the half time of the evolution - the time axis goes
down. There is an artificial ”missing-boundary flaw” between the two cells
in the lower right part of image. Upper row - trajectories calculated using
only distance to the root cells. Tendency to follow the edges rather than
the centers (left) and non-robustness against missing boundaries (right) is
visible. Lower row - trajectories constructed using both distance function to
the root cells and to the borders of tubes. Trajectories tend to follow centers
of cells (left) and are robust against missing boundary flaws (right).

be different from NULL if and only if a cell division occured
at a given frame. A tree is created in such a way that for
a given node we search for a list of predecessors, thus the
tracking is computed backwards and the tree is constructed
in a top-down manner.

In fig. 5 one can see a visualization of spatio-temporal 3D
tubes, which were obtained using tracking results.

Fig. 5. Visualization of the spatio-temporal 3D tubes. We use tracking
results in order to obtain one specific tube from the set of tubes. Time axis
points up. ”Bifurcated tubes”represent evolution of cells which undergo cell
divisions, whereas ”simple tubes”represent cells that did not divide.

In order to visualize the tracking results themselves, we
assign a color to each cell identified in the beginning of the
video. This color is used to identify the cells corresponding
to the evolution of the original cells. In fig. 6 and 7 one can
see visualization of few frames of tracking results.
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III. DISCRETIZATION AND IMPLEMENTATION

Equations of GMCF, LSCD and GSUBSURF are disc-
retized and solved using the finite volume method, with
pixel/voxel serving as a natural choice of control volume.
A detailed discretization procedure is described in [3]. The
time-relaxed eikonal equation, used for calculating distance
functions, is solved in a way introduced in [9].

IV. EXPERIMENTS

We have worked with a part of the video covering 100
frames with resolution 100x100 pixels. In the beginning of
the video there are 12 cells in the area. These move, mostly to
the right, and most of them undergo cell division a few times
during the 100 frames. In the end of the video, there are 11
cells corresponding to the original cells identified in the first
frame - the others disappear through the right border of the
area while moving to the right. Through the left border, some
new cells arrive to the area, but we do not track these, as
their root cell identifiers are unknown. Using this video, we
chose algorithm parameters so that it gives the best possible
results. In the LSCD, δ = 1.0 and µ = 0.000001 and we
perform 20 time steps. In the spatio-temporal GSUBSURF,
setting wa = wc = 0.1, 100 time steps are performed.

Then, we took two alternative parts of the video, both
covering 100 consecutive time steps, both with resolution
100x100 pixels. We wanted to test, how well do the previ-
ously set parameters behave under the new conditions. In the
first alternative video, there are 16 cells in the beginning and
9 corresponding ones in the end. In the second alternative
video there are 13 cells in the beginning, 19 corresponding
in the end. Cells in these parts of the video also move to the
right.

We measure the success of our approach by counting
number of correct and incorrect links between the cell
identifiers in two consecutive frames. Number of incorrect
links can be understood as the required amount of work to
be performed by a user of the software, in order to achieve
perfect tracking. We call it a number of ”hand-correction”
operations.

In the first video, for which the parameters of the model
were optimized, we got 1398 correct links out of 1400 total.
That means 99.86% success. In the first alternative video,
using the previously set parameters, we got 1759 / 1775
- 99.01% success. For the second alternative video we got
1595 / 1600 - 99.69% success.

Tracking results of the original video part can be seen in
fig. 6, alternatives are to be seen in fig. 7.

Fig. 6. Tracking in the original video part. From left to right - frame 1,
frame 50, frame 100.

Fig. 7. Tracking in alternative video parts. Upper row - first alternative
part, lower row - second alternative part. From left to right (both rows) -
frame 1, frame 50, frame 100.

V. CONCLUSION

In this paper, we have presented an algorithm for tracking
cells in image sequences. An algorithm accepts lightly noised
input images. It is robust against missing boundaries of
cells and missing cell identifiers, thanks to spatio-temporal
segmentation. It can overcome imperfections of 3D spatio-
temporal tube separation, via combination of two distance
functions. Parameters of model, once found, can be used
for analysis of similar videos, as we have shown in section
about experiments. We have developed this algorithm using
a 2D+time video, but its ideas can be extended to 3D+time
videos as well.
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