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Abstract

In this paper, we study the Wiener index (i.e., the total distance or the transmission number)

of not necessarily strongly connected digraphs. In order to do so, if there is no directed path from

u to v, we follow the convention d(u, v) = 0, which was independently introduced in several studies

of directed networks. Under this assumption we naturally generalize the Wiener theorem, as well as

a relation between the Wiener index and betweenness centrality to directed graphs. We formulate

and study conjectures about orientations of undirected graphs which achieve the extremal values of

Wiener index.

Keywords: Wiener index, average graph distance, total distance, directed graph, betweenness
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1 Introduction

The Wiener index of a graph G, W (G), is defined as the sum of distances between all (un-
ordered) pairs of vertices of G. This parameter was introduced by Wiener in 1947 [20] and it
has become popular among chemists. By graph theorists it has been considered much later
and it was studied under other names, including the gross status [12], the distance of a graph
[8], and the transmission [18]. Many papers also deal with the average distance, defined as
µ(G) = W (G)/

(

n
2

)

, cf. [4, 7], see also [9] for a brief survey. The Wiener index is considered
as one of the most applicable graph invariant. Beside the chemistry, there are many appli-
cations in communication, facility location, cryptology, architecture etc., where the Wiener
index of the corresponding graph, or the average distance, is of great interest. New results
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related to the Wiener index of a graph are constantly being reported, while less attention has
been devoted to the study of an analogous concept for digraphs, despite its application in
sociometry, informetric studies etc.

A directed graph (a digraph) D is given by a set of vertices V (D) and a set of ordered pairs
of vertices A(D) called directed edges or arcs. A (directed) path in D is a sequence of vertices
v0, v1, . . . , vn such that vi−1vi is an arc of D for all i. The distance dD(u, v) between vertices
u, v ∈ V (D) is the length of a shortest path from u to v, and if there is no such path then we
assume that

dD(u, v) = 0. (1)

For u ∈ V (D), we will denote wD(u) =
∑

v∈V (D) dD(u, v). We omit the index D when no
confusion is likely.

In analogy to graphs, the Wiener index W (D) of a digraph D is defined as the sum of all
distances, where of course, each ordered pair of vertices has to be taken into account. More
precisely,

W (D) =
∑

(u,v)∈V (D)×V (D)

dD(u, v) =
∑

u∈V (D)

wD(u).

The first results on the Wiener index of digraphs are due to Harary [12], whose investi-
gation was motivated by certain sociometric problems. Ng and Teh [15] found a strict lower
bound for the Wiener index of digraphs. As in the case of graphs, the Wiener index of di-
graphs was considered indirectly also through the study of the average (or mean) distance,
defined as µ(D) = W (D)/n(n− 1), see [5, 6].

In real directed networks, there could be no path connecting some pairs of vertices. Strictly
speaking, the distance between such a pair of vertices is infinite (thus the study of the Wiener
index of digraphs in pure mathematical papers is usually limited to strongly connected di-
graphs, i.e. digraphs in which a directed path between every pair of vertices exists). However,
for practical purposes, in the case when a directed path between two vertices does not exist,
the distance between them can be defined in a different way. For instance, Botafogo et al. [3]
defined it as the number of vertices in the analyzed network, while Bonchev [1, 2] assumed
the condition (1).

Let Wmax(G) and Wmin(G) be the maximum possible and the minimum possible, respec-
tively, Wiener index among all digraphs obtained by orienting the edges of G. In [13], the
following problems where posed.

Problem 1. For a given graph G find Wmax(G) and Wmin(G).

Problem 2. For a given graph G, what is the complexity of findingWmax(G) (resp. Wmin(G))?
Are these problems NP-hard?

Transitive tournaments, i.e. acyclic orientations of complete graphs Kn, clearly yield the
smallest possible Wiener index among all orientations of complete graphs. Hence, Wmin(Kn) =
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(

n
2

)

= W (Kn). We remark that the above problems have already been considered for strongly
connected orientations. Plesńık [16] proved that finding a strongly connected orientation of
a given graph G that minimizes the Wiener index is NP-hard. In [5] a lower bound for the
minimum average distance taken over all strongly connected orientations of certain families
of graphs was established. Regarding the problem of finding Wmax(G), Plesńık and Moon
[14, 16] resolved it for complete graphs, under the assumption that the orientation is strongly
connected.

In [13] we show that the above mentioned results of Plesńık and Moon hold also for
non-strongly connected orientations assuming the condition (1). One may expect that for a
2-connected graph G, Wmax(G) is attained for some strongly connected orientation. This was
disproved by Θ-graphs Θa,b,1 for a and b fulfilling certain conditions, see [13].

In this paper we generalize the Wiener theorem to digraphs. We also show that a well
known relation between the Wiener index and betweenness centrality naturally extends to
directed graphs assuming the condition (1). We conclude the paper with conjectures about
orientations of undirected graphs which achieve the extremal values of Wiener index. To
support these conjectures, we present a couple of classes of graphs which satisfy them.

2 Wiener theorem for directed graphs

In [20], Wiener proved that for a tree T

W (T ) =
∑

e=ij∈E(T )

ne(i)ne(j),

where ne(i) and ne(j) are the orders of components of T − ij. The result is known as the
Wiener theorem. In this section, we show an analogous statement for directed trees.

Let T (a) denote the set of vertices x with the property that there exists a directed path
from x to a. Similarly, let S(a) denote the set of vertices x with the property that there
exists a directed path from a to x. Note that a ∈ S(a) and a ∈ T (a). Let t(a) = |T (a)| and
s(a) = |S(a)|.

Now we give the counterpart of the Wiener theorem for directed trees, i.e. digraphs whose
underlying graphs are trees.

Theorem 3. Let T be a directed tree. Then

W (T ) =
∑

ab∈A(T )

t(a)s(b).

Proof. If there exists a directed path between two vertices in T , then it is unique. Hence an
arc ab contributes 1 to W (T ) for each pair of vertices for which the directed path between
them contains ab. Since there are t(a)s(b) such paths the result follows.
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3 Wiener index vs. betweenness centrality

White and Borgatti [21] generalized Freeman’s geodesic centrality measures for betweenness
on graphs to the case of digraphs. The (directed) betweenness centrality B(x) of a vertex x in
a digraph D is defined as

B(x) =
∑

u,v∈V (D)\{x}
u 6=v

σu,v(x)

σu,v
,

where σu,v denotes the number of all shortest directed paths in D from u to v and σu,v(x)
stands for the number of all shortest directed paths from u to v passing through the vertex x.
Note that in the definition of B(x) we consider only such ordered pairs (u, v) for which there
exists a directed u, v-path in D, i.e., for which σu,v 6= 0.

Gutman and Škrekovski [10] showed that for a connected graph G the following holds

W (G) =
∑

x∈V (G)

B(x) +

(

n

2

)

.

This formula shows that the Wiener index is related to the betweenness centrality of a vertex
x ∈ V (G).

We extend the above relation to directed graphs. Let P (D) denote the set of ordered pairs
(u, v) such that there exists a directed path from u to v in D.

Theorem 4. For any digraph D of order n

W (D) =
∑

x∈V (D)

B(x) + |P (D)|.

Proof. Let (u, v) ∈ P (D). For every i, 1 ≤ i ≤ d(u, v)− 1, denote

Ni(u, v) = {x ∈ V (D) : d(u, x) = i and d(x, v) = d(u, v)− i}.

Then
⋃d(u,v)−1

i=1 Ni(u, v) contains exactly the internal vertices of shortest u, v-paths. Now
choose j, 1 ≤ j ≤ d(u, v)− 1. Since every shortest u, v-path contains exactly one vertex of
Nj(u, v) we have

∑

x∈Nj(u,v)
σu,v(x) = σu,v. Hence,

∑

x∈Nj(u,v)

σu,v(x)

σu,v
= 1,

which means that
∑

x∈V (D)\{u,v}

σu,v(x)

σu,v

= d(u, v)− 1,
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since σu,v(y) = 0 for x ∈ V (D) \
⋃d(u,v)−1

i=1 Ni(u, v).
Now we derive the desired relation:

∑

x∈V (D)

B(x) =
∑

x∈V (D)

∑

(u,v)∈P (D)
u 6=v, x/∈{u,v}

σu,v(x)

σu,v

=
∑

(u,v)∈P (D)
u 6=v

∑

x∈V (D)\{u,v}

σu,v(x)

σu,v

=
∑

(u,v)∈P (D)
u 6=v

(d(u, v)− 1)

= W (D)− |P (D)|.

Since in a strongly connected digraph there is a directed path between every ordered pair
of vertices, we derive the following.

Corollary 5. Let D be a strongly connected digraph of order n. Then,

W (D) =
∑

x∈V (D)

B(x) + 2

(

n

2

)

.

4 Orientations of trees with the maximum Wiener in-

dex

A vertex v in a directed tree T is core if for every vertex u of T , there exists a directed path
in T from u to v or from v to u. Notice that then in each component C of T − v all edges
point in the direction towards v or all edges point in the direction from v. See Figure 1 for
an example of a directed tree with two core vertices and a directed tree that does not contain
any core vertex.

A different view of the very same notion can be described as follows. An orientation of
a tree is called no-zig-zag if there is no subpath in which edges change the orientation twice.
Note that a directed tree has a core vertex if and only if its orientation is no-zig-zag.

Conjecture 6. Let T be a tree. Then, every orientation of T achieving the maximum Wiener
index is no-zig-zag.

This conjecture is true for all trees on at most 10 vertices, see [11]. In order to prove
further results that support the conjecture, first recall a simple observation from [13].
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Observation 7. Let D be a digraph. Let D− be obtained from D by reversing the orientation
of all arcs of D. Then W (D−) = W (D).

Using the following lemma we can prove Conjecture 6 for some classes of trees.

Lemma 8. If D is an orientation of a tree T with the maximum Wiener index, then all paths
of T whose internal vertices have degree two are directed paths in D.

Proof. Let v be a vertex of degree two in T and let u1 and u2 be the two neighbors of v in T .
Let D be an orientation of T with the maximum Wiener index. Split D at v, that is, replace
v by v1 and v2, so that the arc originally incident with u1 and v is now incident with u1 and
v1, while the arc originally incident with u2 and v is now incident with u2 and v2, and denote
the resulting digraphs by D1 and D2. Then D is obtained from D1 ∪ D2 by identifying v1
with v2. Suppose that both arcs adjacent with v are directed to (or that both are directed
from) v in D. Then W (D) = W (D1) + W (D2). Now, take D, reverse the orientation of all
arcs of D1, and denote the resulting digraph by D′. Since dD(u1, u2) = dD(u2, u1) = 0 while
dD′(u1, u2) = 2 or dD′(u2, u1) = 2, we have W (D′) ≥ W (D1)+W (D2)+2, a contradiction.

We remark that Lemma 8 holds also for general graphs under the assumption that internal
vertices of degree two of the paths are at the same time cut-vertices.

For the next result recall that a subdivision of a star is any tree with at most one vertex
of degree 3 or greater.

Proposition 9. Let T be a subdivision of a star. Then, every orientation of T achieving the
maximum Wiener index is no-zig-zag.

Proof. By Lemma 8, if D is an orientation of G with the maximum Wiener index, then all
paths of G whose internal vertices have degree two, are directed paths in D. This implies
that in a subdivision of a star, the central vertex is a core vertex.

Theorem 10. Let Ta,b,c be a tree obtained from two stars K1,a and K1,b, central vertices of
which are connected by a path of length c, c ≥ 1. Then, every orientation of Ta,b,c achieving
the maximum Wiener index is no-zig-zag.

Proof. Let u1 and u2 be the central vertices of K1,a and K1,b, respectively. Denote by P the
u1, u2-path of length c in Ta,b,c. Let D be an orientation of Ta,b,c with the maximum Wiener
index. By Lemma 8, P is a directed path in D. By Observation 7, we may assume that P
is directed from u1 to u2 in D. Let x be the number of arcs directed towards u1 in D. Then
the number of arcs directed from u1 is a− x+ 1 since one such arc is on P . Analogously, let
y be the number of arcs directed from u2 in D. Then the number of arcs directed towards
u2 is b− y + 1. Observe that u2 is a core vertex if x = a. Analogously, u1 is a core vertex if
y = b. Hence, suppose that x < a and y < b. We will show that in such a case there is an
orientation D′ of Ta,b,c with W (D′) > W (D).
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First suppose that x < a − x. Let z be a vertex of K1,a in Ta,b,c, such that zu1 is an arc
of D. Denote w(z) =

∑

dD(z, v), where the sum is taken over all vertices v of Ta,b,c which
are not in K1,a. Reverse all arcs of K1,a in D and denote the resulting digraph by D′. Since
dD(v1, v2) = dD′(v1, v2) if none of v1, v2 are pendant vertices ofK1,a and dD(v1, v2) = dD′(v2, v1)
if both v1, v2 are vertices of K1,a, to find W (D′)−W (D) we need to consider pairs with one
vertex being pendant in K1,a and the other not being in K1,a. Hence, W (D′) − W (D) =
[(a−x)− x] · w(z), and so W (D′) > W (D).

Now suppose that y < b− y. This case can be proved analogously as the case x < a− x,
considering z being a vertex of K1,b such that u2z is an arc of D, and defining w(z) =
∑

dD(v, z) where the sum is taken over all vertices v of Ta,b,c which are not in K1,b. Now if D′

is obtained from D by reversing all arcs of K1,b, then W (D′)−W (D) = [(b−y)−y] ·w(z) > 0.
Hence, in what follows we assume x ≥ a− x and y ≥ b− y.

Suppose that y ≥ x. Reverse all arcs u1z of K1,a and denote the resulting digraph by D′.
Then dD(v1, v2) = dD′(v1, v2) if neither v1 nor v2 is an out-neighbor of u1 in K1,a in D. Let
z be an out-neighbor in K1,a of u1 in D. Then the sum of distances dD(v, z) taken over all
vertices v of Ta,b,c is exactly 2x+1, while the sum of distances dD′(z, v) is at least 3y+2+ 1.
Hence, W (D′)−W (D) > (a− x)(3y − 2x) > 0 since x < a and y > 0 as y ≥ b− y.

Finally, suppose that x ≥ y. Reverse all arcs zu2 of K1,b and denote the resulting digraph
by D′. Analogously as above we get W (D′)−W (D) > (b− y)(3x− 2y) > 0.

Consequently, either u1 or u2 is a core vertex of D.

We remark that generalization of Proposition 10 to trees with at most two vertices of
degree at least three seems to be rather technical.

5 Orientations of graphs with the minimum Wiener in-

dex

Another problem is to find an orientation of a graph that yields the minimum possible Wiener
index. As already mentioned in the introduction, Plesńık [16] proved that this problem is NP-
hard for strongly connected orientations of graphs. However, one might consider the following
conjecture.

Conjecture 11. For every graph G, the value Wmin(G) is achieved for some acyclic orienta-
tion of G.

This is certainly true for bipartite graphs. Namely, by orienting all edges of such a graph
G so that the corresponding arcs go from one bipartition to the other, we obtain a digraph
D with W (D) = |E(G)|. As obviously Wmin(G) ≥ |E(G)|, this case is established.

Now we turn our attention to graphs with higher chromatic number. Our next conjecture
is motivated by the Gallai-Hasse-Roy-Vitaver theorem, which states that a number k is the
smallest number of colors among all colorings of a graph G if and only if k is the largest
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number for which every orientation of G contains a simple directed path with k vertices. In
other words, the chromatic number χ(G) is one plus the length of a longest path in a special
orientation of the graph which minimizes the length of a longest path. The orientations for
which the longest path has the minimum length always include at least one acyclic orientation.

A graph orientation is called k-coloring-induced, if it is obtained from some proper k-
coloring such that each edge is oriented from the end-vertex with the bigger color to the
end-vertex with the smaller color.

Conjecture 12. Wmin(G) is achieved for a χ(G)-coloring-induced orientation.

As mentioned above, Conjecture 12 holds for bipartite graphs and trivially it holds for
complete graphs. By computer it was tested also for the Petersen graph.

If Conjecture 12 is not true in general, it may be satisfied at least for 3-colorable graphs.
For such graphs we can use the following lemma.

Lemma 13. Let G be a graph and let D be an orientation of G with arcs xu and uy. If d
is the degree of u in G, then D contains at least d − 1 directed paths of length two with the
central vertex u.

Proof. Let z be a neighbor of u in G, other than x and y (if such a vertex does not exist, the
claim follows immediately). If zu ∈ A(D) then z, u, y is a directed path of length two in D.
If uz ∈ A(D) then x, u, z is a directed path of length two. Together with the path x, u, y we
obtain d− 1 required directed paths.

With the help of Lemma 13 we are able to prove that some classes of graphs satisfy
Conjecture 12.

Theorem 14. Let G be a graph with at most one cycle. Then, Wmin(G) is achieved for a
χ(G)-coloring-induced orientation.

Proof. Since Conjecture 12 is true for bipartite graphs, we may assume that G has a cycle C of
odd length ℓ. Let D be an orientation of G with the minimum Wiener index. Since D contains
|E(G)| paths of length 1, which are obviously shortest paths, we have W (D) ≥ |E(G)|.

Since the length of C is odd, there must be three consecutive vertices x, u, y on C such
that xu, uy ∈ A(D). Let d be the degree of u in G. By Lemma 13, in D there are at least
d − 1 directed paths of length two with central vertex u. If ℓ ≥ 5, then all these paths of
length two are shortest paths, which gives W (D) ≥ |E(G)| + 2(d−1). On the other hand if
ℓ = 3, then x, u, y is not necessarily a shortest path but all the remaining paths of length
two with central vertex u are shortest paths as G contains only one cycle. Consequently,
W (D) ≥ |E(G)|+ 2(d−2).

Now color all the neighbors of u except x by 1, color u by 2 and x by 3. Then extend
this partial coloring to a proper 3-coloring of G using only the colors 1 and 3. Observe that
such an extension is possible since the length of the unique cycle C in G is odd. If we denote
by D′ the digraph induced by this coloring, then W (D′) = |E(G)| + 2(d−2) if ℓ = 3, while
W (D′) = |E(G)|+ 2(d−1) if ℓ ≥ 5.
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Observe that from the above proof we have that if G is a unicyclic graph in which the
unique cycle has odd length l and if d∗ is the minimum degree of a vertex of this unique cycle,
then Wmin(G) = |E(G)|+ 2d∗ − 4 if ℓ = 3, while Wmin(G) = |E(G)|+ 2d∗ − 2 if ℓ ≥ 5.

Theorem 15. Let G be a graph of a prism. Then, Wmin(G) is achieved for a χ(G)-coloring-
induced orientation.

Proof. Let V (G) = {ui,j; where 0 ≤ i ≤ 1 and 0 ≤ j ≤ ℓ− 1} and E(G) = (∪ℓ−1
j=0u0,ju1,j) ∪

(∪1
i=0(∪

ℓ−1
j=0ui,jui,j+1)), where the addition in subscript is modulo ℓ. If ℓ is even then G is

bipartite and Conjecture 12 is true. Thus, suppose that ℓ is odd. Let D be an orientation of
G with the minimum Wiener index.

Since ℓ is odd, there is j0 such that either u0,j0−1, u0,j0, u0,j0+1 or u0,j0+1, u0,j0, u0,j0−1 is a
directed path of length 2. By Lemma 13, there are two paths of length 2 in D with central
vertex u0,j0. Analogously, there is j1 such that either u1,j1−1, u1,j1, u1,j1+1 or u1,j1+1, u1,j1, u1,j1−1

is a directed path of length 2. By Lemma 13, there are two paths of length 2 with central
vertex u1,j1.

So there are four directed paths of length 2, one connecting u0,. with u0,., one connecting
u1,. with u1,., and two connecting u0,. with u1,.. Since the last two paths may connect identical
pair of vertices, we consider only one of them. If ℓ ≥ 5, this gives W (D) ≥ |E(G)| + 6
as all three paths of length 2 are shortest paths. On the other hand if ℓ = 3, then we get
W (D) ≥ |E(G)|+ 2.

Now color the vertices u0,0, u0,1, u0,2, u0,3, . . . , u0,ℓ−2, u0,ℓ−1 by colors 1, 3, 1, 3, . . . , 3, 2, re-
spectively; and color the vertices u1,0, u1,1, u1,2, u1,3, . . . , u1,ℓ−2, u1,ℓ−1 by colors 2, 1, 3, 1, . . . , 1, 3,
respectively. Observe that this coloring is proper. If we denote by D′ the digraph induced by
this coloring, then W (D′) = |E(G)|+ 2 if ℓ = 3, while W (D′) = |E(G)|+ 6 if ℓ ≥ 5.
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Figures

Figure 1: The graph on the left has two core vertices, while the right one has no core vertex.
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