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Abstrakt

Dizertatnd praca sa zaobera rieSenim geodetickej okrajovej tlohy (GOU) pomocou
novych pristupov a numerickych schém. Je v nej vybudovana efektivna paralelna
metoda na rieSenie GOU s Neumannovou okrajovou podmienkou pomocou metody
kone¢nych objemov. Dalej prezentuje dva nové pristupy k rieSeniu GOU so Sikmou
derivaciou. Prvy pristup je zalozeny na rozklade gradientu na normalovi a tangen-
cidlnu zlozku, druhy je zaloZeny na chapani okrajovej podmienky ako rovnice advekcie.

Nakoniec sa zaoberame navrhom itera¢ného sposobu rieSenia nelinedrnej GOU.

KTIiacové slova: geodetickd okrajova dloha, metoéda kone¢nych objemov, okrajova

tloha so Sikmou derivaciou, centralna schéma, up-wind schéma, paralelné vypocty

Abstract

The PhD. thesis deals with a solution to the geodetic boundary value problems (GBVP)
involving new approaches and schemes. Namely, we have developed an efficient parallel
approach to solving the GBVP with the Neumann boundary condition (BC) by the
finite volume method. Then we have presented two new approaches for solving the
GBVP with the oblique derivative BC. The first approach is based on a decomposition
of the gradient into the normal and tangential directions, while the second one treats
the oblique derivative BC as an advection equation. Finally, we deal with an iterative

approach for solving the non-linear GBVP.

Keywords: geodetic boundary value problems, finite volume method, oblique deriva-

tive boundary condition, central scheme, up-wind scheme, parallel computations
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Introduction

The main goal of physical geodesy is the precise determination of the external gravity
field of the Earth and its equipotential surface called geoid. From the mathematical
point of view, the external geodetic boundary value problem (GBVP) is formulated in
the form of the Laplace partial differential equation for the unknown potential in the
external domain. Various boundary conditions (BCs) defined on the Earth surface are
considered, e.g. the Newton BC is prescribed, if the so-called gravity anomalies are

used, or the Neumann BC is prescribed, if the so-called gravity disturbances are used.

First, we will consider that the normal derivative of the unknown potential field
is given on the Earth’s surface, then, the oblique derivative of the unknown potential
field will be considered on the Earth’s surface and finally the non-linear BC for the
norm of gravity potential will be studied. Recently, also a Dirichlet BC has been used
in case of the GBVP solved in bounded domains. In such cases, the Neumann BC is
considered on the Earth’s surface and the Dirichlet BC on the other boundaries, e.g.
on the sphere far from the Earth surface. The BCs on the Earth surface are given
by the gravimetric measurements and the Dirichlet BCs are taken from the satellite
mission (e.g. GOCE, GRACE, CHAMP) and/or from the global geopotential models
(e.g. EGM2008, DNSC10-GRAV).

Nowadays, the efficiency of numerical methods like the boundary element method
(BEM), the finite element method (FEM) or the finite volume method (FVM) has

rapidly increased with a development of HPC (high-performance computing) facilities.

17



Opportunities for large scale and parallel computations make these methods applicable
also for the precise global gravity field modeling. In contrary to the methods that use
global basis functions like the spherical harmonics (SH), the aforementioned numerical
methods allow to use basis functions with the local support like finite elements. It has
an advantage that a successive refinement of the discretization is straightforward and
in general improves the precision of numerical results. The price to be paid is large

memory requirements.

In this work we have continued the effort initiated in |10} 14} T3] and developed new
FVM schemes and treatments in physical geodesy applications. First of all, we have
built a new highly efficient parallel FVM implementation for solving the GBVP with
the Neumann BC (Chapter 2), then we present two new FVM approaches for solving
the GBVP with a direct treatment of the oblique derivative BC (Chapter 3) and
finally we deal with an iterative treatment of solving the GBVP with the non-linear

BC for the norm of gradient.

All numerical approximations usually transform partial differential equation to a
system of linear algebraic equations that must be solved. There exist various methods
to solve linear systems, among which the most powerful are the so-called nonstation-
ary methods. In [I4], the Red-Black SOR method was used for parallel solution of the
FVM discretization of GBVPs. This stationary method converges, but very slowly, so
the resulting CPU times were enormous. In this work we use a different parallel solver,
namely BiConjugate Gradient Stabilized method (Bi-CGSTAB) because in compar-
ison with other methods, it does not need more extra memory storage and has good
convergence properties for matrices given by the FVM. Such a nonstationary parallel
linear solver improved CPU time significantly, e.g., in the experiment in the Himalaya
region (reported in Table the speed up (in comparison with SOR) was about 18

on the same number of processors.

The thesis is organized as follows. In Chapter 1, we give a brief description of
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historical background of this problem and we present mathematical formulation of the

problems which are numerically solved, namely

(i) the non-linear GBVP for the disturbing potential,
(ii) the GBVP for the disturbing potential with the oblique derivative BC,

(iii) the GBVP for the disturbing potential with the Neumann BC.

The GBVP (iii), where the derivative in the oblique direction is projected onto the
normal to the Earth’s surface, is used for numerical experiments for local and global
gravity field modeling presented in Chapter 2. In this section, together with numerical
experiments, we also describe our new parallel FVM implementation and parallel solver.
In Chapter 3, we present our two approaches for solving the oblique derivative GBVP
(ii) together with numerical experiments. The iterative solution to the non-linear
GBVP (i) for disturbing potential is presented as well as in Chapter 4. Finally thesis

is ended by the conclusions.
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Chapter 1

Formulation of the geodetic boundary
value problems

1.1 Historical background

From the very beginning people imagined the Earth as a plate. The first man who
proposed a spherical shape of the Earth was Pythagoras in the 6 century BC. Then
Eratosthenes invented a system of latitude and longitude and calculated the radius of
the Earth with a circumference of 46 620 km (error 16%). However, with the fall of

the Greek empire, the scientific study declined [55].

In the Middle Ages the idea of a flatten Earth was finally rejected and new attempts
were made to measure the Earth circumference. Columbus and da Gama revived the
interest for the shape of the Earth. First who derived a new estimation was a French
physicist Fernel in 1525 with 1% error. Development of new instruments brought other,
and more accurate, techniques possible. The most important one for geodesy was the
invention of the theodolite. Snellius introduced the methodology of triangulation and
he determined the Earth’s circumference with error of 3%. Although his result was not
very accurate, he introduced a technique of measuring distance using triangulation.
Newton’s mechanical laws led him to the conclusion that gravity, as observed by a
pendulum, must be of decreasing magnitude from the poles towards the equator due

to the centrifugal force. Furthermore, he or Picard, hypothesized that the Earth is
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an oblate spheroid, instead of a perfect sphere. Newton’s hypothesis of an oblate
spheroidal Earth was confirmed in Peru expedition in 1736. Here Bouguer recognized

the effect of mountains on the deflection of vertical and the gravity.

Connection between the gravity flattening and the geometrical flattening of the
ellipsoid was published in 1738 by Clairaut and it can be identified as the first step
towards the solution of the GBVP. More general expression was derived by Stokes in
1849, where he considered the variation of gravity at different points on the Earth. His
publication On the variation of gravity at the surface of the Earth [53] started a new
period in the history of the knowledge of the physical Earth’s shape. In this publication
he proposed a solution of the GBVP for disturbing potential T (see also (1.2.21))) in
the form of surface integral [53]

T(P) = E/S(zﬁ)Ago do, (1.1.1)

g

where S(1)) is the so-callled Stokes function, Agy is the reduced gravity anomaly and o
is the geoid. Using the Brun’s formula the disturbing potential 7' can be transformed

to the geoidal height (geoid undulation):

N(Qo) = > (1.1.2)

where v(Qo) is a normal gravity (see also (1.2.20))), P, is defined on the geoid and Q)
on the ellipsoid, see Fig a). In this way the Stokes integral connects Agg, reduced
gravity anomalies, with geoidal heights N above the reference ellipsoid. The major
drawback of the Stokes integral is assumption of a mass free space outside the geoid
and the need for reduction of the gravity anomalies from the Earth’s surface to the

geoid.

In 1920, Meinesz designed a new gravimeter, which has two pendula of the same size

hanging in a frame but moving in opposite phases. He had discovered that horizontal
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accelerations had no influence on the difference in amplitude between the two pendula.

This discovery started measuring gravity at sea.

In 1945, Molodensky published a method for the determination of the figure of
the Earth and its gravity field from the surface observations of the potential and the
gravity vector, free of assumptions on the density. He proposed a solution in the series

of integrals [40]

T(P) = f:Tn(P). (1.1.3)

The first component of the series is formally identical with the Stokes integral (1.1.1)
where only the surface gravity anomaly is used. The second component is usually
approximated by the terrain corrections. Together they are called gradient solution

and have form

T(P) = g / S()[Ag(Q) + Gi] do. (1.1.4)

where Ag(Q) is surface gravity anomaly, (G; is a terrain correction and o is a telluroid,
see Fig b). The quasigeoidal height above the ellipsoid {(Q) can be computed by
Brun’s formula

(1.1.5)

where P is on the Earth’s surface and () is defined on the telluroid.

Another solution to the Molodensky problem was defined in 1964 by Brovar [§].
He also proposed the solution in the form of series of integrals but in a simpler way
by using generalized surface density and potential of a generalized surface layer. The
next step forward in the theory of the GBVP, was proposed by Hérmander in 1976 |20
and improved by Sans6 in 1977 [46]. They used the transformation of the problem to
the gravity space, where a fixed GBVP could be obtained at the expense of a general
elliptic equation. Sanso6 also investigated the existence and uniqueness of the solution
of the linear and the non-linear GBVP. Various aspects of the non-linear GBVP are

also considered e.g. in [41], 15 19].
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a)
Figure 1.1.1: Tlustration of the different approaches a) Stokes approach b) Molodensky
approach, where H* is the normal height, H is the orthometic height, A is the geometric
height, ¢ is the height anomaly and N is the geoid undulation [54].

b)

The problems of Stokes and Molodensky require a continuous coverage of the entire
boundary of the Earth with observations. This is far from reality because measurements
will always be discrete. On the other hand, new types of observations became available,
such as sea surface heights from satellite altimetry. The combination of gravity and
potential observations on the continents, and altimetry over ocean areas, brings new

results in the altimetry-gravimetry GBVP, c.f. [21] 45].

The introduction of new kinds of observations, in addition to the classical observa-
tions as leveling, gravimetry and astronomical observations, gave an impulse for the
development of overdetermined BVPs. More observations than unknowns are avail-
able; the adjustments of data is used to improve the precision of the solution, see e.g.
[16, [45].

Nowadays a precise satellite positioning, such as GNSS, provides station coordinates
without knowledge of the (local) gravity field. Then the so-called fixed gravimetric BVP
(FGBVP), with a known 3D position of the Earth’s surface, is formulated to determine

the gravity field from gravimetric measurements, see [3, 19, [30].
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Figure 1.2.1: Rectangular and spherical coordinates [54].

1.2 The Earth’s gravity field

We define the Cartesian coordinate system zyz in the usual way: the origin is at the
Earth’s center of mass, the z — axis coincides with the mean axis of rotation, the
x — axis lies in the mean Greenwich meridian plane and is normal to the z — axis, the

y — axis is normal to the xz — plane, see Fig.

According to Newton’s law the gravitational potential W, may be expressed by the

formula

W, = W,(x) =G / T@gi)»dUQ, (1.2.1)

FEarth

where P is a point having coordinates x = (x,y, z), @) is a point variable within the
Earth’s body, which forms the center of the volume element dvg, r(P, Q) is Euclidian
distance between P and @, p(Q) is the mass density at () and G is the gravitational

constant.

The equation (1.2.1) has only a theoretical value because its practical use would
require the knowledge of the detailed density distribution within the Earth which ob-

viously is not known. For large distances r we can express (1.2.1)) as

M
W, = ¢ , which implies lim W, =0, (1.2.2)

T r—00
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with M denoting the total mass of the Earth’s body. The physical meaning of this

equation is that at large distances any body acts gravitationally as a point mass.

The gravity potential W associated with the rotating Earth is the sum of W, and
the centrifugal force

1
W, = 50.12(352 +32), (1.2.3)

so that

1
W =Ww,+ §w2(x2 +97), (1.2.4)

where w is the angular velocity of the Earth’s rotation.

In general, the potential W, satisfies the Poisson equation, see [54],
AW, = —4nGp, (1.2.5)

where p is a density, A is the Laplace operator in the form

0? 0? 02
o0 T T o2

(1.2.6)

Outside the attracting bodies, in the empty space, the density p = 0 (approximately)

and (1.2.5) becomes
AW, = 0. (1.2.7)

This is the Laplace equation and its solutions are called harmonic functions.

Differentiating ((1.2.3)) yields
AW, = 2w, (1.2.8)

and opposite to W, , W, is not harmonic.

From ([1.2.5) and (1.2.8)), we obtain the equation for the gravity potential W

AW = —47Gp + 2w, (1.2.9)
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which in outer space becomes

AW = 2w% (1.2.10)

The gravity vector g is defined as the gradient of the gravity potential, i.e.

g=YVWwW, (1.2.11)
where
ow ow ow\"
W = . 1.2.12
v ( oz’ dy’ 0z ) ( )
The magnitude of the gravity vector ¢ is called the gravity and is denoted by
g =|VW|. (1.2.13)

Direction of §, expressed by unit a vector ¢ = g1, is the direction of the vertical.

The surface

W = constant, (1.2.14)

on which the potential W is constant, is called the equipotential surface or the level
surface. The surface of oceans, after some idealization, is a part of a certain level
surface. This particular equipotential surface was proposed as the mathematical figure

of the Earth and was later termed the geoid. The geoid is thus defined by condition

W = Wy = constant. (1.2.15)

The lines that intersect all equipotential surfaces orthogonally are not exactly straight
but slightly curved, see Fig. [1.2.2| they are called lines of force, or plumb lines and

they tangent corresponds to the direction of vertical.

The sphere or ellipsoid may be considered as some normal surface for the geoid. It

is natural to use the external gravity potential of normal surface as a normal gravity

26



T level surface
W= constant

Figure 1.2.2: Level surfaces and the geoid [54].

potential U to approximate the Earth’s external gravity potential W. Since geoid is
an equipotential surface of W, we assume that the ellipsoid is an equipotential surface
for U. Furthermore, U must be the sum

1
U=U,+ §w2(3:2 +9?), (1.2.16)

of a normal gravitational potential U, and a centrifugal potential, and U, must satisfy

the Laplace equation

AU, =0, (1.2.17)

outside the normal surface and behave at infinity approximately as a point mass:

GM
U, = ——, which implies lim U, =0, (1.2.18)

r r—00

where M denotes the total mass enclosed by the ellipsoid. These equations correspond

to (1.2.4), (1.2.7)), and (1.2.2). The components of the normal gravity vector

7=V, (1.2.19)
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Figure 1.2.3: Geoid and reference ellipsoid [54].

as a vector to the normal surface can by easily computed, see [49], and its magnitude

v = |VU, (1.2.20)

is a normal gravity.

A difference between the actual gravity potential W and the normal gravity potential
U is denoted by T, so that

W=U+T, (1.2.21)

T is called the disturbing potential or anomalous potential. If the model field is gener-
ated by a normal surface (e.g.massive ellipsoid) rotating with the Earth spin velocity
w, its constant surface potential is equal to geopotential W, and its mass is the same
as the mass of the Earth, then the disturbing potential T" outside the Earth satisfies
the Laplace equation

AT = 0. (1.2.22)

It follows from the fact that 7" does not have any centrifugal component since the
centrifugal component of the Earth is the same as the centrifugal component of the

normal body.

Now, let us consider the gravity vector g at point P and the normal gravity vector
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~ at @, see Fig. The gravity anomaly vector Kg is defined as their difference,
Ag = Gp —To. (1.2.23)

Vectors ¢ and 7 are characterized by magnitude and direction. The difference in

magnitude is called the gravity anomaly
Ag=gp — 0. (1.2.24)

and difference in direction is the deflection of the vertical. Because sphere or ellipsoid
are mathematically defined we are also able to compare vectors g and 7 at the same

point P (e.g. on the Earth surface). Then we get the gravity disturbance vector
0g = gp — Yp- (1.2.25)
The difference in magnitude is the so-called gravity disturbance

09 = gp — Yp. (1.2.26)

1.3 The geodetic boundary value problems

As we have explained in the previous section, the basic GBVP for actual gravity po-

tential outside the Earth can be formulated in the following sense

AW = 2w?in Q, (1.3.1)

IVW| = gonT. (1.3.2)

where ) is the exterior space outside the Earth and T is the boundary of representing

the Earth surface.
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We note that the ultimate goal of our work is to solve this non-linear GBVP numeri-
cally. We suggest a new iterative approach for this numerical solution by subsequently
solving the oblique derivative problems for which we develop an original stable and

efficient finite volume schemes.
Since in geodesy we used to use the disturbing potential 7', by using (1.2.21)) and
(1.2.22) it follows that (1.3.1)-(1.3.2) can be rewritten into the form

AT = 0in ), (1.3.3)

\V(T'+U)| = gonl, (1.3.4)
Moreover, we assume that 7' is regular at infinity, i.e.

T — 0 as x — oo. (1.3.5)

One can write the norm of the gradient of the gravity potential in the form

VW

where <,> denotes the inner product. By inserting (1.3.6) into equation (|1.3.4)), we

obtain
V(T +7U) B
<—\V(T+U)\’V(T+U)> =g. (1.3.7)
If we denote
L, V(T+U)
U= —’V(T Tk (1.3.8)

we can rewrite the BC (1.3.4) as
< VT, >=g— <VUUT> onl. (1.3.9)

Since the unit vector v, defining the direction of the actual gravity vector, is unknown
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and depends on T, the BC (1.3.9) is still non-linear, but its form allows to use an
iterative approach for determining ¥ and 7" such that ((1.3.3)-(1.3.5)) is fulfilled. The
iterative procedure for solving the GBVP ([1.3.3))-(1.3.5)) is defined as follows

AT = 0in Q, (1.3.10)
<VT" "> = g— < VU " > onT, (1.3.11)
T — 0asx — oo, (1.3.12)
forn=20,1,2,..., where
V(T +U)
= 1.3.13
NGET (1:343)

and we start the iterations by choosing T° = 0, i.e. W° = U and correspondingly for
7 we get
L, VU

U = ——= =35 1.3.14
where s represents the unit vector in direction of the normal gravity vector. One can see

that in every iteration we solve the GBVP for 7"*! with prescribed oblique derivative

vector v™.

It is worth to note that in the first step (n = 0) the problem (1.3.11])-(1.3.12))

represents the so-called linearized FGBVP |30}, 22] 23, [10, 13] with the oblique derivative
BC given by
<VT'5>=g—~v=dg. (1.3.15)

In further iterations we improve the direction of the unit vector ' by which we reduce

the linearization error implicitly included in definition of the FGBVP.
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So the classical FGBVP with the oblique derivative BC is written in this form

AT = 0inQ, (1.3.16)
<VT,§> = dgonT, (1.3.17)
T — 0asx— 0. (1.3.18)

The FGBVP (1.3.16)-(1.3.18) is defined in the infinite domain Q. For our further

purposes we construct a bounded domain Q C . see Fig. . In order to con-
struct domain € we use a methodology of the artificial boundary method (ABM) [18§].
The main idea of the artificial boundary method is to construct a "suitable" artificial
boundary condition (ABC) on the artificial boundary satisfied by the solution of the
original problem exactly or approximately, and then reduce the original problem to a
BVP on a bounded computational domain. The suitable ABC satisfies the following

basic requirements [18]:

- The reduced problem is well-posed, i.e., the reduced problem has a unique solution

and the solution depends continuously on the boundary data.

- Restricted to the bounded computational domain, the solution of the reduced
problem is the same as the solution of the original problem, or it is a good

approximation of the solution of the original problem (our case).

- The bounded computational domain should be as small as possible, in order to

reduce the computational work and memory requirement.

- The reduced problem on the bounded computational domain should be easily

solved numerically.

Now we introduce an artificial boundary, for example I'p = {x, |x| = R} where
R > 0 is a real number, and I'y C Q. For 2D problems, I'y is a circle with radius R,

and for 3D problems, I'g is a sphere.
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The artificial boundary I'p divides Q into two parts, the unbounded part Q.,; =

{x, |x| > R} and the bounded part Q = Q\Q.,;. The computational domain Q has

the boundary 02 = I' UT'z. For the problem (1.3.16)-(1.3.18), if we can find an

exact boundary condition or good approximation on I'g for the unknown 7', then we
can reduce the given problem on unbounded domain to a problem on the bounded

computational domain €2, and find the numerical solution on €.
A first idea for choosing ABC is to shift the condition ((1.3.18) at infinity to the

artificial boundary I'g

T =0on g, (1.3.19)

The question is whether the solution of the reduced problem is a good approximation
of T on the domain 2. We can see from the following example that solution in bounded

domain is only a rough approximation of 7" on €.

Let I' = {x, |x| = 1}, 0g = 1 and § be a unit outward normal in problem (|1.3.16)-
(1.3.18). The error between the solution in an unbounded and bounded domain can

be expressed as

! (1.3.20)
error = — 3.
R7

where R > 1 . From this example, we see that for the simple BC accuracy of
the solution of the reduced problem depends on the position of the artificial boundary.
The position of the artificial boundary must be far away from the origin, in order to
get a high accuracy, i.e., the computational domain should be very large, which implies

a large computational time and storage requirement.

Another idea for ABC is setting
T = pon g, (1.3.21)

where p is a good approximation of the solution on I'g.

In this case, the error solution in unbounded and bounded domain we can express
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Figure 1.3.1: Plots of the bounded domain Q: a) local, b) global case. The part of the
boundary I' represents the Earth surface and is plotted in green. Artificial boundaries
are plotted in black (upper spherical part) and in blue (planar sides of the domain in
case a).

as

! (1.3.22)
error = — — U. O,
R 2

From this example, we see that for the BC ({1.3.21)), the accuracy of the solution of the
reduced problem depends on the position of the artificial boundary reduced by value
(. The position of the artificial boundary does not need to be far away from the origin,

when the value u is a good approximation of the solution on I'g.

Now, we are able to rewrite problem ((1.3.16])-(1.3.18)) to the bounded domain (2.

Thus, we will consider the following modified-FGBVP:

AT = 0in €, (1.3.23)
<VT,§> = édgonl, (1.3.24)
T = TSAT on 0f) — F, (1325)

where Tsar represents the disturbing potential generated from the satellite-only geo-
potential model. We assume that data measured by satellites on their orbits gives good

approximation of actual disturbing potential.

The boundary condition (1.3.24)) represents the oblique derivative BC included in

the original FGBVP formulation. We will also use the simplified model where we
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project the oblique derivative into the normal to the boundary T' [I0, 13]. So for
the normal derivative we use approximation aaTTF = 0g(x).cos u(x) = dg*(x), where
pu(x) = £ (s, 7r) is the angle between § and 7ir, 7ip is a unit outward normal vector to

I'. It is worth to note that new quantity dg*(x) represents the projection of the vector

dg(x)5(x) to the normal nr and not a projection of the gradient V7" onto this normal.

With this approximation we solve the following Neumann-FGBVP:

AT = 0inQ, (1.3.26)
oT

— = * r 1.3.2

I dg* on T, (1.3.27)
T = Tearon 9 —T. (1.3.28)

In the following chapters we will subsequently present numerical methods for solving

problems (|1.3.26)-(1.3.28]), (1.3.23))-(1.3.25) and finally the numerical solution of the

non-linear FGBVP (NFGBVP) defined in the bounded domain, i.e.

AT = 0in €, (1.3.29)
IV(T+U)| = gonT, (1.3.30)
T = TSAT on 0F) —T. (1331)

1.4 Numerical approaches for solving GBVP

There exist various numerical approaches to solve such potential problems. The spheri-
cal harmonics based methods are used for the global gravity field modelling, c.f. [37,143],
and on the other hand, the fast Fourier transformation (FFT) methods (e.g. [51]) and
least-squares collocation (e.g. [48]) are often used in case of the remove-compute-restore

(RCR) technique for the local gravity field modelling.
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However, a recent development of computing facilities has brought new opportunities
in numerical solution to the boundary value problems in physical geodesy. Numerical
methods like the boundary element method, the finite element method, the finite dif-
ference method, the finite volume method and others have been applied for gravity field
modelling. The BEM was innovatively applied by Klees in [26]. This approach based
on the Galerkin BEM and the indirect BEM formulation was later extended [27, 28] and
parallel computing [31], 32] 33] and fast multipole method were efficiently implemented
[29]. Later Cunderlik et al. [9, 10, 1] presented the direct BEM formulation based on
the collocation method for solving the linearized fixed gravimetric BVP. In case of the
FEM, the pioneering work has been done by Meissl [38] and Shaofeng and Dingbo [52].
Later, the finite element technique for the solution of gravimetric BVPs with mixed
BCs in 3D domains above the Earth’s surface was studied by Faskova et al. in [13] [14].
The FDM was applied by Keller in [25]. Other numerical approaches based on a weak
formulation of the BVP and minimization of a quadratic functional were developed in
Holota [23], Holota and Nesvadba [24], and Nesvadba et al. [42]. Recently, the FVM
was applied by Faskova in [14] and we have continued a development of the FVM for

geodetic applications in this thesis.
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Chapter 2

Numerical solution of the Neumann
boundary-value problem

2.1 The finite volume method

To solve (|1.3.26))-(1.3.28)), we have chosen the finite volume method (FVM), [12]. In

FVM we divide the computational domain {2 into finite volumes p, multiply the Laplace
equation by minus one (for positive operator) and integrate the resulting equation over
each finite volume with a use of the divergence theorem that turns the volume integral

into the surface integral,
— /AT dxdydz = —/VT.ﬁ do, (2.1.1)
P op

from where we get

oT
— | —do=0. 2.1.2
/anda 0 ( )
Op

in the finite volume p. Let ¢ € N(p) be a neighbour of the finite volume p, where N(p)
denotes all neighbours of p. Let T, and T}, be approximate values of 17" in p and g, e,,
be a boundary of the finite volume p common with ¢, 7,, be its unit normal vector
oriented from p to ¢, m(e,,) is the area of e,,. Let x, and z, be representative points

of p and ¢ respectively and d,, their distance. If we approximate the normal derivative
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along the boundary of volume p by

or  T,—T,

, (2.1.3)
Onpq dpq

Q

we obtain from (2.1.3)

- B () = Y P, - 1) 0, (2.1

qEN, Pq qeN, Pq
which represents the linear system of algebraic equations for the FVM. Then the term
% defined on sides of the finite volume p is referred to as the transmissivity coeffi-

paq

cient [12].

Figure 2.1.1: Ilustration of the grid (ny = 3,ny = 4,n3 = 5). a) Horizontal cut b)
Vertical cut in zonal direction ¢) Vertical cut in meridional direction d) 3D view. The
volume p is hatched by dots, while its adjacent volumes g are hatched by dashed lines.

The system (2.1.4) must be accompanied by the boundary conditions. In case of
the Neumann BC we prescribe the value for the term on the right-hand side
of on the boundary and in case of the Dirichlet BC we prescribe the value of T,
on the boundary. In case of the oblique derivative BC on bottom boundary it

needs a special treatment which will be discussed in Chapter 3.
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2.1.1 Transmissivity coefficients for spherical domains

Now we restrict our considerations to the specific situation depicted in Figure [2.1.1
We define indices ¢ = 1,....,n1,5 = 1,...,ny and k£ = 1,...,ng in the direction of the

longitude A, latitude ¢ and radius R.

The length of segments in spherical coordinates are equal to d\ = A“n—_l)‘d, dp = “”“n—_;"d,
dR = &‘n;ﬁi, where \,, ¢, and R, denote the upper boundary of the range of longitude,
latitude and radius, Ay, 4 and R, their lower boundaries. Since d\ and dy are given

in spherical coordinates, we must transform them into their real lengths. If we denote

by Aijr and ¢; ;. the values of A and ¢ in point x, = x; ; 1, we obtain the lengths

dNijr = (Ra+ k:dR)d}\ cos(®ijk), (2.1.5)

The values on boundaries of the finite volume p are then given by d)\mi%’k, dgpii;j,k and
dAi7j7ki%, d%,j,ki%- Then the transmissivity coefficients for the finite volume p = (4, j, k)

on the "west, east, north, south, up" and "down" sides are defined as follows

i,J,k — d/\i,j,k ) 1,5,k — d/\—ivij
Wi j.k di j K
b Wigay ey 0o A g s 1 AN e L
0,5,k dR y Vigk AR .

Since the diagonal coefficient is given by

Piix=Wijx+Eiix+ Nijr+ Sijr+Uiir+ Dijk, (2.1.8)
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in every inner finite volume, the linear system has the form

'Pi)jakﬂ7j7k - Wl,j,k’]—;—l,j,k - El,j,k']jl—‘rl,j,k - NZJ’kEJJ’_lvk (2'1'9)

—SijkTij-16 — Uik Tijk+1 — DigrTijr—1 = 0.

2.1.2 Transmissivity coeflicients for ellipsoidal domains

As a reference ellipsoid we have chosen the world geodetic system WGS84. The WGS84
surface is a biaxial ellipsoid with the major axis a = 6378137.0 m at the equator and
with the flattening f = 1/298.257223563. The polar minor axis b can be computed as
b=a(l—f),ie. b=6356752.3142m. From a and b it is possible to derive the second
eccentricity squared e? of the ellipsoid in the form e? = (a® — b*)/b%. For the ellipsoidal
domains we denote the ellipsoidal longitude by L, the latitude by B and the height by
H and length of the segments in ellipsoidal coordinates are dL = L“n—_lLd, dB = @,
and dH = Z—;‘ (H;=0).

In case of transmissivity coefficients for an ellipsoid, we have to compute the radii

of the curvature M and N for the finite volume p = (i, 7, k) by

M = a(l—e*)/(1—e*sin®(By + jdB))*?, (2.1.10)

Nojw = a/y/(1 = esin?(B, + jdB)), (2.1.11)

and the lengths of the elliptical arcs are then given by

dLijx = (kdH + Nj;)cos(By + jdB)dL, (2.1.12)

dB;;r = (kdH + M;;;)dB. (2.1.13)

Then the transmissivity coefficients for the finite volume p = (3, j, k) on the "west, east,
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north, south, up" and "down" sides of the ellipsoidal domain are defined as follows

Wijk:¢a Ez.jk:“—’]’]€
bt dL’L,],kI b dLZ,],kT
Spip=—22t N, =2 2.1.14
Jsk dBi,j,k: sk dBi,j,k ( )
D dBi,j,k—%dLm,k—% U dBi7j7k+%dLi,j,k+%
1,7,k — dH y Yigk — dH )

Piiw=Wijx+FEijr+ Nijr+Sijr+Ujr+ Dijk.

Finally, with these definitions of coefficients we have to solve the linear system of

equations in the form

'Pi’j’kﬂ7j7k - Wlﬂ’kz—;_lm%k - El7j’kz—;+17‘77k - NZ7J7kz—ZL7J+17k (2'1'15)

—SijkTij-16 — Uik Tijk+1 — DijrTijr—1 = 0.

2.1.3 Iterative solvers

The term "iterative method” refers to a wide range of techniques that use successive

approximations to obtain more accurate solutions to a linear system at each iteration

step. The linear system of algebraic equations, either (2.1.10) or (2.1.15)), is written in

the form

Az =, (2.1.16)

where A is the matrix with given coefficients, either (2.1.8)-(2.1.10) or (2.1.8)-(2.1.15)), b

is the right-hand side vector and x is an unknown vector. Stationary iterative methods
like the Gauss-Seidel or SOR (Successive-Over Relaxation) are easy to implement,
but usually not so efficient for solving elliptic problems [I4]. We use and present the

nonstationary methods that are based on the idea of sequences of orthogonal vectors.

Nonstationary methods differ from stationary ones by the fact that the computations

41



Solver CPU time Number of iterations

SOR 1.107237e-+05 secs 70000
Bi-CGSTAB|5.862395e+03 secs 1300

Table 2.1: Efficiency comparison of the stationary and nonstationary methods in the
experiment with size n; X ny X ng = 500 x 300 x 100, tested on one processor.

involve information that changes in each iteration. Typically, constants are computed
by taking inner products of residuals or other vectors arising in the iterative procedure.
The conjugate gradient method (CG) derives its name from the fact that it generates
a sequence of conjugate (or orthogonal) vectors. These vectors are the residuals of
the iterates. They are also gradients of a quadratic functional, the minimization of
which is equivalent to solving the linear system. Conjugate gradient method is an
extremely efficient method when the coefficient matrix is symmetric positive definite
since the storage for only a limited number of vectors is required. The Generalized
Minimal Residual method (GMRES), developed by Saad and Schultz in 1986 [44],
approximates the solution by the vector in a Krylov subspace with minimal residual.
Like other iterative methods, GMRES is usually combined with a preconditioning in

order to speed up convergence.

Computation costs
Method  [MV AXPY DOT |Memory|lter Time

Bi-CG 2 6.5 2 7 [1123 1203s
Bi-CGSTAB| 1 3 2 7 567  691s
BiCGstab2 | 1 5.5 2.27 10 |648  833s
BiCGstab(1)| 1 0.75(1+3) 0.25(1-7)| 2145 | 446 902s (1=4)

Table 2.2: The average memory and time costs for various BiCG linear solvers, where
APXY is a number of vector scalar products, DOT is a number of scalar-vector mul-
tiplications, MEM represents a number of additional vectors needed in iterative pro-
cedure, ITER gives a number of iterations to reach the prescribed residual and TIME
presents the overall CPU time in seconds. The table is constructed for a particular non-
symmetric matrix from our finite volume method, and from MEM and TIME columns
one can see optimality of Bi-CGSTAB. BiCGstab(l) denotes Bi-CGSTAB restarted at
each ['" step [47].
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In our approach, we have chosen the Bi-CGSTAB method [50], which is the robust
and stable method developed for solving nonsymmetric linear systems of equations.
In comparison with other methods, it does not need more extra memory storage and
has good convergence properties for the FVM matrices arising in our application, see
Table R.Il It is also worth to note that the Bi-CGSTAB method has the lowest CPU
time as well as memory requirement among all Bi-CG methods in case of our applica-
tion, see Table
The pseudocode iot Bi-CGSTAB is as follows [4]:

Choose g, 7y and compute ry := b — Azg, put 7 := r©
for 1 =1,2, ...
Pi—1 = (7:7 T(i_l))
it p;_1 = 0 method fails
ifi=0 p® =pt-1
else
Bic1 = (pipi1)(@i—1wi—1)
p@ = =D 4 8, 4 (pt=1 — w;_1uD)
endif
0@ = Ap®
a; = Pz‘q(f, U(i))
s = =1 — g0
check norm of s; if small enough: set £ = 20~ + o;p and stop
t = As
w; = (t,s)(t, 1)
2@ = 200 4 ap+ w;s
r =g — w;t
check convergence; continue if necessary
end

2.1.4 Parallelization of the method

Nowadays, the speed up of numerical algorithms is performed by distribution of com-
putations into several processes using so-called Massively Parallel Processors (MPP)
architecture together with the Message Passing Interface (MPI) programming frame-

work.
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The architecture of parallel computers is classified according to memory (central-
ized and distributed) and according to the address space (shared and individual ad-
dress space). The MPP architecture uses the distributed memory together with the
individual address space, i.e., each node has its own processor, memory, Input/Output
subsystem and operating system. These nodes are connected by the high-speed net-
work in order to transmit data between parallel processes and to access data that other

processes have updated (message passing).

In our application we use the Single Program Multiple Data (SPMD) model, where
only one program is built to run on each process and working with different part of data
sets. Each process has its own unique integer identifier assigned by the system when

the process initializes. The communication between processors is managed by the MPI

Size of experiment|Radial split Meridian split

4200x2400x120 076.78 16.47
790x300x100 13.56 1.71

Table 2.3: Comparison of communication memory cost (in MB) for different data
splitting in two numerical experiments.

functions. In this approach, it is important from the communication time point of view
that the parallel process runs on a fixed processor during the whole computation. This
can be done using the NUMA library. Further NUMA property is that it allocates a
memory with the fastest access to each processor. Utilization of NUMA functions can

reduce the computational time by 50 percents.

There exist several possibilities of data management in parallel implementations,
see [2]. In our parallel algorithm we split all the multidimensional arrays into sections
which can be allocated in the memory of single processor (max. 8 GB). In order to
solve the linear system iteratively, we have created the overlapping 2D slices which are
used for the exchange of information, see Figure for splitting in radial direction

(case a)) and in meridional direction (case b)). A natural splitting is given by case a
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and used in [I4]. However, in large scale numerical experiments presented in this work,
it was necessary to switch to case b), because 2D slices which must be communicated
have much smaller dimensions in meridian then in radial splitting. Table reports
large differences in communicated memory when using different type of splitting. This
difference in communication costs results for large scale experiments in the overall speed

up about 3.

Figure 2.1.2: Different types for data splitting and overlapping over parallel processes.
a) Radial split of domain b) Meridional split of domain.

2.2 Numerical experiments

In this section we present numerical experiments where we solve the FGBVP (|1.3.26))-
(1.3.28)) by the FVM discussed above. The Fzperiment test experimental order
of convergence (EOC). Comparison spherical and ellipsoidal earth approximation was

done in Fxperiment Finally we deal with global and local gravity field modeling.

For computing residuals we consider either the disturbing potential 7" or the height

of quasigeoid ¢ defined by (1.1.5)).

In numerical experiments, we present statistical characteristics of residuals, namely:

- the mean value = 7es = %Zzzl res,, where n = nyng, or n = ningns

- the standard deviation = \/% >y (res, —Tes)?,

- the root mean square = /% " | res? = [res,||L,,

where residuals are defined as a difference between our numerical and the exact (or
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EGM2008) solution.

Then res, =T, —T; or res, = ¢, —(;, where Ty and ( is either exact or EGM2008
value in a representative point of the finite volume p. For the the numerical experiments
we choose exact solution in form 7% = 1/r where r is the radius. Now wee can easily

compute the Dirichlet and the Neumann BCs.

2.2.1 Theoretical numerical experiments and experimental or-

der of convergence

Experiment 2.2.1. To study the EOC, we choose the computational domain §2
bounded domain by two spheres (Fig. b)) with radii Ry = 1m and R, = 2m.
There has been the Neumann BC on bottom boundary applied and the Dirichlet BC on
the upper spherical boundary was considered. Due to joining of meridians in the South
and North Pole, the rows of finite volumes closest to the poles had only triangular base.
We solve this situation by defining zero transmissivity coefficients S; j, = 0 in case of
South Pole, and N;;, = 0 in case of North Pole. Comparisons of F'VM solutions with

the exact solution for several successive refinements can be found in Table 2.4

ny X ng X ng [[|T* = T[] ,[EOC|

45 x 22 x5 0.001281 -
90 x 45 x 10 0.000285 |2.16
180 x 90 x 20| 0.000071 |2.00
360 x 180 x 40| 0.000018 |1.99
720 x 360 x 80| 0.000004 |2.02

Table 2.4: The Ly(Q2)-norm and the EOC of differences between the exact solution 7*
and FVM solutions T for the Ezxp. with Neumann BC in a domain between two
spheres.

Experiment 2.2.2. Then in second EOC experiment we have reduced the computa-
tional domain  from the previous experiment to a tesseroid (Fig. a)), i.e., sphe-

rical radii have been the same R; = 1m and R, = 2m, but the spherical longitude
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A and spherical latitude ¢ have been between (0,50)°. Additionally to the previously
described BCs, on the arisen side boundaries the Dirichlet BC according to the chosen
exact solution has been taking into account. Results are presented in Table One

can see that the FVM approach on such domain is second order accurate as well.

ny X ng X n3‘||T* — T||L2(Q)‘EOC‘
6 x6x6 0.0001698 -
12 x 12 x 12| 0.0000409 |2.05
24 x 24 x 241 0.0000098 |2.06
48 x 48 x 48| 0.0000023 |2.04
96 x 96 x 96/ 0.0000005 |2.00

Table 2.5: The Ly(2)-norm and the EOC of differences between the exact solution 7™
and FVM solutions 7' for the Fxp. with Neumann BC in a tesseroidal domain.

2.2.2 Comparison of FVM solutions using spherical and ellips-

oidal Earth’s approximation

In the following experiment we present a comparison of FVM solutions using spherical

and ellipsoidal Earth’s approximation.

Experiment 2.2.3. The numerical experiment on the sphere, deals with the compu-
tational domain 2 bounded by the bottom spherical boundary I" with radius 6378 km
and the upper spherical boundary with radius 6618 km corresponding to AR = 240 km.
A range for spherical latitude and longitude has been ¢ € (20.0°,50.0°) and \ €
(60.0°,110.0°), respectively. For the numerical experiment on an ellipsoid we have
chosen the reference ellipsoid WGS84 as bottom boundary I', we have chosen the same
range of ellipsoidal longitude L and latitude B as of spherical longitude A and latitude

¢ and the upper ellipsoidal boundary has been at altitude 240 km above the WGS84.

The number of finite volumes in both experiments has been 1200 in radial (or

height’s), 900 in meridional and 1500 in zonal directions, i.e., 5 x 5 x 200m sized
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volumes have been created. The gravity disturbances transformed form the free-air
gravity anomalies interpolated from the DTU10-GRAV dataset [I] are prescribed on
the bottom boundary. The disturbing potential on sides and upper boundary has been
computed from the GOCOO03S satellite only geopotential model up to degree 250 [37]
that was created from: GOCE, GRACE, CHAMP and SLR data. Every computation

took approximately 7.5 hours on 60 processors using 220GB of RAM.

Statistics for res = T(FVM) - T(EGM2008)
Domain ‘Mean Value‘St. deviation‘Root mean Square
Sphere | -0.256 3.890 3.899
Ellipsoid| -0.708 0.754 1.035

Table 2.6: Himalayas: Comparison of statistical characteristics for spherical and ellips-

oidal domains [m?s—2].

Statistical characteristics of the residuals between computations on spherical as
well as ellipsoidal domain and the disturbing potential generated from EGM2008 [43]
are shown in Table 2.6 The visual comparisons are presented in Figure As
we can see, the standard deviation of residuals is significantly smaller on ellipsoidal
domain than on spherical one. In Figure we can observe that the differences of
results obtained by the FVM on the ellipsoidal domain are much smoother in the whole
region, while in the Tibetian plateau the FVM solution is 2m?%s~2 below EGM2008.
On spherical domain the differences have much higher variability which leads us to the
conclusion that usage of ellipsoidal computational domain is more appropriate for our

FVM solution of Neumann-FGBVP.

2.2.3 Global and local gravity field modelling

With respect to results obtained in the previous Fzperiment in all following
experiment we deal only with the ellipsoidal computational domain and we present one

global and local numerical numerical solution using real data.
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Figure 2.2.1: Himalayas: a) The disturbing potential solution T'[m?.s7%] above Him-
alayas computed by the FVM. b) residuals T [m?.s7?] between the ellipsoidal FVM
solution and the disturbing potential generated directly from EGM2008 on the bottom
boundary T'. ¢) residuals T'[m?.s72] between the spherical FVM solution and EGM2008
solution.
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Figure 2.2.2: Earth: The disturbing potential solution T'[m?.s~2] computed by FVM.

Experiment 2.2.4. In case of a global gravity field modelling we present the high-
resolution gravity field modelling using the real geodetic data. The domain €2 has
been bounded by the WGS84 where the gravity disturbances from the DTU10-GRAV
dataset have been prescribed and the upper boundary is at the altitude 240 km above
the reference ellipsoid where the disturbing potential generated from the GOCO03S
has been given. The computational grid has been constructed using the number of
divisions in L, B, H directions given by 4320 x 2160 x 600 (resolution: 5" x 5'x 400m).
The obtained FVM solution has been compared to EGM2008 and statistics of this
comparison is presented in Table Our results are depicted in Figure and
residuals between the FVM and EGM2008 are depicted in Figure We can see
that the standard deviation of our result and EGM2008 model is in the range of 2cm
and on the oceans it is only 1 cm. It indicates high precision of our method, thus we

think that our approach can be used efficiently e.g. for monitoring of ocean variation.

Experiment 2.2.5. In the local experiment, we have considered the space above the

Slovak Republic as our computational domain 2. The computational domain has
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Statistics for res = T(EGMO08) - T(FVM) [m?s?]
[TOTAL| SEA | LAND
Number of nodes|93312006075501| 3255699
Mean value |-0.0380 |-0.0031 -0.1284
Max value 3.2781 | 1.7230 3.2781
Min value -3.7383 | -1.4920 -3.7383
St. deviation | 0.1832 | 0.1170 0.2811

Table 2.7: Earth: Statistics of residuals T'[m?s~2] on the bottom boundary I'. TOTAL
means statistics for the whole computational domain, SEA means statistics only over
the sea and LAND means statistics over the lands.
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Figure 2.2.3: Earth: Residuals T[m?.s72| between the disturbing potential computed
by the FVM and EGM2008 solution on the bottom boundary I'.
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been defined by the ellipsoidal latitude and longitude in range B € (47.0°,55.5°) and
L € (16.0°,23.0°), respectively. The upper boundary is at 240 km above the WGS84
reference ellipsoid. The number of discretization intervals has been 840 in height, 630
in meridional and 300 in zonal directions. As input data on the bottom boundary I' we
used the surface gravity disturbances obtained from the original terrestrial gravimetric
measurements that are available in the regular grid 20” x 30" [I7]. The disturbing po-
tential on upper and side boundaries has been computed from the GOCOO03S. Table
shows the GPS/levelling test of this model at 61 points. Standard deviation of resid-
uals about 7cm without additional fitting indicates better accuracy of our results in
comparison with the present local quasigeoid model in Slovakia GMSQ-05C computed
by different numerical techniques [39]. The mean value of residuals in our computation
is different from EGM2008 or in GMSQ-05C which can indicate a shift of the national
vertical datum. This shift value can be interesting fora unification of the local vertical
datums with respect to the world hight system, since the Dirichlet boundary data from
GOCE are fully independent from leveling networks. The graphical representation of

results is given in Figure [2.2.4

FVM FEMBEMEGM2008 L
Neumann BC gravsoft

Min. value 0.045 0.044(0.087] 0.301 0.226
Mean value 0.232 0.248(0.183] 0.437 0.385
Max. value 0.393 0.394/0.624| 0.584 0.523
St. deviation 0.076 0.078(0.171] 0.043 0.064

Table 2.8: SR: The GPS/leveling test [m] at 61 points in area of Slovakia, where FEM
denotes the solution presented in [I3], BEM the solution published in [10] and FFT
(gravsoft) denotes the solution presented in [39]. All solutions are obtained without
applying the fitting method.
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16 17 18

Figure 2.2.4: SR: Quasigeoid model {[m] in the area of the Slovak Republic obtained by
solving the Neumann FGBVP. Red crosses denote the distribution of 61 GPS/leveling
points.
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Chapter 3

Numerical solution of the oblique
derivative boundary-value problem

In this section we are dealing with the oblique derivative FGBVP ([1.3.23))-(1.3.25)

and we present and discuss two novel approaches to solve it. It is worth to note that
numerical solution of the oblique derivative BVPs by the FVM has many open questions

and there are only few papers dealing with this topic [6, [7].

3.1 The central scheme for solving the oblique deri-

vative BVP

The finite volume discretization of the equation (|1.3.23]) and the Dirichlet BC (|1.3.25)
follow the same principles as were explained in Chapter 2. In case of the oblique
derivative BC on bottom boundary (|1.3.24]) we introduce a new treatment which will

be discussed in 2D and 3D case.

The proposed approach has been published in [36] and [35].
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Grid location|Compass notation
i,j.k
i-1,j,k
i+1,j.k
i3-1k
i,j+1.k
i,j,k-1
ij,k+1
i1k
i+3.0.k
i,j—%,k
Lj+3.k
ij.k-3
i,j.k+1

fc A woz COUZnd =T

Table 3.1: Conversion between the mesh index and the compass notation.

3.1.1 2D case

We start by a splitting of the gradient in normal and tangential directions

- JT oT -
T =(VT,n)n T t)t = —n+ —t 3.1.1
where 7 is the normal vector and ¢ is the tangent vector to T
Now we put (3.1.1)) into (1.3.24) and obtain
orT oT - oT oT .
T,5)=(—n+—t,5) =—(n —(t, ). 3.1.2
(VT,5) = (5 o+ 508 = 5 (,9) + 5 (09) (3.1.2)
Thus the condition ([1.3.24]) is transformed into
or oT -
%m,é‘) + E@’ 5) = dg. (3.1.3)

For clearly arranged orientation in the FVM grid, we use a compass notation. The easy

converting between compass notation and the cell indexing is given in Table Then
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we set approximations of normal and tangent vectors at boundary I', see Fig. [3.1.1]

7= (‘”5_‘7“” ys_yp), (3.1.4)

|xs —xp|” x5 — xp|

( Tws — Leg Yws — Yes ) ’ (315)

|st - Xes|’ |st - Xes|

+
|

where xp = (xp, yp, 2p), Xg are the coordinates of the representative points on artifi-
cially added finite volume, see Fig. [3.1.1], and x,, X.s are the coordinates of points on
the boundary T, see Fig.[3.1.1| For the definition of the oblique vector in our numerical

experiments we use point x¢ = (z¢,yc) € R? and then we consider

§ = (wc_% ye — Vs ) (3.1.6)

xc — XS|’ Ixc — X

Then we approximate the normal and tangential derivatives in (3.1.3)) by

a)

Figure 3.1.1: Illustration of the 2D computational grid for an approximation of the
oblique derivative. a) xp denotes position vector of the center of volume p. b) Tp
denotes the value of the disturbing potential in the center of finite volume p. Vector ¢
denote tangent vector and 7 the normal vector to I'.

b)
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or Ts —1Tp

on  |xs—xp|’
OT  Tyo— T
ot [Xws — Xes|’

where values T),s, Ty are defined by

Tp+Tw +Ts+ Tws

Tws = 4 y
T Tp+Tr +1Ts+1Tgs
€Es 4 .

If we put these approximations into (3.1.3)) we get a discrete form of the oblique deri-

vative BC (|1.3.24)):

(t,8) = dg. (3.1.7)

These equations are incorporated into the FVM linear system which is then solved.

3.1.2 3D case

We follow the similar way as was presented in 2D case, i.e. we start a by splitting the

gradient in (|1.3.24)) into one normal and two tangential directions

VT = (VT,iyi + (VT,t1)t1 + (VT t3)ty = %ﬁ - a—t Py —t, (3.1.8)
2

where 7 is the normal vector and ¢;, ¢y are linearly independent tangent vectors to

' C 92 C R3. Then we put (3.1.8) into (1.3.24) to obtain

8T 8Tq oT - oT - oT
VT, — —to, + t1,8) + —=(to, 3.1.9
( 5) = <8 (‘%1 8 2,8) = <”§> 8t<1§> 8t<2§> ( )

1 2
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and the BC (|1.3.24)) is transformed into the form

oT oT .
27 {8 + - e = (11, 5) + <t2,§> (3.1.10)

We set approximations of normal and tangent vectors

o= Ip —Tp 7 Yp —Yp ’ ZD — Rp (3.1.11)
xp —xp|" [xp —xp|" [xp — xp|

t—’ o ( Lend — Twsd Yend — Ywsd Zend — Rwsd ) (3 1 12)

1 = .
|Xend - std’ ’ ‘Xend - std| ’ |Xend - std|

t—’ o ( LTwnd — Lesd Yuwnd — Yesd Zwnd — Resd ) (3 1 13)

9 = .
|Xwnd - Xesd’ ’ ‘Xwnd - Xesd’ ’ |Xumd - Xesd‘

where xp = (zp,yp, 2p), Xp are the coordinates of the added representative points and
Xends Xwsds Xesd ald Xyng are the coordinates of the points on the bottom boundary I,
see Fig. In our testing numerical experiments, we consider the oblique vector in

the form

§ = (xc_‘”%yc_yd, zC_Zd), (3.1.14)
Ixc —x4|" [xc — x4l |xc — %4

where x¢ is the point x¢ = (2¢, yc, 2c) € R®. By Tp we denote the approximate value

of the solution 7" in the finite volume P and we approximate the normal and tangential

derivatives in (3.1.10) by

or _ Ip—Tp (3.1.15)
on Ixp — xp|’ o
O Tena = Tust. (3.1.16)
at—l’ |Xend - std| ’ o
O T = Tt (3.1.17)
86 ’Xwnd - Xesd‘ ’ o
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a)

Figure 3.1.2: Tllustration of the 3D computational grid for an approximation of the
oblique derivative. a) xp denotes position vector of the center of volume p. b) Tp
denotes the value of the disturbing potential in the center of finite volume p. Vectors
¢ and ¢ denote linearly independent tangent vectors to I' and 7 the normal vector to
I.

where values Tn4, Tend, Twsd, Tesq are defined by

T  Tp+Tn+Tw +Tyw +Tp +Ton + Tpw + Toyw
wnd — 9

8
T Tp+Tn+Tg+Tng+Tp+Tpn +Tpoe +ToNE
end — y
8
T Tp+Ts+Tw +Tsw +Tp +Tps + Tpw + Tpsw
wsd — )
8
T Tp+Ts+Tg+Tsp +Tp +Tps+Tpr + Tbhsk
esd — .
8

If we put these approximations into (3.1.10) we get a discrete form of the 3D oblique
derivative BC ([1.3.24])

TD - TP - Tend - Twsd - Twnd - Tesd =
VT,S ~ —(N, S +—t,$ + t,S :(Sg 3.1.18
< 4> |XD - XP‘ < 4‘> ’Xend - std‘ < ! ﬁ> ‘Xwnd - Xesd’ < 2 H) ( )

These equations are incorporated into the FVM linear system which is then solved
by a direct solver in the system Mathematica or by the Bi-CGSTAB solver in our C

language program.

29



3.2 Numerical experiments using the central scheme

In this section, we present several numerical experiments which were done to test the
proposed central numerical scheme. The numerical results have been compared with
the exact solution. In Tables the Ly(Q2)-norm of differences between the exact
and numerical solutions and EOC of the methods are presented. In experiments with
real data we compare solution to the oblique derivative FGBVP using central scheme

with solution of the Neumann-FGBVP.

3.2.1 2D Case

Experiment 3.2.1. In the numerical experiments of 2D case, the annulus between two
circles with radii Ry = 1m and R, = 2m has been used as a computational domain.
As the Dirichlet BC on the upper boundary, the chosen exact solution of
(1.3.23)) in the form T* = —logr, where r is the distance from the point mass source
xc = (0.5,0.35), i.e. r = |x — X¢|, has been applied. As the oblique derivative BC on
the bottom boundary, derivative of this exact solution, which is equal to 1/r, has been
considered. The plot of the solution to the BVP with the Neumann BC is depicted in
Figure a). The results of the BVP with the oblique derivative BC can be bound
in Table and in Figure b). One can observe that the proposed approach is

second order accurate.

Experiment 3.2.2. For the second numerical experiment we have the same compu-
tational domain and BC on the upper boundary as in the previous experiment. The
azimuth given by the original vector s7, the unit gradient vector of the exact solution
computed by (3.1.6)), has been modified by user chosen rotation angle « to create a new
vector s, see Fig. For this experiment we have chosen o = 20°. The coordinates

of the point mass source have been xo = (—0.5,0.6). The Ly(Q)-norm of differences
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Central scheme
1 X Ny ||T* — T||L2(Q)‘EOC
8x2 0.028261 -
16x4 0.005400 |2.38
32%8 0.001113 |2.27
64x16| 0.000263 |2.08
128%x32| 0.000064 |2.01
256x64 0.000014 |2.02

Table 3.2: The Ly(£2)-norm and the EOC for the Ezp. with the oblique derivative
BC computed with the shifted point mass source x¢ = (0.5, 0.35).

Figure 3.2.1: Graphs of the 2D solution to BVP with a) the Neumann BC b) the
oblique derivative BC.

between the exact and numerical solutions and the EOC of the method are shown in

Table B.3]

We can see that also in case when the oblique vector does not have the same direction

as the gradient of the solution, the proposed approach is second order accurate.

3.2.2 3D Case

Experiment 3.2.3. In 3D numerical experiments, as a computational domain a tesser-
oid bounded by two concentric spheres with radii Ry = 1 m and R, = 2m, and a coaxial
cone with dimension (0, 7/4) x (0, 7 /4) has been used. As the Dirichlet BC (1.3.25]), the
exact solution of in the form 7% = 1/r on the upper and the side boundaries,

has been prescribed. As the oblique derivative BC on the bottom boundary, derivative
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Figure 3.2.2: Tllustration of creating s by rotating of s1 in 2D on the bottom boundary
I.

Central scheme
Ny X Ng ||T* — T||L2(Q)‘EOC
8x2 | 0.412322 | -
16x4 0.030709 |3.74
32%8 0.005261 2.54
64x16| 0.001076 |2.28
128%x32| 0.000244 |2.14
256x64| 0.000057 |2.09

Table 3.3: The Ly(£2)-norm and the EOC for the Ezp. with the oblique derivative
BC when the oblique vector s does not have direction of the solution gradient.

of this exact solution which is equal to —1/r? has been applied. The point mass source

has been x¢ = (—0.2,0.1,0.25). The result can be seen in Table [3.4]

Experiment 3.2.4. For the second theoretical experiment, we have the same BCs
on the upper and the side boundaries as in the previous one. The azimuth given
by the original vector si, the unit gradient vector of the exact solution computed by
, has been modified by user chosen angle a to create a new vector s. For
this experiment we have chosen a = 20°. The coordinates of the point mass source
have been x¢ = (0.3, —0.2,0.1). The Ly(£2)-norm of differences between the exact and
numerical solutions and the EOC of the method are shown in Table 3.5l We see that

the method is second order accurate also in this case.
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Central scheme
ny X ny X ngl|||T™ — T”LQ(Q)‘EOC
4x4x2 0.028622 -

8x8x4 0.006882 [2.05
16x16x8 0.001450 [2.24
32x32x16 0.000336 [2.10
64x64x32 0.000081 [2.05

128128 x64| 0.000019 |2.02

Table 3.4: The Ly(€2)-norm and the EOC for the Ezp. with oblique derivative BC
computed from shifted point mass source x¢c = (—0.2,0.1,0.05).

Central scheme
ny X ng X ngl[|[T* — T £,)|EOC
Ax4x2 0.142463 | -

8x8x4 0.022761 2.64
16x16x8 0.002728 |3.06
32x32x16 0.000586 |2.21
64x64x32 0.000137 |2.08

128 x128x64| 0.000033 |2.04

Table 3.5: The Ly(€Q2)-norm and the EOC for the Ezxp. with the oblique derivative
BC when the oblique vector § does not have direction of the solution gradient.
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3.2.3 3D numerical experiments with real data

Experiment 3.2.5. In case of global gravity field modelling we present the high-
resolution gravity field modelling using real geodetic data. Computational domain and
input data were the same as in Fxperiment To calculate the oblique derivative
vector, the ellipsoidal heights above the WGS84 have been generated from SRTM30 [5].
In Table 3.6 we can see the statistical characteristics of residuals between the solution
of the FGBVP with the Neumann BC and FGBVP with the oblique derivative BC and

disturbing potential generated from EGM2008.

We can see the improvement in the mean value of residual and standard deviation

in lands areas when taking the oblique derivative BC into account, see Table [3.6

Fig. 323}

Statistics for res = T(EGMO08) - T(FVM _e) [m?s™?]
Neumann BC oblique derivative BC
TOTAL| SEA [LAND|TOTAL| SEA [LAND

Mean value [-0.0380|-0.0031|-0.1284]-0.0364 |-0.0031}-0.1136
Max. value | 3.2781 [1.7230|3.2781 || 2.0680 |1.72302.0680
Min. value |-3.7383 |-1.4920-3.7383||-2.5620 |-1.4920}-2.5620
St. deviation| 0.1832 [0.1170{0.2811 || 0.1699 {0.11700.2515

Table 3.6: Earth: Statistics of residuals T[m?s™?] on the bottom boundary I' between
solutions to the GBVP with the oblique derivative BC and the Neumann BC.

Experiment 3.2.6. The local numerical experiment has dealt with the oblique deri-
vative FGBVP above Slovakia similarly as Experiment [2.2.5] Input data was the same
as in Frperiment Again, to calculate the oblique vector, the ellipsoidal heights
above the WGS84 have been generated from SRTM30. The residuals between solutions
to the FGBVP with the Neumann BC and the FGBVP with the oblique derivative BC
can be seen in Fig. . The result of the GPS/leveling test at 61 points is presented
in Table 3.7 The standard deviation of residuals at these GPS/levelling points in the
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Figure 3.2.3: Earth: Differences T[m?.s7?] between solutions to the GBVP with the
oblique derivative BC and the Neumann BC.

FVM
Neumann BC|ob1ique derivative BC EGM2008
Min. value 0.045 0.123 0.301
Mean value 0.232 0.274 0.437
Max. value 0.393 0.419 0.584
St. deviation 0.076 0.059 0.043

Table 3.7: SR: The GPS/leveling test [m] at 61 points in area of Slovakia.

case of the FGBVP with the Neumann BC is 7.6 cm, while in the case of the BVP
with the oblique derivative BC is only 5.9 em. Moreover, such a standard deviation is

lower than the standard deviation of solutions obtained by the approaches based on

the BEM or the FEM (see Table in the previous Chapter).

3.2.4 A possible problems arising in the central scheme

In these numerical experiments we illustrate a possible problematic behaviour of the

central scheme.
Experiment 3.2.7. For 2D numerical experiment we have the same computational
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Figure 3.2.4: SR: The differences in quasigeoidal heights ([m] obtained as a solution
to the FGBVP with the oblique derivative BC and solution to the FGBVP with the
Neumann BC.

domain and BC on the upper boundary as in Ezperiment The azimuth given by
the original vector s; has been modified by angle « to create a new vector s, for more
details see Ezperiment Moreover, to simulate the hill-valley-hill behaviour, we
have multiplied this angle a by +1, i.e. when the value o has been added to azimuth
given by one vector, value —a has been added to adjacent azimuths, see Fig. [3.2.5
For this experiment we have chosen o = 20°. The coordinates of the point mass
source have been x¢c = (0.5,0.6). The Lo(2)-norm of differences between the exact and
numerical solutions and EOC of the method are shown in Table One can observe
high fluctuations in EOC in case of Ly(Q2) as well as M AX(I')-norm which are caused

by crossing of adjacent vectors, see Fig. [3.2.5

Experiment 3.2.8. For 3D numerical experiment we have the same computational
domain and BCs on the upper and the side boundaries as Ezperiment and sim-
ilarly to 2D case, the azimuth given by the original vector s; has been again modi-

fied by angle £a = 20° to create a new vector §. The point mass source has been
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Central scheme

ny X Nal|||7* — THLZ(Q)‘EOC‘HT* = Tllarax ) EOC
8x2 | 0.137785 | - 0.629013 -
16x4 | 0.273223 [-0.98| 0.447520 [0.49
32x8 | 0.073970 |1.88| 0.073060 |2.61
64x16 | 0.002050 |5.17| 0.014215 |2.38

128 x32| 0.001169 [0.80| 0.006873 |1.04

256x64| 0.000402 [1.53| 0.002212 |1.62

Table 3.8: The Ly(Q2)-norm, the M AX (I')-norm and the EOC for the Ezp. with
the oblique derivative BC when the oblique vector s does not have direction of the
solution gradient.

Figure 3.2.5: Tllustration of creating s by rotating of s; by an angle £« in 2D case.

xc = (0.1,—0.2,0.1). The Ly(2)-norm of differences between the exact and numer-
ical solutions and EOC of the method are shown in Table 3.9. One can observe the
same behaviour as was obtained in 2D case, i.e., the EOC varies for both norms. This

drawback is again caused by the crossing of the adjacent oblique vectors.

3.3 The up-wind scheme for solving oblique derivative

BVP

In this section we discuss a new point of view of the oblique derivative BC (|1.3.24]) and

we treat it as an advection equation.
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Central scheme
ny X ng X ng||T* *THLZ(Q)‘EOC‘HT* —Tllarax ) EOC
8x8x4 0.061529 | - 0.351144 -
16x16x8 | 0.146351 |-1.25| 0.209212 |0.75
32x32x16 | 0.058753 [1.31| 0.050549 |2.05
64x64x32 | 0.008090 [2.86| 0.053722 |[2.64
128x128x64| 0.004520 [0.83| 0.024245 |0.84

Table 3.9: The Ly(Q2)-norm, the M AX (I')-norm and the EOC for the Ezp. with
oblique derivative BC when the oblique vector s does not have direction of the solution
gradient.

Let us rewrite (1.3.24)) in the formally equivalent form
<VT,§>—-<TV,5>=dg. (3.3.1)

We add one row of volumes under the bottom boundary, see Fig. and integrate
(3-3.1)) over one of the added finite volume p

/<VT,§> dx—/<TV,§> dx:/égdsv. (3.3.2)
p p p

Using a constant representation of the solution 7" on the finite volume p denoted by T,
and applying the divergence theorem to the left-hand side of the equation (3.3.2)) we

obtain

Z/T < 8Ty > ds—z /<snpq> ds-/dgdx (3.3.3)

geN(p geN(p)

Denoting a constant representative value of the solution on the interface e,, by T,, and

a measure of the finite volume p by m(p) yields

Z /<snpq> ds—z /<snpq> ds = 6g m(p). (3.3.4)

geN(p geN(p
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When we denote

Spg = / < 8,1y > ds, (3.3.5)
dp

we finally obtain the balance law in the form

Z Spg(Tpg — Tp) = 0g m(p). (3.3.6)

geN(p)

In our approach the upwind principle is used where we define

Ty = T, if 5,,>0, (3.3.7)
T,y = T, if 35,,<0, (3.3.8)

which correspond to the inflow part to the finite volume p (5,, < 0) and outflow part
to the finite volume p (5,, > 0). The most natural choice for reconstructions 7, and

T, is given by

= T, (3.3.9)

T, = T, (3.3.10)

Then the final form of an approximation to the oblique derivative BC ((1.3.24]) can be

written as

Z Spa(Ty — 1) = o9 m(p), (3.3.11)

q€N(p)™

where N(p)™ is a set of neighbours at the inflow boundaries of the finite volume p.

3.4 Numerical experiments using the up-wind scheme

In this section, we present several numerical experiments which were performed in order

to test the proposed up-wind scheme.
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Figure 3.3.1: Tllustration of the 2D FVM grid. The dashed lines denote the boundaries
of added finite volumes, by blue colour is depicted the volume of interest and by green
its neighbours. The vectors § are depicted by red.

Up-wind scheme Central scheme

Ny X Na||IT* - THLQ(Q)‘EOC‘HT* —Tllpax@)| EOC||IIT* — THLQ(Q)‘EOC‘”T* —Tllpax )| EOC
8x2 | 0.043461 | - 0.137448 - 0.028261 | - 0.071431 -
16x4 | 0.012002 |1.85] 0.038109 [1.95|| 0.005400 [2.38] 0.009351 |2.93
32x8 | 0.004297 |1.48| 0.014736 |1.37|| 0.001113 |2.27| 0.002370 |1.98

64x16 | 0.001794 11.26] 0.006325 |1.26|| 0.000263 (2.08| 0.000748 |1.66

128%32| 0.000816 |1.10{ 0.002929 |1.11)] 0.000064 [2.01| 0.000260 |1.52

256 x64| 0.000389 (1.06| 0.001409 |1.05]| 0.000014 |2.02] 0.000102 |[1.34

Table 3.10: The Ly(Q2)-norm, M AX(I')-norm and the EOC for the Fzp. and
Ezp. with the oblique derivative BC computed from shifted point mass source
xc = (0.5,0.35).

3.4.1 2D Case

Experiment 3.4.1. In the first experiment, we have considered the oblique derivative
BC on the bottom boundary,the BCs on the upper boundary as in FEzperi-
ment . The point mass source has been shifted to the point xo = (0.5,0.35).
The comparison of central scheme and up-wind scheme can be found in Table [3.10
One can observe that the Lo(Q2) and M AX(I') norms in case of up-wind scheme are
approximately of first order. We can also observe the error in M AX (I')-norm of the

central scheme decreases its values also to 1.
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Up-wind scheme Central scheme

ny X Nal|ll7* — THLZ(Q)‘EOC ‘HT* =Tl pax @) |EOC||IT* — THLZ(Q)‘ EOC ‘HT* = Tlprax )| EOC
8&8x2 | 0.297626 | - 0.745665 - 0.137785 | - 0.6290 -
16x4 | 0.131778 [1.17) 0.298533 |1.32| 0.273223 |-0.98] 0.447520 0.49
32x8 | 0.045405 [1.53| 0.120554 |1.31|] 0.073970 |1.88| 0.073060 |2.61
64x16 | 0.017239 [1.39| 0.0534402 |1.17|| 0.002050 [5.17| 0.014215 |2.38
128%32| 0.007523 |1.19| 0.021405 [1.33|| 0.001169 [0.80| 0.006873 |1.04
256x64] 0.003536 [1.08| 0.009175 [1.21] 0.000402 |1.53| 0.002212 |[1.62

Table 3.11: The Lo(2)-norm, MAX(I')-norm and the EOC for the Exp. and
Exp. when the oblique vector § does not have direction of the solution gradient.

Experiment 3.4.2. For the second 2D numerical experiment we have chosen a com-
parison between the up-wind and central scheme presented in Ezxperiment As
we can see in Table the EOC, Ly(Q2)-norm and M AX (T')-norm for the up-wind

method remains stable while the central scheme does not.

3.4.2 3D Case

Experiment 3.4.3. In 3D experiments, we have also compared the central and up-
wind scheme. We have the same computation domain, BCs on the upper and the side
boundaries as in Fzperiment The point mass source has been shifted to point
xc = (—0.2,0.1,0.25). The comparison of solutions obtained by implementing the
central and up-wind scheme is presented in Table [3.12

We can see the same behaviour as was observed in 2D experiments, i.e. both methods
are stable. Although the EOC for Lo-norm in case of up-wind scheme is less then the

EOC for central one. On the other hand in case of the EOC for M AX(I')-norm, the

value for central scheme is less than 2.

Experiment 3.4.4. For the last 3D numerical experiment we choose comparison

between two our method on Experiment Results are shown in Table [3.13
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Up-wind scheme Central scheme
np X ng X ng||T* *THLZ(Q)‘EOC‘HT* = Tllprax @) |EOC ||[IT* *THLQ(Q)‘EOC‘HT* —Tllprax )| EOC
4x4x2 0.106407 | - 0.113491 - || 0.028622 | - 0.044464 -
8x8x4 0.036369 [1.54| 0.0484544 [1.22|| 0.006882 |2.05| 0.008890 |2.32
16x16x8 | 0.014450 [1.33| 0.024185 |[1.01]] 0.001450 |2.24| 0.003150 |1.49
32x32x16 | 0.006244 |1.21| 0.012070 |1.01]| 0.000336 |2.10| 0.001083 [1.54
64x64x32 | 0.002895 |1.10] 0.006010 |1.00{| 0.000081 |2.05] 0.000334 |1.69
128 x128x64| 0.001392 |1.05] 0.002865 |1.06|| 0.000019 |2.02| 0.000105 [1.66

Table 3.12: The Lo(2)-norm, MAX(I')-norm and the EOC for the Exp. and
Ezp. with the oblique derivative BC experiment with the shifted point mass
source x¢ = (—0.2,0.1,0.25).

One can observe that in both experiments in 3D, either central or up-wind scheme

shows the same behaviour as was obtained in experiments in 2D.

Up-wind scheme Central scheme
1 X Mg X NI = Tl 0| BOCIIT* — Tllysax | BOC

|7 — THLQ(Q)‘ EOC ‘HT* —Tllaprax )| EOC
8x8x4 0.177728 | - 0.362022 - 0.061529 | - 0.3511 -
16x16x8 | 0.059441 [1.58] 0.177806 |1.03|| 0.146351 |-1.25| 0.209212 1|0.75
32x32x16 | 0.022542 [1.39| 0.083563 |1.08|| 0.058753 [1.31| 0.050549 |2.05
64x64x32 | 0.010819 [1.05| 0.041756 [1.00|| 0.008090 [2.86| 0.053722 |2.64
128%x128x64| 0.005143 [1.07| 0.019506 |1.13] 0.004520 |0.83| 0.024245 0.84

Table 3.13: The Ly(2)-norm, MAX(I')-norm and the EOC for the Exp. and
Exp. with the 3D oblique derivative BC when the oblique vector § does not have
direction of the solution gradient.

3.4.3 3D numerical experiments with real data

Experiment 3.4.5. In case of global gravity field modelling we compare the solu-
tion obtained by the up-wind scheme with the solution achieved by the central scheme
presented in Ezperiment and solution obtained from solving the Neumann-FGBVP
presented in Ezperiment [2.2.4] Results can be seen in Table [3.14]and difference between

solutions of central and up-wind scheme was depicted in Figure [3.4.1]

One can observe the comparable statistics for central and up-wind approaches, i.e.
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Statistics for res = T(EGMO08) - T(FVM) [m?s™?]

Neumann BC oblique derivative BC

TOTAL| SEA |[LAND|TOTAL| SEA [LAND
central scheme up-wind scheme

Min value |-3.7383|-1.4920 |-3.7383||-2.5620 |-1.4920|-2.5620|| -3.3150 |-1.4920|-3.3150
Mean value [-0.0380]-0.00319}-0.1284//-0.0364 |-0.0031|-0.1136|[-0.0372 |-0.0031|-0.1165
Max value | 3.2781 | 1.7230 |3.2781 || 2.0680 |1.7230|2.0680 || 2.6390 |1.7230 |2.6390
St. deviation| 0.1832 | 0.1170 |0.2811 0.1699 0.1170(0.2515| 0.1801 [0.1170{0.2655

TOTAL| SEA |LAND

Table 3.14: Earth: Statistics of residuals T[m?s~2] on the bottom boundary T.

0.30
0.25
0.20
0.15
0.10
0.05
-0.00
-0.05
-0.10
-0.15
-0.20
-0.25
-0.30

Figure 3.4.1: Earth: Residuals of the disturbing potential T'[m?.s~2] between the FVM
solution obtained by implementing the central scheme and the FVM solution obtained
by implementing up-wind scheme.

the both schemes can be used in practise approach.

Experiment 3.4.6. In case of local gravity field modelling in area of Slovakia we again
compare solution obtained by the up-wind scheme with the central scheme solution
presented in Ezperiment and the solution obtained by solving of the Neumann-
FGBVP presented in Ezperiment 2.2.5

Results can be seen in Table |3.15] and difference between the central and the up-
wind scheme is depicted in Figure One can observe that solutions achieved by

implementing the central and up-wind scheme are very similar to each other, they differ
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Figure 3.4.2: SR: Differences in the quasigeoidal heights ([m| between the up-wind
scheme and the central scheme.

only in several millimeters.

FVM
oblique derivative BC EGM2008
central scheme|up—wind scheme

Neumann BC

Min value 0.045 0.123 0.131 0.301
Mean value 0.232 0.274 0.279 0.437
Max value 0.393 0.419 0.421 0.584
St. deviation 0.076 0.059 0.058 0.043

Table 3.15: SR: The GPS/leveling test [m] at 61 points in area of Slovakia.
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Chapter 4

On an iterative approach to solving
the non-linear geodetic
boundary-value problem

Finally we present the numerical solution of the NFGBVP defined in the bounded

domain, i.e.

AT = 0in €, (4.0.1)
IV(T+U)| = gonT, (4.0.2)
T = TSAT on 0F) —T. (403)

The iterative procedure for solving the NFGBVP ({4.0.1))-(4.0.3) is defined as follows,

for detailed formulation see Chapter 1,

AT = 0in Q, (4.0.4)
<VT" "> = g— < VU 7" > onT, (4.0.5)
T = Tsap on 0Q —T, (4.0.6)

where we solve in every iteration the oblique derivative GBVP for 77! with prescribed

oblique derivative vector ™ computed by (1.3.13)).

Since we solve the problem iteratively, we need a stopping criterion. To that goal
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we use a difference of two successive iterations and stop the procedure, if in each point
the inequality
" — T < g, (4.0.7)

holds, where € means a user-specified small real number.

This formulation of the NFGBVP and its iterative solution will by published in [34].

4.1 Numerical experiments

In these numerical experiments, we compare iterative solutions obtained by the up-wind

and the central schemes.

4.1.1 2D Case

Experiment 4.1.1. Computational domain and BC on upper boundary is the same
as in Ezperiment [3.2.2 The point mass source has been x¢ = (0.35,0.25). We start
our iterations by solving the BVP with oblique BC ({£.0.6)by the methods introduced
in the previous Chapter. The initial oblique vector #° has been given by rotation of
s1 (see Experiment by angle a = 5°, see Fig. . For this experiment we
have chosen stoping criterium ¢ = 102 and the maximum iteration Iterys,, = 40.
For a comparison between the central and the up-wind scheme see Table [£.1, One can
observe oscillation of the central scheme in solution to the non-linear BVP, while the

up-wind scheme behaves stable, see Fig. [4.1.1]

4.1.2 3D Case

Experiment 4.1.2. In the first 3D experiment, the computational domain and BCs
on the upper and side boundaries are the same as in Fzperiment The point mass

source has been x, = (0.1,0.2,0.1) and the oblique vector v° has been given by rotation
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Iterative solution Iterative solution
Up-wind scheme Central scheme

ny X ng |IT* - T”Lg(ﬂ)‘EOC‘”T* - TH]\/IAX(I‘)‘EOC‘Iter~ N7 — THLQ(Q)‘ EOC ‘||T* - TH]MAX(F)‘ EOC ‘Iter

8x2 | 0.071137 | - 0.024393 - | 8] 0.008884 | - 0.038362 - |6
16x4 | 0.023921 [1.57] 0.0118496 |1.14 0.001072 |3.05| 0.002779 |3.78
32x8 | 0.009133 [1.38| 0.0052429 |1.06 0.000240 |2.15| 0.000583 |2.25
64x16 | 0.003915 |1.22] 0.002548 |1.04 0.000063 |1.92| 0.000153 |1.95
128x32 | 0.001805 [1.11| 0.001224 |1.15 0.000040 |0.62] 0.000038 [2.02
256x64| 0.000866 |1.05/ 0.000602 |1.01 0.000138 |-1.75| 0.000142 |-1.91/10
512x128| 0.000420 [1.04/ 0.000296 [1.02 0.002142 |-3.95| 0.001577 |-3.46|20

© O = Ot

QU = O O U O

Table 4.1: The Ly(€2)-norm, M AX (I')-norm and the EOC for the Ezp. m

Figure 4.1.1: a) Illustration of possible oscillation in central scheme iterative solution.
b) Hlustration of the solution obtained by up-wind scheme, Ezp.
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of 51 by angle o = 5°. For this experiment we have chosen ¢ = 107 and the maximum
iteration Iter);,, = 40. For a comparison between the central and the up-wind scheme,

see Table [4.2l We can observe decrease of the EOC for the central scheme.

Iterative solution Iterative solution
Up-wind scheme Central scheme

N1 X Ny X N JIT" = Tllae)| BOC|i7* = 7ilas ey | BOC [tter I = Tl 0| EOC] 17 = 71101 ey | BOC ter

§x8x4 | 0.03583 | - | 0.027127 | - | 8| 0.016172 | - | 0.016734 | - |7
16x16x8 | 0.017597 [1.17] 0.012744 |1.08 0.004119 |1.97| 0.002685 |2.63| 7
32x32x16 | 0.007895 |1.15] 0.005708 |1.15 0.000963 |2.09| 0.000635 [2.07
64x64x32 | 0.003657 [1.11| 0.002677 |1.01 0.000229 |2.07| 0.000347 |0.87
128 x128x64| 0.001753 |1.06] 0.001140 [1.08 0.000056 |2.02] 0.000266 |0.38
256x256x128| 0.000842 (1.05| 0.000546 [1.06 0.000014 |2.03] 0.000194 |0.45

S Ot Ot Ot Oy
O 0o O oo

Table 4.2: The Ly(Q2)-norm, M AX(I')-norm and the EOC for the Ezp. 4.1.2|

4.1.3 3D numerical experiments with real data

Experiment 4.1.3. With respect to results obtained in the above numerical experi-
ments, in experiments with the real data we use the up-wind scheme only. The global
numerical experiment has dealt with the high-resolution global gravity field model-
ling in the computational domain €2 bounded by the bottom boundary approximat-
ing the real Earth’s surface created by using heights generated from SRTM30 PLUS
and by a surface at height of 240 km above WGS84. The number of divisions was
4320 x 2160 x 600 leading to the resolution 5" x 5 x 400m. We start the iterations
by solving the linearized FGBVP consisting of gravity disturbances interpolated from
the DTU10-GRAV applied on the bottom boundary. The total gravity ¢ has been
calculated as a sum of the surface gravity disturbance and the normal gravity. On the
upper boundary the disturbing potential generated from GOCOO03s was prescribed.
The stopping criterium was € = 1072[m?s™ 2| and 10 iterations were needed to earn it.
The FVM solutions obtained in each iteration are compared with EGM2008. Statistical

characteristics of residuals are presented in Table 4.3] Figure depicts differences
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Figure 4.1.2: Earth: Differences in T[m?s~2] between 10"* and 1% iteration, represent-
ing the numerically obtained linearization error.

Min. value | Mean value | Max. value | St. dev.
15t | 10th 158t | loth 15t | loth 158t | 10th
TOTAL-3.3150[-2.0760[-0.0372|-0.0347|2.6390|1.3330/0.1801|0.1581

SEA  |-1.4920/-1.0280|-0.0031-0.0031/2.0820(1.2270|0.1170|0.1081
LAND |-3.3150[-2.0760|-0.1165|-0.1082(2.6390|1.3330(0.2655|0.2358
Table 4.3: Earth: Statistics of residuals [m?s~?] between the disturbing potential ob-
tained by solving the NFGBVP and the disturbing potential generated from EGM2008
in the global experiment.

Iter.

between the 10" and 1°¢ iteration. They represent the numerically obtained linear-
ization error in the linearized FGBVP. One can observe that our iterative approach
improves solution mainly in areas of high mountains (e.g. in Himalaya region they
reach 20 cm) as well as in areas along the ocean trenches (varying from —2.5c¢m to

2.5¢m).

Experiment 4.1.4. The local numerical experiment was performed in the domain
above Slovakia bounded by ¢ € (47.0°,50.5°) and A € (16.0°,23.0°). The bottom
boundary was created using SRT'M30 PLUS and the upper boundary was at the height

of 240 km above the WGS84. The resolution with respect to latitude and longitude
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Figure 4.1.3: SR: Differences in ([m] between the 10" and 1% iteration obtained by
solving the NSFGBVP.

was 30”7 x 20”. Again we started our computations by solving the linearized FGBVP
where the surface gravity disturbances were applied on the bottom boundary I'. They
were generated from an available dataset of terrestrial gravity data in Slovakia while
ellipsoidal heights of gravimetric measurements were computed from levelling heights
using EGM2008. The total gravity g has been calculated as a sum of the surface gravity
disturbance and the normal gravity. On the upper and side boundaries, the disturbing
potential generated from the GOCOO03s was prescribed. Results obtain by up-wind
scheme are presented in Table [1.4] and Fig. One can observe an improvement
in the standard deviation for subsequent iterations in solving the NFGBVP (Tab.
as well as the convergence to EGM2008. The differences between the 10* and 1%
iteration, which represent the numerically obtained linearization error, reach up to

10 em.
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1% iter.[5™ iter. 8" iter.[10"" iter.[EGM2008
Min. value | 0.151 [ 0.209 [ 0.229 | 0.248 | 0.301
Mean value | 0.284 | 0.325 | 0.348 | 0.352 0.437
Max. value | 0.422 | 0.459 | 0.476 | 0.493 | 0.584
St. deviation| 0.055 | 0.049 | 0.047 | 0.046 | 0.043

Table 4.4: SR: The GPS/levelling test [m] for different NFGBVP iterations at 61 points
in the area of Slovakia.

FVM
oblique derivative BC Iterative EGM2008
central schemelup-wind scheme|approach

Neumann BC

Min value 0.045 0.123 0.131 0.248 0.301
Mean value 0.232 0.274 0.279 0.352 0.437
Max value 0.393 0.419 0.421 0.493 0.584
St. deviation 0.076 0.059 0.059 0.046 0.043

Table 4.5: SR: The GPS/leveling test [m] at 61 points in area of Slovakia.
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Conclusions

In this dissertation thesis we have presented several approaches for solving geodetic

boundary value problems.

In Chapter 1 we have given a brief description of historical background of this
problem and we have presented a mathematical formulation of the problems which

have been numerically solved, namely

(i) the non-linear geodetic boundary value problem (GBVP) for the disturbing po-

tential,
(ii) the GBVP for the disturbing potential with the oblique derivative BC,

(iii) the GBVP for the disturbing potential with the Neumann BC.

In first part of Chapter 2 we have solved the FGBVP for disturbing potential with the
Neumann BC. We have described the finite volume method (FVM) approximation of
the Laplace equation together with transmissivity coefficients for spherical domains,
proposed in [I4]. In comparison to the previous approaches, a new FVM has been
developed for solving the problem in ellipsoidal domains. Parallel implementation of the
Bi-CGSTAB solver enabled us to solve huge experiments in "real" time. Chapter 2 ends
with numerical experiments where we have tested experimental order of convergence
(EOC) of proposed scheme. We have compared numerical solutions on the spherical and
ellipsoidal domain above Himalaya region and obtained all statistical characteristics
lower for ellipsoidal domains. Then we have used ellipsoidal computational domain

to compute Earth global gravity field and we have showed that standard deviation of
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our result and EGM2008 model is in the range of 2cm. It indicates high accuracy of
our method. We have also performed local experiment in Slovakia and compared our
solution with the GPS/levelling test. Such comparison has showed very good accuracy

of our results in comparison with other known methods.

In Chapter 3 we have introduced two methods for solving (ii). First method, called
the central scheme, is based on splitting of the gradient in normal and tangential dir-
ections and the second method, called the up-wind scheme, introduces the oblique
derivative BC as an advection equation and uses up-wind principle. By testing nu-
merically central scheme we showed its second order accuracy in several 2D and 3D
experiments in contrast with up-wind scheme which is first order accurate. In com-
parison with previous approach, presented in the Chapter 2, we have achieved better
accuracy of both methods in local as well in global gravity field modelling. The stand-
ard deviation of residuals at these GPS/levelling points in the case of the FGBVP with
the Neumann BC is 7.6 cm, while in the case of the FGBVP with the oblique derivative

BC is only 5.9 cm.

In last chapter we have proposed an iterative approach for solving (i). In the first it-
eration, the linearized FGBVP is solved together with the oblique derivative BC. Next
iterations treat its numerically obtained linearization error. The obtained numerical
results show that the error of the linearization can exceed several centimeters, mainly
in high mountainous areas and along ocean trenches. This indicates that for precise
gravity field modeling it is necessary to deal with the nonlinear geodetic BVPs avoid-
ing the linearization error. Presented numerical experiments show that the proposed
iterative approach converges and that the up-wind method is suitable for an iterative
solution. The standard deviation of residuals at these GPS/levelling points in case of

the solution to the non-linear FGBVP is only 4.6 cm.
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Resumé

Jednym z hlavnych cielov fyzikalnej geodézie je ucenie tiazového pola Zeme. 7 mate-
matického pohladu ide o rieSenie Laplaceovej rovnice pre poruchovy potencial mimo
Zeme. Ako okrajové podmienky na povrchu Zeme sa najcastejSie uvazujia Newtonove
podmienky, reprezentované anomaliami tiazového zrychlenia, alebo Neumannove pod-
mienky reprezentované poruchami tiazového zrychlenia. V predkladanej praci sme
nadviazali na vysledky publikované v |10, 14, 13| a zamerali sme sa na vyvoj novych
kone¢no-objemovych schém a pristupov k rieseniu problémov fyzikalnej geodézie. Tato

praca je rozdelena do $tyroch kapitol.

Prva kapitola. V prvej podkapitole uvadzame kratky historicky prehlad tykajtci
sa geodetickej okrajovej ulohy (GOU). Druha podkapitola zahffia zékladné matem-
atické vztahy pre skutocné, normélne a poruchové tiazové pole. Hlavnou ¢astou tretej

podkapitoly je formulacia GOU pre poruchovy potencial

AT = 0in ,

IV(T'+U)| = gnal.
Tiez uvazujeme, ze poruchovy potencial T' je regularny v nekonecne

T — 0 pre x — o0.
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Po rozpisani absolitnej hodnoty gradientu vo vSeobecnom tvare prepiSeme okrajovii
podmienku tak, aby ndm umoznila iteracné rieSenie tulohy, ktorému sa venujeme de-
tailnejSie v Stvrtej kapitole. Prvou iteraciou itera¢ného predpisu je tzv. linearizované
fixovana gravimetricka okrajova tloha [30} 22, 23, [10] 13] so sikmou derivaciou. Pre-
toze je rovnica pre poruchovy potenciadl definovana na nekonec¢nej oblasti, v kratkych
uvahach podavame moznosti konstrukcie ohranicenej oblasti 2 s odhadom chyb kto-
rych sa dopustame touto modifikdciou povodnej tlohy. Nésledne uvadzame formulaciu
modifikovanej GOU (tiez oznacovanej ako GOU so sikmou derivaciou) v ohraniGenej

oblasti

AT = 0in €,
<VT,§> = dgnal,

T = TSAT na 8Q—F,

a jej rieSeniu sa venujeme v tretej kapitole. Poslednou modifikaciou geodetickej okra-
jovej tlohy, ktord uvadzame, je prepis okrajovej podmienky cez projekciu Sikmého

smeru na norméalu k hranici

AT = 0in €,
orT

— = dg"onT
o g onT,

T = TSAT on 0f) —T.

Rieseniu tejto ulohy je venovana druhéa kapitola. V zavere prvej kapitoly st spomenuté

matematické metody, ktoré sa pouzivaji na rieSenie GOU.

Druha kapitola. Ako numericki metédu na rieSenie Laplaceovej rovnice sme si
vybrali metodu kone¢nych objemov, ktorej diskrétnemu prepisu na sférickej a nasledne

i eliptickej oblasti sme venovali zaciatok prvej ¢asti druhej kapitoly. Ako sme neskor
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ukézali na numerickych experimentoch, eliptickd aproximécia je na aproximéciu Zeme
vhodnejsia pretoZze nam umoziuje nam dosiahnut presnejSie rieSenie pre poruchovy
potencial. PretoZe rieSenie poruchového potencidlu je vypoctovo naro¢né iloha, v
d’alSej ¢asti sa venujeme optimalizacii vypoc¢tového procesu. Ako prvé zavadzame novy
paralelny riesi¢ Bi-CGSTAB, ktory v porovnani s najcastejSie pouzivanym riesi¢om
SOR, konverguje pre dané tdlohy radovo rychlejSie. Spolu s optimalizaciou spoésobu
paralelizacie s vyuzitim NUMA funkcii, sme schopni riesit vicsie tlohy za kratsi vy-
poctovy cas.

Poslednou ¢astou druhej kapitoly si numerické experimenty rozdelené na teoreticki
a prakticku ¢ast. Teoretické experimenty za¢iname testovanim chyby ohranicenia vy-
poctovej oblasti, ktorej velkost postupne menime. Mézeme vidiet, Ze chyba, ktora
vznik&d ohranicenim nekonecnej oblasti, klesa so zvacsujicim sa polomerom hornej
hranice oblasti. Zakonc¢enim teoretickych experimentov si testy experimentalneho radu
konvergencie, kde ukazujeme, 7ze navrhnutd metéda je druhého radu. Pre lokdlne ex-
perimenty sme zvolili oblast Himalaji a Slovenska. Na oblasti Himalaji ukazujeme
vhodnost volby eliptickej aproximacie a na globalnom a potom i lokdlnom experi-
mente na Slovensku demonstrujeme presnost vypoctovej metody v porovnani s mode-

lom EGM2008.

Tretia kapitola. Je venovana navrhu vhodnych algoritmov na riesenie GOU so
Sikmou derivaciou. Prva navrhovani numerickd schéma je zalozena na rozklade gradi-

entu do normélového a tangencidlneho smeru a jej prepisu do 2D

L . T OT.
a 3D
oT or - 0T .

—

VT = (VT,i)ii + (VT,i1)i1 + (VT, 3)t + ey g

i ot ol
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sa venujeme na zaciatku kapitoly. Nasledné teoretické numerické experimenty ukazuju,
ze tad konvergencie metdédy je rovny dvom. Pri experimentoch s redlnymi datami
ukazujeme lepSiu presnost v porovnani s rieSenim ulohy v prvej kapitole. V zévere
¢asti o centralnej schéme poukazujeme na mozné problémy pri rieSeni uloh pomocou
tejto aproximacie.

V druhej navrhovanej numerickej schéme predstavujeme okrajovii podmienku ako
advek¢ni rovnicu rieSentt pomocou up-wind schémy, ¢o ndm umoziuje jej prepisanie
do tvaru

<VT,§>—<TV,5§>=g.

Néaslednym pouzitim postupov zauzivanych v konecnych objemoch dostavame diskrétnu
podobu okrajovej podmienky, ktorda mé rovnané vlastnosti ako diskretizacia oblasti.
Pri numerickych experimentoch ukazujeme, 7e sice metéda je iba prvého radu no v
porovhani s centralnou schémou dosahuje porovnatelné vysledky. V zavere kapitoly

ukazujeme porovnanie i na realnych experimentoch.

Stvrta kapitola. V poslednej kapitole sa venujeme itera¢nému rieSeniu nelinedrnej
ulohy, kde v kazdej iteracii rieSime Sikmi GOU. Ako zastavovaciu podmienku itera-
¢ného procesu sme zvolili reziduum dvoch po sebe idtcich iteracii. Pretoze v kazdej iter-
acif rieSime $ikma GOU, na teoretickych experimentoch ukazujeme porovnanie dvoch
schém navrhnutych v predchédzajucej kapitole. Nakolko v predchadzajucej kapitole
sme ukézali, Ze obe navrhované metody na rieSenie §ikmej GOU dosahuji porovn-
atelné vysledky a v iteratnom predpise sa up-wind metdda sprava stabilnejSie pri ex-
perimentoch s realnymi datami, d’alej pouzivame iba tito metdédu. Ako sme ukazali v

realnych experimentoch iteraciami vieme vylep$it presnost rieSenia.

Zaver. V zavere uvadzame zhrnutie dosiahnutych vysledkov a zavere¢né porovnania

nahrnutych postupov.
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