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Abstract

The Wiener index (i.e., the total distance or the transmission num-
ber), defined as the sum of distances between all unordered pairs of
vertices in a graph, is one of the most popular molecular descriptors.
In this article we summarize some results, conjectures and problems
on this molecular descriptor, with emphasis on works we were involved
in.

1 Introduction

Having a molecule, if we represent atoms by vertices and bonds by edges, we
obtain a molecular graph, [87, 88]. Graph theoretic invariants of molecular
graphs, which predict properties of the corresponding molecule, are known as
topological indices. The oldest topological index is the Wiener index [107],
which was introduced in 1947 as the path number.

At first, the Wiener index was used for predicting the boiling points of
paraffins [107], but later a strong correlation between the Wiener index and
the chemical properties of a compound was found. Nowadays this index is a
tool used for preliminary screening of drug molecules [1]. The Wiener index
also predicts binding energy of protein-ligand complex at a preliminary stage.

Hence, the Wiener index was used by chemists decades before it attracted
attention of mathematicians. In fact, it was studied long time before the
branch of discrete mathematics, which is now known as Graph Theory, was
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developed. Many years after its introduction, the same quantity has been
studied and referred to by mathematicians as the gross status [48], the dis-
tance of graphs [29] and the transmission [93]. A great deal of knowledge on
the Wiener index is accumulated in several survey papers [13, 16, 24, 67, 109].
This paper is also of similar kind and it appears in a volume dedicated to A.
Graovac, whose wide research opus of mathematical chemistry includes also
works of the Wiener index, e.g., see [34, 84, 90, 99, 100].

Let d(u, v) denote the distance between vertices u and v inG. TheWiener
index of a graph G, denoted by W (G), is the sum of distances between all
(unordered) pairs of vertices of G

W (G) =
∑

{u,v}⊆V (G)

d(u, v). (1)

Though, the Wiener index is the most common topological index, nowa-
days we know over 200 topological indices used in chemistry. Here we men-
tion three of them, those, which can be considered as weighted versions of
the Wiener index.

For an edge e = ij, let ne(i) be the number of vertices of G being closer
to i than to j and let ne(j) be the number of vertices of G lying closer to j
than to i. The Szeged index of a graph G is defined by

Sz (G) =
∑

e=ij∈E(G)

ne(i)ne(j).

This invariant was introduced by Gutman [37] during his stay at the Attila
Jozsef University in Szeged, and he named it after this place.

In 1989, lead by the idea of characterizing the alkanes, Schultz [89] defined
a new index MTI(G) that is degree and distance based. Gutman decomposed
this index into two parts and called one of them Schultz index (of the first
kind), which is defined by

S(G) =
∑

{u,v}⊆V (G)

(d(u) + d(v)) d(u, v) ,

where d(v) denotes the degree of v. The same invariant was independently
and simultaneously introduced by Dobrynin and Kochetova [17].

Gutman [36] also introduced a new index,

Gut(G) =
∑

{u,v}⊆V (G)

d(u)d(v)d(u, v) ,

and named it the Schultz index of the second kind. Nowadays this index is
also known as the Gutman index.
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In this paper we consider mathematical aspects of the Wiener index.
This is not a typical survey. We summarize our mathematical work on this
molecular descriptor over the past years and, what is more important, we
integrate some conjectures, problems, thoughts, and ideas for possible future
work that we find interesting. We include also a couple of related open
problems that have been considered by other authors.

2 Some fundamental properties of Wiener in-

dex

Already in 1947, Wiener has shown that the Wiener index of a tree can
be decomposed into easily calculable edge–contributions. In what follows,
by n(G) we denote the number of vertices of G. Let F be a graph with p
components, T1, T2, . . . , Tp. Then we set

N2(F ) =
∑

1≤i<j≤p

n(Ti)n(Tj) .

If p = 1, that is if F is connected, then N2(F ) = 0.

Theorem 1 (Wiener, 1947). For a tree T the following holds

W (T ) =
∑

e∈E(T )

N2(T − e). (2)

Since T is a tree, for every edge e = ij of T , the forest T − e is comprised
of two components, one of size ne(i) and the other of size ne(j), which gives
N2(T − e) = ne(i)ne(j). Thus, one can restate (2) as

W (T ) =
∑

e=ij∈E(T )

ne(i)ne(j). (3)

So the Szeged and Wiener indices coincide on trees. In fact, the Szeged index
was defined from (3) by relaxing the condition that the graph is a tree.

In analogy to the classical Theorem 1, we have the following vertex version
(see [44]):

Theorem 2. Let T be a tree on n vertices. Then

W (T ) =
∑

v∈V (T )

N2(T − v) +

(

n

2

)

. (4)
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An interesting theorem of Doyle and Graver [26] is of a similar kind. Let
F be a graph with p components, T1, T2, . . . , Tp. Then we set

N3(F ) =
∑

1≤i<j<k≤p

n(Ti)n(Tj)n(Tk) .

Note that if p = 1 or p = 2, then N3(F ) = 0. Now we state their result,
moreover we give an alternative short proof in the spirit of combinatorial
countings, more precisely involving combinations of order 3.

Theorem 3 (Doyle and Graver). Let T be a tree on n vertices. Then

W (T ) +
∑

v∈V (T )

N3(T − v) =

(

n + 1

3

)

. (5)

Proof. Let V (T ) = {1, . . . , n} and let V ∗ = V (T ) ∪ {π}. For any path
P = a0a1a2 · · · ak in T with a0 < ak, assign the 3-set {a0, ai, ak} to the edge
aiai+1 for 1 ≤ i < k and {a0, ak, π} to the edge a0a1. So we assign k distinct
3-sets to a path P of length k. This way we assign all together W (T ) 3-sets.
For any non-assigned 3-set {a, b, c} (observe that π does not appear here) of
(

V ∗

3

)

, T has no path containing them so there is precisely one vertex v (their
median) that this 3-set contributes 1 to N3(T − v). As V ∗ is of size n + 1,
the claim is established.

It is well known that for trees on n vertices, the maximum Wiener index
is obtained for the path Pn, and the minimum for the star Sn. Thus, for
every tree T on n vertices we have

(n− 1)2 = W (Sn) ≤ W (T ) ≤ W (Pn) =

(

n+ 1

3

)

.

Since the distance between any two distinct vertices is at least one, among all
graphs on n vertices Kn has the smallest Wiener index. So for any connected
graph G on n vertices, it holds

(

n

2

)

= W (Kn) ≤ W (G) ≤ W (Pn) =

(

n+ 1

3

)

.

Note that the alternative proof of Theorem 3 gives us a new proof that
W (Pn) =

(

n+1
3

)

and that Pn is the extremal graph for the maximum. Among
2-connected graphs on n vertices the n-cycle has the largest Wiener index

W (Cn) =

{

n3

8
if n is even,

n3−n
8

if n is odd.
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3 Inverse Wiener index problem

In 1995 Gutman and Yeh [45] considered an inverse Wiener index problem.
They asked for which integers w there exist trees with Wiener index w, and
posed the following conjecture:

For all but finitely many integers w there exist trees with Wiener index w.
(6)

Inspired by the conjecture above, Lepović and Gutman [74] checked in-
tegers up to 1206 and found 49 integers that are not Wiener indices of trees.
In 2004, Ban, Bereg, and Mustafa [2] computationally proved that for all
integers w on the interval from 103 to 108 there exists a tree with Wiener
index w. Finally, in 2006, two proofs of the conjecture were published. First,
Wang and Yu [106] proved that for every w > 108 there exists a caterpillar
tree with Wiener index w. The second result is due to Wagner [101], who
proved that all integers but 49 are Wiener indices of trees with diameter at
most 4.

Surprisingly, it turns out that in most cases the inverse problem has many
solutions. Fink, Lužar and Škrekovski [30] showed that the following theorem
holds.

Theorem 4. There exists a function f(w) ∈ Ω( 4
√
w) such that for every

sufficiently large integer w there exist at least 2f(w) trees with Wiener index
w.

In [30] there is also proposed a constant time algorithm, which for a
given integer w returns a tree with diameter four and with Wiener index w.
It would be interesting to find a better lower bound on f(w) in Theorem 4.

However, beside caterpillars and trees with small diameter, it could be
interesting to find some other types of trees (or graphs) that solve the inverse
Wiener index problem. Li and Wang [75] considered this problem for pep-
toids, Wagner et. al [103] for molecular and so-called hexagon type graphs,
and Wagner [102] for graphs with small cyclomatic number.

Bereg and Wang [3] experimentally came to the observation that this
may hold for binary trees, as stated bellow. Moreover, they observed that
the conjecture may hold even when restricting to 2-trees, and even more,
they where not able to disprove it for 1-trees (a binary tree of height h is a
k-tree if every vertex of depth less than h− k has precisely two children).

Conjecture 5. Except for some finite set, every positive integer is the Wiener
index of a binary tree.

In [73] was considered the following problem, so called the Wiener inverse
interval problem.
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Problem 6. For given n, find all values w which are Wiener indices of
graphs (trees) on n vertices.

Regarding the above problem, let WG(n) and WT(n) be the correspond-
ing sets of values w for graphs and trees on n vertices, respectively. Both
sets have

(

n+1
3

)

for the maximum element. The smallest value in WG(n) is
(

n
2

)

and in WT(n) it is (n − 1)2. In [73], the size of the set WG(n) was
considered, and it was shown that it is of order 1

6
n3 + O (n2). In the same

paper the following problems were stated.

Conjecture 7. The cardinality of WG(n) is of order 1
6
n3 − 1

2
n2 +Θ(n).

Conjecture 8. The cardinality of WT(n) equals 1
6
n3 +Θ (n2).

In fact in [73] it was shown that the length of the largest interval of
integers which is fully contained in WG(n) is of size 1

6
n3+O (n2). Regarding

the length of the largest interval when only trees are considered, the following
is conjectured.

Conjecture 9. In the set WT(n), the cardinality of the largest interval of
integers equals Θ (n3).

4 Graphs with prescribed minimum/maximum

degree

Here we consider extremal values of the Wiener index in some subclasses of
the class of all graphs on n vertices. Recall that the maximum degree of a
graph G, denoted by ∆(G), and the minimum degree of a graph, denoted by
δ(G), are the maximum and minimum degree of its vertices. As mentioned
above, among n-vertex graphs with the minimum degree ≥ 1, the maximum
Wiener index is attained by Pn. But when restricting to minimum degree
≥ 2, the extremal graph is Cn. Observe that with the reasonable assumptions
∆ ≥ 2 and δ ≤ n− 1, the following holds

max{W (G); G has maximum degree at most ∆ and n vertices} = W (Pn), and

min{W (G); G has minimum degree at least δ and n vertices} = W (Kn).

Analogous reasons motivate the following two problems.

Problem 10. What is the maximum Wiener index among n-vertex graphs
with the minimum degree at least δ?
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Problem 11. What is the minimum Wiener index among n-vertex graphs
with the maximum degree at most ∆?

A related problem was considered by Fischermann et al. [31], and inde-
pendently by Jelen and Trisch in [52, 53], who characterized the trees which
minimize the Wiener index among all n-vertex trees with the maximum de-
gree at most ∆. They also determined the trees which maximize the Wiener
index, but in a much more restricted family of trees which have two dis-
tinct vertex degrees only. Later Stevanović [94] determined the trees which
maximize the Wiener index among all graphs with the maximum degree ∆,
and originally Problem 11 was proposed by him in an equivalent form which
requires that the maximum degree is precisely ∆.

Restricting to ∆ = δ = r, i.e., restricting to regular graphs, could be
especially interesting. In general, introducing (resp. removing) edges in a
graph decreases (resp. increases) the Wiener index, but in the class of r-
regular graphs on n vertices we have fixed number of r · n/2 edges. Thus,
more important role is played by the diameter. Recall that in the case of
trees, where the number of edges is fixed as well, the maximum Wiener index
is attained by Pn which has the largest diameter, and the minimum Wiener
index is attained by Sn, which has the smallest diameter. Let us start with
the first nontrivial case r = 3, i.e. with cubic graphs.

Figure 1: The graph L18.

Let n be even and n ≥ 10. If 4 ∤ n, then Ln is obtained from (n− 10)/4
copies of K4 − e joined to a path by edges connecting the vertices of degree
2, to which at the ends we attach two pendant blocks, each on 5 vertices, see
Figure 1 for L18.

Figure 2: The graph L20.

On the other hand if 4 | n, then Ln is obtained from (n− 12)/4 copies of
K4 − e, joined into a path by edges connecting the vertices of degree 2, to
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which ends we attach two pendant blocks, one on 5 vertices and the other
on 7 vertices, see Figure 2 for L20 [68]. We have the following conjecture.

Conjecture 12. Among n-vertex cubic graphs, Ln has the largest Wiener
index.

We believe that similar statements hold also for higher r ≥ 4, with in-
termediate repetitive gadget K4 − e replaced by Kr+1 − e, where on both
ends we attach suitable gadgets so that the resulting graph will have n ver-
tices. Actually, these graphs are those with the maximum diameter, see [58],
where the problem of finding a regular graph of given order and degree with
maximum diameter is studied from a different point of view.

The cubic graphs with the minimumWiener index are hard to describe for
us but it seems that they have the smallest diameter. For suitable n, good
candidates are the cage graphs, e.g. Petersen graph and Heawood graph.
Guided by our intuition, we believe that the following may hold.

Conjecture 13. Among all r-regular graphs on n vertices, the maximum
Wiener index is attained by a graph with the maximum possible diameter.

Conjecture 14. Among all r-regular graphs on n vertices, the minimum
Wiener index is attained by a graph with the minimum possible diameter.

5 Graphs with prescribed diameter/radius

The eccentricity ecc(v) of a vertex v in G is the largest distance from v to
another vertex of G; that is, max{d(v, w) |w ∈ V (G)}. The diameter of G,
denoted by diam(G), is the maximum eccentricity in G. Similarly, the radius
of G, denoted by rad(G), is the minimum eccentricity in G.

Plesńık [86] obtained the graphs with minimum Wiener index in the class
of graphs of order n and diameter d (d ≤ n− 1). When d < n− 1, they are
cycle-containing graphs. In 1975 he [85] addressed the following problem.

Problem 15. What is the maximum Wiener index among graphs of order n
and diameter d?

This problem remains unsolved even under additional restrictions. DeLaViña
and Waller [9] conjectured the following.

Conjecture 16. Let G be a graph with diameter d > 2 and order 2d + 1.
Then W (G) ≤ W (C2d+1), where C2d+1 denotes the cycle of length 2d+ 1.
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Wang and Guo [105] determined the trees with maximum Wiener index
among trees of order n and diameter d for some special values of d, 2 ≤ d ≤ 4
or n−3 ≤ d ≤ n−1. Independently, Mukwembi [83] considered the diameter
up to 6 and showed that bounds he obtained are best possible. It could be
also interesting to find a sharp upper bound on the Wiener index for trees of
given order and larger diameter.

For any connected graph G, rad(G) ≤ diam(G) ≤ 2 rad(G). By consider-
ing the close relationship between the diameter and the radius of a graph, it
is natural to consider the above problem with radius instead of diameter [5].

Problem 17. What is the maximum Wiener index among graphs of order n
and radius r?

Chen et al. [5] characterized graphs with the maximum Wiener index
among all graphs of order n with radius two. Analogous problem for the
minimum Wiener index was posed by You and Liu [110].

Problem 18. What is the minimum Wiener index among all graphs of order
n and radius r?

Regarding this problem, Chen et al. [5] stated the following conjecture.
For integers n, r, and s with n ≥ 2r, r ≥ 3, and n−2r+1 ≥ s ≥ 1, construct
a graph Gn,r,s from a 2r-cycle v1v2 · · · v2r so that v1 is replaced by Ks and v2 is
replaced by Kn−2r+2−s, connect v2r to each vertex of Ks, connect each vertex
of Ks to each vertex ofKn−2r+2−s, and connect each vertex of Kn−2r+2−s to v3
(in other words v1 is replicated s−1 times, and v2 is replicated n−2r+1−s
times). Notice that the resulting graph has n vertices and radius r.

Conjecture 19. Let n and r be two positive integers with n ≥ 2r and r ≥ 3.
Then graphs Gn,r,s for s ∈ {1, . . . , r − 1} attain the minimum Wiener index
in the class of graphs on n vertices and with radius r.

6 Congruence relations for Wiener index

It was of interest to several authors to obtain congruence relations for the
Wiener index. The first result of this kind was proved by Gutman and
Rouvray [43]. They established the congruence relation for the Wiener index
of trees with perfect matchings.

Theorem 20 (Gutman and Rouvray). Let T and T ′ be two trees on the
same number of vertices. If both T and T ′ have perfect matchings, then
W (T ) ≡ W (T ′) (mod 4).
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A segment of a tree is a path contained in the tree whose terminal vertices
are branching or pendant vertices of the tree. Dobrynin, Entringer and Gut-
man [13] obtained a congruence relation for the Wiener index in the class
of k-proportional trees. Trees of this class have the same order, the same
number of segments, and the lengths of all segments are multiples of k.

Theorem 21 (Dobrynin, Entringer and Gutman). Let T and T ′ be two k-
proportional trees. Then

W (T ) ≡ W (T ′) (mod k3) .

Theorem 20 was recently generalized by Lin in [76] by establishing the
congruence relation for the Wiener index of trees containing T -factors. A
graph G has a T -factor if there exist vertex disjoint trees T1, T2, . . . , Tp such
that V (G) = V (T1)∪ V (T2)∪ · · · ∪V (Tp) and each Ti is isomorphic to a tree
T on r vertices. If T is a path on r vertices, we say that the graph G has a
Pr-factor. In this sense the well-known perfect matching is a P2-factor.

Theorem 22 (Lin). If T and T ′ are two trees on the same number of vertices,
both with Pr-factors, then

W (T ) ≡ W (T ′) (mod r) for odd r,

and
W (T ) ≡ W (T ′) (mod 2r) for even r.

Recently Gutman, Xu and Liu [46] showed that the first congruence in
the above result is a special case of a much more general result on the Szeged
index. As its consequence, for the Wiener index they obtained the following
result.

Theorem 23 (Gutman, Xu and Liu). Let Γ0 be the union of connected graphs
G1, G2, . . . , Gp, p ≥ 2, each of order r ≥ 2, all blocks of which are complete
graphs. Denote by Γ a graph obtained by adding p− 1 edges to Γ0 so that the
resulting graph is connected. Then

W (Γ) ≡
p

∑

i=1

W (Gi) (mod r) .

In [49] we generalized both the above results. Let r and t be integers,
r ≥ 2 and 0 ≤ t < r. Further, let H = {H1, H2, . . . , Hℓ} be a set of connected
graphs, such that for all i, 1 ≤ i ≤ ℓ, we have |V (Hi)| ≡ −t (mod r). Finally,
let F = {F1, F2, . . . , Fℓ−1} be a set of connected graphs, such that for all j,
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1 ≤ j ≤ ℓ−1, we have |V (Fj)| ≡ t+2 (mod r). For every Fj, choose vertices
v1j , v

2
j ∈ V (Fj). We remark that the vertices v1j and v2j are not necessarily

distinct. Denote by G = G(H,F) the set of all graphs obtained when all
the vertices v1j and v2j , 1 ≤ j ≤ ℓ − 1, are identified with some vertices of
H1 ∪H2 ∪ · · · ∪Hℓ so that the resulting graph is connected.

Every graph in G contains ℓ graphs fromH, ℓ−1 graphs from F , and each
graph of F connects two graphs of H. Since the graphs in G are connected,
if we contract every Hi to a single vertex and we consider Fj ’s as edges
joining pairs of these contracted vertices, then the resulting graph is a tree.
In this way, H1, H2, . . . , Hℓ can be regarded as supervertices, F1, F2, . . . , Fℓ−1

as superedges, and the resulting graph has a tree structure.
In Figure 3 we have one graph G of G for given parameters r, t and ℓ,

and for given sets H, F and {v1j , v2j}ℓ−1
j=1. The vertices of Hj ’s are depicted

by full circles in Figure 3 and the edges of Hi’s are thick.

Figure 3: A graph of G for r = 7, t = 3, ℓ = 4 and given Hi’s, Fj ’s and vkj ’s.

Theorem 24. Let G1, G2 ∈ G. Then W (G1) ≡ W (G2) (mod r) .

Now we generalize the second part of Theorem 22. Let r be an even
number, r ≥ 2. Further, let H = {H1, H2, . . . , Hℓ} be a set of trees, such
that for all i, 1 ≤ i ≤ ℓ, we have |V (Hi)| ≡ 0 (mod r). Finally, let F =
{F1, F2, . . . , Fℓ−1} be a set of trees, such that for all j, 1 ≤ j ≤ ℓ − 1, we
have |V (Fj)| ≡ 2 (mod r). For every Fj, choose vertices v1j , v

2
j ∈ V (Fj).

Denote by GT the set of all graphs obtained when all the vertices v1j and v2j ,
1 ≤ j ≤ ℓ− 1, are identified with some vertices of H1 ∪H2 ∪ · · · ∪Hℓ so that
the resulting graph is connected. Hence, GT is a restriction of G when all the
graphs in H and F are trees and t = 0.

Theorem 25. Let r be even and G1, G2 ∈ GT . Then W (G1) ≡ W (G2)
(mod 2r) .
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Theorems 24 and 25 show limits of Theorem 22. Note that a segment
can be defined on graphs as well, and similarly one can define k-proportional
graphs. So, it would be interesting to find analogous limits for Theorem 21.

Problem 26. Let G and G be two k-proportional graphs. Under which con-
ditions we have W (G) ≡ W (G′) (mod k3) ?

7 Wiener index and line graph operation

Let G be a graph. Its line graph, L(G), has vertex set identical with the set
of edges of G and two vertices of L(G) are adjacent if and only if the corre-
sponding edges are adjacent in G. Iterated line graphs are defined inductively
as follows:

Li(G) =

{

G if i = 0,
L(Li−1(G)) if i > 0.

The main problem here is to determine the relation between W (L(G))
and W (G). Particularly, we focuss on graphs G satisfying

W (L(G)) = W (G), (7)

see [8, 22, 21, 40, 42], and in particular see the expository papers [24, 67]. Let
us remark that in the literature one easily encounters the term edge-Wiener
index of G, which is actually the Wiener index of the line graph, sometimes
shifted by

(

n
2

)

, see [55].
The following remark of Buckley [4] is a pioneering work in this area.

Theorem 27 (Buckley, 1981). For every tree T , W (L(T )) = W (T )−
(

n
2

)

.

By the above result, the Wiener index of a line graph of a tree is strictly
smaller than the Wiener index of the original tree. An interesting general-
ization of this was given by Gutman [38]:

Theorem 28. If G is a connected graph with n vertices and m edges, then

W (L(G)) ≥ W (G)− n(n− 1) +
1

2
m(m+ 1).

In addition, regarding Theorem 27, Gutman and Pavlović [42] showed
that the Wiener index of a line graph is not greater than the Wiener index
of the original graph even if we allow a single cycle in the graph.

Theorem 29. If G is a connected unicyclic graph with n vertices, then
W (L(G)) ≤ W (G), with equality if and only if G is a cycle of length n.
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In connected bicyclic graphs all the three casesW (L(G)) < W (G),W (L(G)) =
W (G), and W (L(G)) > W (G) occur [42]. There are 26 bicyclic graphs of
order 9 with the property W (L(G)) = W (G) [14, 41], and already 166 ten-
vertex vertices with this property, see [24].

The following result tells us that in most cases (7) does not hold for
graphs of minimum degree at least 2, see [6, 108].

Theorem 30. Let G be a connected graph with δ(G) ≥ 2. Then

W (L(G)) ≥ W (G).

Moreover, the equality holds only for cycles.

7.1 Sandwiching by Gutman index

The following result was proved independently and simultaneously in [6]
and [108].

Theorem 31. Let G be a connected graph of size m. Then

1

4
(Gut(G)−m) ≤ W (L(G)) ≤ 1

4
(Gut(G)−m) +

(

m

2

)

.

Moreover, the lower bound is attained if and only if G is a tree.

Let κi(G) denote the number of i-cliques in a graph G. In [65], the lower
bound of the above theorem is improved in the following way.

Theorem 32. Let G be a connected graph. Then,

W (L(G)) ≥ 1

4
Gut(G)− 1

4
|E(G)|+ 3

4
κ3(G) + 3κ4(G) (8)

with the equality in (8) if and only if G is a tree or a complete graph.

It follows from the above theorem that for a connected graphG of minimal
degree δ ≥ 2 we have

W (L(G)) ≥ δ2

4
W (G)− 1

4
|E(G)| ≥ δ2 − 1

4
W (G).

Moreover, this lower bound was improved in [72].

Theorem 33. Let G be a connected graph of minimum degree δ. Then

W (L(G)) ≥ δ2

4
W (G)

with equality holding if and only if G is isomorphic to a path on three vertices
or a cycle.
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7.2 Extremal line graphs

The problem of finding graphs, whose line graph has the maximal Wiener
index was given by Gutman [38] (see also [24]).

Problem 34. Find an n-vertex graph G whose line graph L(G) has the
maximal Wiener index.

We say that a graph is dumbell if it is comprised of two disjoint cliques
connected by a path, and similarly a graph is barbell if it is comprised of two
disjoint complete bipartite graphs connected by a path.

Conjecture 35. In the class of graphs G on n vertices, W (L(G)) attains
maximum for some dumbell graph.

The above conjecture is supported by a result in [8]. We state a similar
one for bipartite graphs.

Conjecture 36. Let n be a large integer. Then in the class of all bipartite
graphs G on n vertices W (L(G)) attains maximum for some barbell graph.

7.3 Extremal ratios

Dobrynin and Mel’nikov [24] proposed to estimate the extremal values for
the ratio

W (Lk(G))

W (G)
, (9)

and explicitly stated the case k = 1 as a problem. In [72] this problem was
solved for the minimum.

Theorem 37. Among all connected graphs on n vertices, the fraction W (L(G))
W (G)

is minimum for the star Sn.

The problem for the maximum remains open.

Problem 38. Find n-vertex graphs G with maximal values of W (L(G))
W (G)

.

Notice that

W (L(Sn))

W (Sn)
=

n− 2

2(n+ 1)
,

W (L(Pn))

W (Pn)
=

n− 2

n+ 1
, and

W (L(Kn))

W (Kn)
=

(

n− 1

2

)

.

The line graph of Kn has the greatest number of vertices, and henceforth, it
may attain the maximum value. Restricting to bipartite graphs, the almost
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balanced complete bipartite graphs have most vertices, so in this class of
graphs the extreme could be K⌊n/2⌋,⌈n/2⌉.

Regarding the minimum of (9), we expect that for higher iterations k ≥ 2,
it should be Pn, as it is the only graph whose line graph decreases in size.
We believe the following holds, as it is proposed and considered in [50].

Conjecture 39. Let k ≥ 2 and let n be a large integer. Then in the class of
graphs G on n vertices W (Lk(G))/W (G) attains the maximum for Kn, and
it attains the minimum for Pn.

7.4 Graphs with given girth

The girth of a graph is the length of a shortest cycle contained in the graph.
A connected graph G is isomorphic to L(G) if and only if G is a cycle. Thus,
cycles provide a trivial infinite family of graphs for which W (G) = W (L(G)).
In [23], Dobrynin and Mel’nikov stated the following problem.

Is it true that for every integer g ≥ 5 there exists a graph G 6= Cg of girth g,

for which W (G) = W (L(G))? (10)

The above problem (10) was solved by Dobrynin [11] for all girths g 6=
{5, 7}; these last two cases were solved separately. Already in [23], Dobrynin
and Mel’nikov [23] constructed infinite families of graphs of girths three and
four with the property W (G) = W (L(G)). Inspired by their result the
following statement was proved in [6].

Theorem 40. For every non-negative integer h, there exist infinitely many
graphs G of girth g = h2 + h+ 9 with W (L(G)) = W (G).

The above result encouraged the authors of [6] to state the following
conjecture.

Conjecture 41. For every integer g ≥ 3, there exist infinitely many graphs
G of girth g satisfying W (G) = W (L(G)).

7.5 Graphs and cyclomatic number

The cyclomatic number λ(G) of a graph G is defined as λ(G) = |E(G)| −
|V (G)| + 1. Some attention was devoted to graphs G with prescribed cy-
clomatic number satysfying the equality W (L(G)) = W (G). As already
mentioned, the smallest 26 bicyclic graphs with 9 vertices are reported in
[14, 41]. Bicyclic graphs up to 13 vertices are counted in [24] and diagrams
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of such graphs with 9 and 10 vertices are also given. The smallest 71 tri-
cyclic graphs with 12 vertices are counted in [14]. There are 733 tricyclic
graphs of order 13 with this properties [24]. Denote by n(λ) the minimal or-
der of graphs with cyclomatic number λ ≥ 2 and W (L(G)) = W (G). Then
n(2) = 9 and n(3) = 12.

Graphs with increasing cyclomatic number were constructed in [15, 21,
22]. To construct graphs from [22], properties of the Pell equation from the
number theory were applied. The cyclomatic number λ of graphs from [22]
rapidly grows and the order of graphs is asymptotically equal to (2+

√
5)λ ≈

4.236λ when λ → ∞. The following conjecture was put forward in [22]:

Conjecture 42. The graphs constructed in [22] have the minimal order
among all graphs with given cyclomatic number satisfying the propertyW (L(G)) =
W (G).

Graphs for all possible λ ≥ 2 were constructed in [21]. It is known that
n(λ) ≤ 5λ for λ ≥ 4, n(5) ≤ 21 and n(7) ≤ 29. The following problem was
posed in [14].

Problem 43. Find an exact value of n(λ) for small λ ≥ 4.

7.6 Quadratic line graphs

The graph L2(G) is also called the quadratic line graph of G. As mentioned
above, for non-trivial tree T we cannot have W (L(T )) = W (T ). But there
are trees T satisfying

W (L2(T )) = W (T ), (11)

see [10, 18, 19, 67]. Obviously, the simplest trees are such which have a unique
vertex of degree greater than 2. Such trees are called generalized stars. More
precisely, generalized t-star is a tree obtained from the star K1,t, t ≥ 3, by
replacing all its edges by paths of positive lengths, called branches. In [23]
we have the following theorem.

Theorem 44. Let S be a generalized t-star with q edges and branches of
length k1, k2, . . . , kt. Then

W (L2(S)) = W (S) +
1

2

(

t− 1

2

)( t
∑

i=1

k2
i + q

)

− q2 + 6

(

t

4

)

. (12)

Based on this theorem, it is proved in [23] that W (L2(S)) < W (S) if
S is a generalized 3-star, and W (L2(S)) > W (S) if S is a generalized t-
star where t ≥ 7. Thus, property (11) can hold for generalized t-stars only
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when t ∈ {4, 5, 6}. In [23] and [66], for every t ∈ {4, 5, 6} infinite families of
generalized t-stars with property (11) were found, see also [67]. These results
suggest the following conjecture [20]:

Conjecture 45. Let T be a non-trivial tree such that W (L2(T )) = W (T ).
Then there is an infinite family of trees T ′ homeomorphic to T , such that
W (L2(T ′)) = W (T ′).

Of course, more interesting is the question which types of trees satisfy
(11). Perhaps such trees do not have many vertices of degree at least 3.
Let T be a class of trees which have no vertex of degree two, and such that
T ∈ T if and only if there exists a tree T ′ homeomorphic to T , and such that
W (L2(T ′)) = W (T ′). Trees that satisfy (11) are in abundance, so perhaps,
it is impossible to characterize them, but the characterization of trees from
T could be achievable.

Problem 46. Characterize the trees in T .

By the above results, among the stars only K1,4, K1,5, and K1,6 are in
T . Recently, the following progress was done by Ghebleh, Kanso, Stevanović
[35] regarding the above problem. Note that in [66] it was conjectured that
this set is finite.

Theorem 47. T is infinite.

Up to our knowledge the trees constructed in [35] may have arbitrary
many 3-vertices, but no vertex of higher degree. Possibly, the later can be
achieved with combination of all these known constructions. However, we
expect that no tree in T has a vertex of degree exceeding 6 and the number
of vertices of degree at least 4 is bounded, and perhaps it is very small, 1 or
2 or so. In order to motivate further research in this direction, we state these
expectations as problems.

Conjecture 48. Trees from T satisfy the following:

(a) no tree has a vertex of degree exceeding 6;

(b) there is a constant c such that no tree has more than c vertices of degree
at least 4.

7.7 Iterated line graphs

As we have seen, there is no non-trivial tree T for which W (L(T )) = W (T )
and there are many trees T , satisfying W (L2(T )) = W (T ). However, it is
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not easy to find a tree T and i ≥ 3 such that W (Li(T )) = W (T ). In [13],
Dobrynin, Entringer and Gutman posed the following problem:

Is there any tree T satisfying equality W (Li(T )) = W (T ) for some i ≥ 3?
(13)

Observe that if T is a trivial tree, then W (Li(T )) = W (T ) for every i ≥ 1,
although here the graph Li(T ) is empty. The real question is, if there is a
non-trivial tree T and i ≥ 3 such thatW (Li(T )) = W (T ). The same question
appeared four years later in [23] as a conjecture. Based on the computational
experiments, Dobrynin and Mel’nikov expressed their belief that the problem
has no non-trivial solution and stated the following conjecture:

There is no tree T satisfying equality W (T ) = W (Li(T )) for any i ≥ 3.
(14)

Figure 4: The graph Ha,b,c.

In a series of papers [59], [60], [61], [62], [63] and [64], conjecture (14) was
disproved and all solutions of problem (13) were found, see also [67]. Let
Ha,b,c be a tree on a+ b+ c+4 vertices, out of which two have degree 3, four
have degree 1 and the remaining a + b + c − 2 vertices have degree 2. The
two vertices of degree 3 are connected by a path of length 2. Finally, there
are two pendant paths of lengths a and b attached to one vertex of degree
3 and two pendant paths of lengths c and 1 attached to the other vertex of
degree 3, see Figure 4 for H3,2,4. We have the following statement.

Theorem 49. For every j, k ∈ Z define

a = 128 + 3j2 + 3k2 − 3jk + j,

b = 128 + 3j2 + 3k2 − 3jk + k,

c = 128 + 3j2 + 3k2 − 3jk + j + k.

Then W (L3(Ha,b,c)) = W (Ha,b,c).
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Let ℓ ∈ {j, k, j + k}. Since for every integers j and k the inequality
3j2 + 3k2 − 3jk + ℓ ≥ 0 holds, we see that a, b, c ≥ 128 in Theorem 49.
Therefore, the smallest graph satisfying the assumptions is H128,128,128 on
388 vertices, obtained when j = k = 0. If we take in mind that there
are approximately 7.5 · 10175 non-isomorphic trees on 388 vertices while the
number of atoms in the entire Universe is estimated to be only within the
range of 1078 to 1082, then to find “a needle in a haystack” is trivially easy
job compared to finding a counterexample when using only the brute force
of (arbitrarily many) real computers.

The following theorem gives a complete answer to problem (13).

Theorem 50. Let T be a tree and i ≥ 3. Then the equation W (Li(T )) =
W (T ) has a solution if and only if i = 3 and G is of type Ha,b,c as stated in
Theorem 49.

We conclude this section with the following problem.

Problem 51. Find all graphs (with cycles) G and powers i for which

W (Li(G)) = W (G). (15)

For i = 1 the above problem is very rich with many different solutions,
so probably it will not be possible to find all of them. But still, stating
it as a problem could serve as a motivation for searching of various graph
classes that satisfy the equation. However, we want to emphasize the case
i ≥ 2. In this case the problem is still rich with many solutions, particularly
among the trees, but abandoning the class of trees can reduce the solutions
significantly. At the moment, cycles are the only known cyclic graphs G for
which W (Li(G)) = W (G) holds for some i ≥ 3 and we believe that there are
no other cyclic graphs satisfying (15). This was conjectured independently
in [24] and [67].

Conjecture 52. Let i ≥ 3. There is no graph G, distinct from a cycle and
a tree, such that

W (Li(G)) = W (G).

8 Excursion into digraphs

In [69, 70, 71], we have considered the Wiener index of not necessarily
strongly connected digraphs. In order to do so, if in a digraph there is
no directed path from a vertex u to a vertex v, we follow the convention that

d(u, v) = 0, (16)
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which was independently introduced in several studies of directed networks.
A counterpart of the Wiener theorem for directed trees, i.e. digraphs

whose underlying graphs are trees can be stated in this way.

Theorem 53. Let T be a directed tree with the arc set A(T ). Then

W (T ) =
∑

ab∈A(T )

t(a)s(b),

where t(a) denotes the number of vertices that can reach a, and s(b) denotes
the number of vertices that can be reached by b.

Here we give a counterpart of a relation between the Wiener index and
betweenness centrality B(x) for oriented graphs.

Theorem 54. For any digraph D of order n

W (D) =
∑

x∈V (D)

B(x) + p(D),

where p(D) denotes the number of ordered pairs (u, v) such that there exists
a directed path from u to v in D.

The above result implies that for strongly connected digraph D on n vertices,
we have the relation

W (D) =
∑

x∈V (D)

B(x) + 2

(

n

2

)

.

Let Wmax(G) and Wmin(G) be the maximum possible and the minimum
possible, respectively, the Wiener index among all digraphs obtained by ori-
enting the edges of a graph G.

Problem 55. For a given graph G find Wmax(G) and Wmin(G).

The above problem has been considered for strongly connected orienta-
tions. Plesńık [86] proved that finding a strongly connected orientation of
a given graph G that minimizes the Wiener index is NP-hard. Regarding
the problem of finding Wmax(G), Plesńık and Moon [82, 86] resolved it for
complete graphs, under the assumption that the orientation is strongly con-
nected.

We showed [69] that the above mentioned results of Plesńık and Moon
hold also for non-strongly connected orientations assuming the condition
(16). One may expect that for a 2-connected graph G, Wmax(G) is attained
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for some strongly connected orientation. However, this is not the case as we
proved by Θ-graphs Θa,b,1 for a and b fulfilling certain conditions. By Θa,b,c

we denote a graph obtained when two distinct vertices are connected by three
internally-vertex-disjoint paths of lengths a+1, b+1 and c+1, respectively.
We assume a ≥ b ≥ c and b ≥ 1. The orientation of Θa,b,c which achieves
the maximum Wiener index is not strongly connected if c ≥ 1. However, we
believe that the following holds.

Conjecture 56. Let a ≥ b ≥ c. Then Wmax(Θa,b,c) is attained by an ori-
entation of Θa,b,c in which the union of the paths of lengths a + 1 and b + 1
forms a directed cycle.

Analogous results as for Θ-graphs, stating that the orientation of a graph
which achieves the maximum Wiener index is not strongly connected, can
probably be proved also for other graphs which are not very dense and which
admit an orientation with one huge directed cycle without “shortcuts”, that
is without directed paths shortening the cycle. On the other hand, we were
not able to find examples without long induced cycles that makes us wonder
if the following holds.

Conjecture 57. Let G be a 2-connected chordal graph. Then Wmax(G) is
attained by an orientation which is strongly connected.

Finally, we wonder how hard it is to find Wmax and Wmin.

Problem 58. For a given graph G, what is the complexity of finding Wmax(G)
(resp. Wmin(G))? Are these problems NP-hard?

Consider also the following problem for the minimum value.

Conjecture 59. For every graph G, the value Wmin(G) is achieved for some
acyclic orientation G.

This is certainly true for bipartite graphs. Namely, by orienting all edges
of such a graph G so that the corresponding arcs go from one bipartition
to the other, we obtain a digraph D with W (D) = |E(G)|. As obviously
Wmin(G) ≥ |E(G)|, this case is established.

Now we turn our attention to graphs with higher chromatic number.
Our next conjecture is motivated by the Gallai-Hasse-Roy-Vitaver theorem,
which states that a number k is the smallest number of colors among all
colorings of a graph G if and only if k is the largest number for which every
orientation of G contains a simple directed path with k vertices. In other
words, the chromatic number χ(G) is one plus the length of a longest path
in a special orientation of the graph which minimizes the length of a longest
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path. The orientations for which the longest path has the minimum length
always include at least one acyclic orientation.

A graph orientation is called k-coloring-induced, if it is obtained from
some proper k-coloring such that each edge is oriented from the end-vertex
with the bigger color to the end-vertex with the smaller color.

Conjecture 60. Wmin(G) is achieved for a χ(G)-coloring-induced orienta-
tion.

As mentioned above, Conjecture 60 holds for bipartite graphs and trivially
it holds for complete graphs. It was shown that holds for graphs with at most
one cycle and prisms. By computer it was tested also for the Petersen graph.
Observe that Conjecture 60 implies Conjecture 59.

9 Wiener index for disconnected graphs

Since the formula (1) cannot be applied to non-connected graphs, for these
graphs we set

W (G) =
∑

{x,y}⊆V (G)
x−y path exists in G

d(x, y). (17)

In other words, we ignore pairs of vertices x and y for which the distance
d(u, v) can be considered as “infinite” analogously as we ignored such pairs
of vertices in the case of digraphs. For example, in [12], the Wiener index
has been used in quantitative studies of disconnected hexagonal networks.

Let G be a disconnected graph with components G1, G2, . . . , Gp. By
(17) we get

W (G) = W (G1) +W (G2) + · · ·+W (Gp) .

It is interesting to study the problems from the previous sections using
the modified definition of Wiener index (17). Particularly, we find interesting
the analogues of Problems 6 and (13).

Problem 61. For given n, find all values w which are Wiener indices of not
necessarily connected graphs (forests) on n vertices.

Let i ≥ 3. From the proof of Theorem 50 one can see that most trees T
satisfyW (Li(T )) > W (T ), while paths on n ≥ 2 vertices satisfyW (Li(Pn)) <
W (Pn). Hence, the following problem is interesting.

Problem 62. For i ≥ 3, find all forests F for which W (Li(F )) = W (F ).
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10 Trees with given degree conditions

Lin [77] characterized the trees which maximize and minimize the Wiener
index among all trees of given order that have only vertices of odd degrees.
An ordering of trees by their smallest Wiener indices for trees of given order
that have only vertices of odd degrees was obtained by Furtula, Gutman and
Lin [33]. In [32] Furtula further determined the trees with the second up to
seventeenth greatest Wiener indices. Lin [77] suggested analogous problems
for general graphs.

Problem 63. Characterize the graphs with maximal Wiener index in the set
of graphs on 2n vertices whose vertices are all of odd degree, and in the set
of graphs on n vertices whose vertices are all of even degree, respectively.

In [78] Lin characterized the trees which minimize (maximize, respec-
tively) the Wiener index among all trees with given number of vertices of
even degree. He proposed the following problems for the class of graphs En,r

of order n with exactly r vertices of even degree, where r ≥ 1 and n ≡ r
(mod 2).

Problem 64. Order the trees in En,r with the smallest or greatest Wiener
index.

Problem 65. Characterize graphs with maximal and minimal Wiener index
in En,r, respectively.

The same author in [79] characterized trees which maximize the Wiener
index among all trees of order n with exactly k vertices of maximum degree.
For better understanding how the maximum degree vertices influence the
Wiener index he proposes to consider analogous problem for the minimum.

Problem 66. Characterize the tree(s) with the minimal Wiener index among
all trees of order n with exactly k vertices of maximum degree.

Wang [104] and Zhang et al. [96] independently determined the tree that
minimizes the Wiener index among trees of given degree sequence. But the
following problem from [54, 91, 97] is still open, although it is known for
longer time that extremal graphs are caterpillars [92].

Problem 67. Which trees maximize the Wiener index among trees of given
degree sequence?

11 Few more problems

Here we collect some more problems on Wiener index.
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Eulerian graphs. Denote by En the set of all Eulerian graphs of order n.
Gutman et al. [39] characterized elements of En having the first few smallest
Wiener indices. They proved that for graphs in En, Cn attains the maximal
value. In addition, they posed a conjecture on the second-maximal Wiener
index in En.

Conjecture 68. The second-maximal Wiener index between all Eulerian
graphs of large enough order n is attained by Cn,3 (i.e. the graph obtained
from disjoint cycles Cn−2 and C3 by identifying one vertex in each of them).

They have also analogous conjecture for small values of n, see [39] for
more details.

Fullerene graphs. In [51] the Wiener indices of the (6, 0)-nanotubes (tubi-
cal fullerenes) is computed. Note that such a graph has 12k vertices, for some
k ≥ 2, and the corresponding value of the Wiener index is 48k3+828k−1632.
These fullerenes have long diameter and consequently big Wiener index. Nev-
ertheless the authors believe that the following may hold.

Conjecture 69. The Wiener index of fullerene graphs on n vertices is of
asymptotic order θ(n3).

Wiener index versus Szeged index. Klavžar, Rajapakse and Gutman [56]
showed that Sz (G) ≥ W (G), and even more, by a result of Dobrynin and
Gutman [25], equality Sz (G) = W (G) holds if and only if each block of G is
complete. In [80] a classification of graphs with η(G) = Sz (G)−W (G) ≤ 3
is presented. In [81] the authors classify connected graphs which satisfy
η(G) = 4 or 5. Moreover, they state the following conjecture.

Conjecture 70. Let G be a graph of order n with blocks B1, . . . , Bk such
that none is complete. Let Bi be of order ni. Then

Sz (G)−W (G) ≥
k

∑

i=1

(2ni − 6).

The difference η was also studied by Klavžar and Nadjafi-Arani [57].

Wiener index of graphs with given matching number. Zhou and
Trinajstić [98] determined the minimum Wiener index of connected graphs
with n ≥ 5 vertices and matching number i ≥ 2, and characterized the
extremal graphs. Du and Zhou [28] determined the minimum Wiener indices
of trees and unicyclic graphs, respectively, with given number of vertices and
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matching number. Also, they characterized extremal graphs. For this class
of trees Tan [95] et al. determined ordering of trees with the smallest Wiener
indices.

Regarding the maximum Wiener index, Dankelmann [7] determined it
for connected graphs with n ≥ 5 vertices and matching number i ≥ 2, and
he characterized the unique extremal graph, which turned out to be a tree.
Thus, the maximum Wiener index among trees with given number of vertices
and matching number is known, as well as the corresponding unique extremal
graph. Finding the maximum Wiener index among unicyclic graphs remains
an open problem [28].

Problem 71. Find the maximum Wiener index among unicyclic graphs with
n vertices and matching number i for 3 ≤ i ≤

⌊

n
2

⌋

− 1.

Graph connectivity. Graphs with higher connectivity have more edges,
and henceforth smaller Wiener index. Gutman and Zhang [47] showed that in
the class of k-connected graphs on n vertices, the minimum value of Wiener
index is attained by Kk + (K1 ∪ Kn−k−1), i.e. the graph obtained when
we connect all vertices of Kk with all vertices of disjoint union of K1 and
Kn−k−1. This graph is extremal also in the class of k-edge-connected graphs
on n vertices. They pose the following problem.

Problem 72. Find the maximum Wiener index among k-connected graphs
on n vertices.

Note that Pn is the extremal graph in the class of 1-connected graphs,
and Cn is extremal in the class of 2-connected graphs. Of course, similar
problem can be posed for k-edge-connected graphs. The authors of [47]
ask the following question, which has affirmative answer in the case of the
minimum Wiener index.

Problem 73. Do the extremal graphs for the maximum Wiener index in the
classes of k-connected and k-edge-connected graphs coincide?

Trees and unicyclic graphs with given bipartition. Du [27] considered
Wiener index of trees and unicyclic graphs on n vertices with prescribed sizes
of bipartitions p and q, where n = p+q and p ≥ q. He showed that in the case
of trees, the extremal graph for the minimum Wiener index is obtained by
connecting the centers of disjoint stars K1,p−1 and K1,q−1, and the extremal
graph for the maximum Wiener index is obtained by connecting the end-
vertices of a path P2q−1 with ⌈(p−q+1)/2⌉ and ⌊(p−q+1)/2⌋ new vertices,
respectively.
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Regarding the unicyclic graphs, Du showed that the minimum Wiener
index is attained by the graph, which is obtained by connecting p−2 vertices
to one vertex of a 4-cycle, and connecting q − 2 vertices to its neighbour on
the 4-cycle. Moreover, if p = q = 3, then C6 is also an extremal graph. What
remains open, is the maximum value.

Problem 74. Find the maximum Wiener index among unicyclic graphs on
n vertices with bipartition sizes p and q, where n = p+ q.
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[56] S. Klavžar, A. Rajapakse and I. Gutman, The Szeged and the Wiener
index of graphs, Appl. Math. Lett. 9 (1996), 45–49.
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[62] M. Knor, P. Potočnik and R. Škrekovski, On a conjecture about Wiener
index in iterated line graphs of trees, Discrete Math. 312 (2012), 1094–
1105.
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[72] M. Knor, R. Škrekovski and A. Tepeh, An inequality between the edge-
Wiener index and the Wiener index of a graph, Appl. Math. Comput.
269 (2015), 714–721.
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