This is a preprint of an article accepted for publication in Applied Mathematics and Computation ©2015 (copyright owner as specified in the journal).
An inequality between the edge-Wiener index and the Wiener index of a graph

Martin Knora,b, Riste Škrekovskib,c,d,
Aleksandra Tepehb,e

aSlovak University of Technology in Bratislava, Faculty of Civil Engineering, Department of Mathematics, Radlinského 11, 813 68, Bratislava, Slovakia,
knor@math.sk

bFaculty of Information Studies, 8000 Novo Mesto, Slovenia,
cFAMNIT, University of Primorska, 6000 Koper, Slovenia,
dFaculty of Mathematics and Physics, University of Ljubljana, 1000 Ljubljana,
skrekovski@gmail.com

eFaculty of Electrical Engineering and Computer Science, University of Maribor, Smetanova ulica 17, 2000 Maribor, Slovenia,
aleksandra.tepeh@gmail.com

Abstract

The Wiener index $W(G)$ of a connected graph G is defined to be the sum $\sum_{u,v} d(u,v)$ of distances between all unordered pairs of vertices in G. Similarly, the edge-Wiener index $W_e(G)$ of G is defined to be the sum $\sum_{e,f} d(e,f)$ of distances between all unordered pairs of edges in G, or equivalently, the Wiener index of the line graph $L(G)$. Wu [37] showed that $W_e(G) \geq W(G)$ for graphs of minimum degree 2, where equality holds only when G is a cycle. Similarly, in [24] it was shown that $W_e(G) \geq \frac{\delta^2}{4} W(G)$ where δ denotes the minimum degree in G. In this paper, we extend/improve these two results by showing that $W_e(G) \geq \frac{\delta^2}{4} W(G)$ with equality satisfied only if G is a path on 3 vertices or a cycle. Besides this, we also consider the upper bound for $W_e(G)$ as well as the ratio $\frac{W_e(G)}{W(G)}$. We show that among graphs G on n vertices $\frac{W_e(G)}{W(G)}$ attains its minimum for the star.

Keywords: Wiener index, Gutman Index, Line graph

1 Introduction

For a graph G, let $\text{deg}(u)$ and $d(u,v)$ denote the degree of a vertex $u \in V(G)$ and the distance between vertices $u, v \in V(G)$, respectively. Let $L(G)$ denote the line graph of
G, that is, the graph with vertex set $E(G)$ and two distinct edges $e, f \in E(G)$ adjacent in $L(G)$ whenever they share an end-vertex in G. Furthermore, for $e, f \in E(G)$, we let $d(e, f)$ denote the distance between e and f in the line graph $L(G)$.

In this paper we consider three important graph invariants, called Wiener index (denoted by $W(G)$ and introduced in [36]), edge-Wiener index (denoted by $W_e(G)$ and introduced in [21]) and Gutman index (denoted by $\text{Gut}(G)$ and introduced in [12]), which are defined as follows:

$$W(G) = \sum_{\{u,v\} \subseteq V(G)} d(u, v),$$
$$W_e(G) = \sum_{\{e,f\} \subseteq E(G)} d(e, f),$$
$$\text{Gut}(G) = \sum_{\{u,v\} \subseteq V(G)} \deg(u) \deg(v) \cdot d(u, v).$$

Observe that the edge-Wiener index of G is nothing but the Wiener index of the line graph $L(G)$ of G. Note also that in the literature a slightly different definition of the edge-Wiener index is sometimes used; for example, in [20] edge-Wiener index is defined to be $W_e(G) + \binom{n}{2}$ where $W_e(G)$ is defined as above and n is the order of G.

The Wiener index and related distance-based graph invariants have found extensive application in chemistry, see for example [14, 15, 34], and [2, 8, 16, 17, 18, 30, 31] for some recent studies. The Wiener index of a graph was investigated also from a purely graph-theoretical point of view (for early results, see for example [9, 33], and [4, 25, 26, 38] for some surveys). Generalizations of Wiener index and relationships between these were studied in a number of papers (see for example [3, 5, 6, 20]), and relationships between generalized graph entropies and the Wiener index (among other related topological indices) were established in [28]. New results on the Wiener index are constantly being reported, see for instance [10, 19, 23, 29, 35] for recent research trends.

Wu [37] showed that $W_e(G) \geq W(G)$ for graphs of minimum degree 2 where equality holds only when G is a cycle. Similarly, in [24] it was shown that $W_e(G) \geq \frac{2\delta - 1}{\delta} W(G)$ where δ denotes the minimum degree in G. In this paper, we improve these two results by showing that $W_e(G) \geq \frac{4}{\delta} W(G)$ with equality satisfied only if G is a path on 3 vertices or a cycle. One of the closely related distance-based graph invariant is the Szeged index [11], and a relation between the Szeged index and its edge version was recently established in [27].

In [3] it was proved that $W_e(G) \leq \frac{2^2}{3\pi} + O(n^{3/2})$ for graphs of order n. Using the result of [32] we improve this bound to $W_e(G) \leq \frac{2^2}{3\pi} + O(n^4)$. We also consider the ratio $\frac{W_e(G)}{W(G)}$ and show that this ratio is minimum if G is the star S_n on n vertices. Consequently, if G is a graph on n vertices, then $\frac{W_e(G)}{W(G)} \geq \frac{n^2-2}{2(n-1)}$.

2 Distances, average distance and D_α relations

Note that for any two distinct edges $e = u_1u_2$ and $f = v_1v_2$ in $E(G)$, the distance between e and f equals

$$d(e, f) = \min\{d(u_i, v_j) : i, j \in \{1, 2\}\} + 1. \quad (1)$$

In the case when e and f coincide, we have $d(e, f) = 0$. In addition to the distance between two edges we will also consider the average distance between the endpoints of
two edges, defined by
\[
s(u_1u_2, v_1v_2) = \frac{1}{4} \left(d(u_1, v_1) + d(u_1, v_2) + d(u_2, v_1) + d(u_2, v_2) \right).
\]

Notice that \(s(e, f) = \frac{1}{2} \) when \(e \) and \(f \) coincide. The average distance of endpoints is in an interesting relationship with the Gutman index of a graph. Namely, if one likes to consider the version of edge-Wiener index where the distances between edges are replaced by the average distances of their endpoints, then what one gets is essentially the Gutman index, see Lemma 1.

A variation to the following result was mentioned in [24, 37], where the sum in (2) is taken over all ordered pairs of edges. In our case the sum runs over all 2-element subsets of \(E(G) \).

Lemma 1. Let \(G \) be a connected graph. Then

\[
\sum_{\{e,f\} \subseteq E(G)} s(e, f) = \frac{1}{4} \left(\operatorname{Gut}(G) - |E(G)| \right).
\]

Proof. Consider the sum on the left-hand side of (2). We can rewrite it as

\[
\frac{1}{4} \sum_{uw, vz \subseteq E(G)} \left(d(u, v) + d(u, z) + d(w, v) + d(w, z) \right).
\]

Now, for any two non-adjacent vertices of \(G \), say \(u \) and \(v \), the distance \(d(u, v) \) appears in the above sum precisely once for each pair of edges, where one of these edges is incident with \(u \) and the other is incident with \(v \). Thus, \(d(u, v) \) appears in total precisely \(\deg(u) \cdot \deg(v) \) times. And, if \(u \) and \(v \) are two adjacent vertices of \(G \), then the distance \(d(u, v) = 1 \) appears in that sum precisely \(\deg(u) \cdot \deg(v) - 1 \) times. Thus, the above sum equals

\[
\frac{1}{4} \left[\sum_{uw \in E(G)} \deg(u)\deg(v)d(u, v) + \sum_{uv \in E(G)} \left(\deg(u)\deg(v) - 1 \right)d(u, v) \right],
\]

which is the right-hand side of (2).

Now we define the following notions. Let \(G \) be a graph. For a pair of edges \(e \) and \(f \) of \(G \) we define the *difference*

\[
D(e, f) = d(e, f) - s(e, f).
\]

Moreover, if \(D(e, f) = \alpha \), we say that \(e, f \) form a pair of type \(D_\alpha \) or that the pair \(e, f \) belongs to the set \(D_\alpha \). Note that if \(e = f \), then \(D(e, f) = -\frac{1}{2} \). Denote by \(\mathcal{I} \) the set \(\{0, \frac{1}{4}, \frac{1}{2}, \frac{3}{4}, 1\} \). Note that \(\sum_{\alpha \in \mathcal{I}} |D_\alpha| = \binom{|E(G)|}{2} \). Next easy lemma shows that \(D(e, f) \in \mathcal{I} \) whenever \(e \neq f \).

Lemma 2. In a connected graph, every pair of distinct edges belongs to \(D_\alpha \) for some \(\alpha \in \mathcal{I} \).
Proof. Let \(e = u_1u_2 \) and \(f = v_1v_2 \) be two distinct edges. We may assume that
\[
d(u_1, v_1) = \min_{i,j \in \{1,2\}} \{d(u_i, v_j)\}.
\]
Let \(k = d(u_1, v_1) \). Notice that
\[
d(u_1, v_2), d(u_2, v_1) \in \{k, k + 1\} \quad \text{and} \quad d(u_2, v_2) \in \{k, k + 1, k + 2\}.
\]
If \(d(u_2, v_2) = k + 2 \), then it must hold \(d(u_1, v_2) = d(u_2, v_1) = k + 1 \), and hence \(D(e, f) = 0 \), which means that the pair \(e, f \) belongs to \(D_0 \). So, in the sequel, we assume that \(d(u_2, v_2) = k \) or \(k + 1 \). Suppose \(d(u_1, v_2) = d(u_2, v_1) = k \). If \(d(u_2, v_2) = k \), then the pair \(e, f \) belongs to \(D_1 \). And, if \(d(u_2, v_2) = k + 1 \) then the pair \(e, f \) belongs to \(D_2 \).
Suppose now that \(d(u_1, v_2) = k + 1 \) and \(d(u_2, v_1) = k \). If \(d(u_2, v_2) = k \), then again the pair \(e, f \) belongs to \(D_2 \). On the other hand, if \(d(u_2, v_2) = k + 1 \), then the pair \(e, f \) belongs to \(D_2 \). We argue similarly if \(d(u_1, v_2) = k \) and \(d(u_2, v_1) = k + 1 \). Finally, suppose that \(d(u_1, v_2) = d(u_2, v_1) = k + 1 \). If \(d(u_2, v_2) = k \), the pair \(e, f \) belongs to \(D_2 \). If \(d(u_2, v_2) = k + 1 \), the pair \(e, f \) belongs to \(D_2 \).

To prove our main result we will have to distinguish two possibilities for \(\alpha = \frac{1}{2} \).
If (according to the notation in the proof of Lemma 2) \(d(u_1, v_1) = d(u_2, v_2) = k \) and \(d(u_1, v_2) = d(u_2, v_1) = k + 1 \), then we say that the pair belongs to \(D_1 \), and if \(d(u_1, v_1) = d(u_2, v_1) = k \) and \(d(u_1, v_2) = d(u_2, v_2) = k + 1 \), we say that the pair belongs to \(D_2 \).

In Figure 1, where all different configurations of pairs of edges are presented, full lines represent the edges \(u_1u_2 \) and \(v_1v_2 \).

Proposition 3. Let \(G \) be a connected graph. Then
\[
W_e(G) = \frac{\text{Gut}(G)}{4} - \frac{|E(G)|}{4} + |D_1| + \frac{1}{4}|D_\frac{1}{2}| + \frac{1}{2}|D_\frac{3}{2}| + \frac{3}{4}|D_2|.
\]

Proof. By Lemma 1, we have
\[
W_e(G) = \sum_{\{e,f\} \subseteq E(G)} d(e,f)
= \sum_{\{e,f\} \subseteq E(G)} s(e,f) + \sum_{\{e,f\} \subseteq E(G)} D(e,f)
= \frac{\text{Gut}(G)}{4} - \frac{|E(G)|}{4} + \sum_{\{e,f\} \subseteq E(G)} D(e,f).
\]
Now, as every pair \(e, f \) belongs to precisely one of \(D_\alpha \) for some \(\alpha \in \mathcal{I} \), we have
\[
\sum_{\{e,f\} \subseteq E(G)} D(e,f) = 0 \cdot |D_0| + \frac{1}{4} \cdot |D_\frac{1}{2}| + \frac{1}{2} \cdot |D_\frac{3}{2}| + \frac{3}{4} \cdot |D_2| + 1 \cdot |D_1|,
\]
and the proof follows. \(\square \)
3 Bounds for $W_e(G)$

Klavžar and Lipovec [22] proved the following result.

Lemma 4. Let G be a 2-connected graph that is not a cycle. Then G contains two isometric cycles $C_1 = u_1u_2 \ldots u_ku_{k+1} \ldots u_ru_1$ and $C_2 = u_1u_2 \ldots u_kv_{k+1} \ldots v_rv_1$, where $r \geq s > k \geq 2$ and $v_i \neq u_j$ for $i, j \geq k + 1$.

Moreover, equality holds if and only if G is a cycle.

Proof. Let G be a 2-connected graph. It is well-known that if an edge $e = xy$ belongs to a cycle, then it must belong to an isometric cycle. (In order to obtain such a cycle just take the edge e and a shortest path distinct from the path e connecting x and y, which must exist since xy lies on a cycle.) Let E_0 (resp. E_1) be the set of edges that belong to some isometric cycle in G of even (resp. odd) length. Since $|E(G)| = |E_0| + |E_1| - |E_0 \cap E_1|$, we have $|E(G)| \leq |E_0| + |E_1|$.

Notice that if e is an edge of an even isometric cycle C, and e' is its antipodal edge on C, then the pair e, e' belongs to D_2'. Let G_0 be a graph such that $V(G_0) = E_0$ and two vertices are adjacent in G_0 if the corresponding edges in G belong to a pair in D_2'. This gives us

$$|E_0| = |V(G_0)| \leq \sum_{v \in V(G_0)} \deg(v) = 2|E(G_0)| = 2|D_2'|,$$

as every vertex in $V(G_0)$ is of degree at least 1, since every edge of E_0 is at least in some pair of D_2'.

Similarly, if e is an edge of an odd isometric cycle C, and e_1, e_2 are antipodal edges of e, then the pairs e, e_1 and e, e_2 belong to D_4'. Defining a graph G_1 with $V(G_1) = E_1$ and two vertices being adjacent in G_1 if the corresponding edges in G belong to a pair in D_4', we get

$$|E_1| = 2|V(G_1)| \leq \sum_{v \in V(G_1)} \deg(v) = 2|E(G_1)| = 2|D_4'|,$$

since every vertex in $V(G_1)$ is of degree at least 2, as every edge of E_1 is at least in two pairs of D_4'. Thus $|E_1| \leq |D_4'|$ and $2|D_2'| + |D_4'| \geq |E_0| + |E_1| \geq |E(G)|$.

If G is an even cycle, we clearly have $|E_0| = 2|D_2'|$ and $|E_1| = 0$, and if G is an odd cycle, then $|E_1| = |D_4'|$ and $|E_0| = 0$. Thus, if G is a cycle, we have equality in (4). Now, we show that as soon as G is not a cycle, strict inequality holds in (4). By Lemma 4, there exist two different isometric cycles C and C' such that $C \cap C'$ is a path of length at least one. Denote this path by S and let u_1u_2 be the first edge on this path.
If one of the cycles C and C' is even and the other is odd, we have $u_1 u_2 \in E_0 \cap E_1$, thus $|E(G)| < |E_0| + |E_1|$, which readily implies $|E(G)| < 2|D_{1/2}^+| + |D_{1/4}|$.

Now assume that both C and C' are even. Observe that every pair of edges that lie on an isometric path belongs to D_0. Thus, since S is isometric, the edge that is antipodal to the edge $u_1 u_2$ on C (C', respectively) belongs to $C \setminus S$ ($C' \setminus S$, respectively). This means that the degree of the vertex in G_0 that corresponds to $u_1 u_2$ is at least 2, which implies strict inequality in (5), i.e $|E_0| < 2|D_{1/2}^+|$ and thus $|E(G)| \leq |E_0| + |E_1| < 2|D_{1/2}^+| + |D_{1/4}|$.

Similarly, if both C and C' are odd, we observe that the two antipodal edges of $u_1 u_2$ in C are different from the antipodal edges of $u_1 u_2$ in C'. This yields a strict inequality in (6) (since the vertex corresponding to $u_1 u_2$ is of degree at least 4 in G_1) and the result follows.

To prove the main theorem in case of regular graphs the following observation will be needed.

Lemma 6. Suppose that $G \neq K_2$ is a regular graph containing bridges. Then every end-block of G contains an edge e such that for every bridge b the pair e, b is in $D_{1/2}^+$.

Proof. Let G be a regular graph of degree k. Since $G \neq K_2$, we have $k \geq 2$. Let B be an end-block, and let v be the cut-vertex incident with B. Since $k \geq 2$, B contains at least 3 vertices. Moreover, all vertices of B are of degrees k in B except v.

We claim that B is a non-bipartite graph. Suppose to the contrary that B is bipartite with bipartition L, R of $V(B)$. Assume that $v \in R$. Then $k|L| = |E(B)| = k(|R| - 1) + \deg_B(v)$, which implies that k divides $\deg_B(v)$, a contradiction.

For each $i \geq 0$, denote by L_i the vertices of B at the distance i from v. As B is non-bipartite, some L_i will contain adjacent vertices. Hence, there is an edge $e = u_1 u_2$ of B with $d(u_1, v) = d(u_2, v)$.

Now we will show that e is the required edge. For any bridge $b = v_1 v_2$ notice that $d(v_1, v) \neq d(v_2, v)$, otherwise we obtain that b lies on a cycle. So, we may assume that $d(v_1, v) = d(v_2, v) + 1$. As B is an end-block attached to the rest of the graph at v, every shortest path from a vertex of B to a vertex in $G - B$ must contain the vertex v. Hence

$$d(u_1, v_2) = d(u_1, v) + d(v, v_2) = d(u_2, v) + d(v, v_2) = d(u_2, v_2),$$

and similarly, $d(u_1, v_1) = d(u_2, v_1)$. Thus,

$$d(u_1, v_2) = d(u_2, v_2) = d(u_1, v_1) - 1 = d(u_2, v_1) - 1,$$

and hence the pair e, b is in $D_{1/2}^+$. \qed

Now we are ready to prove the main result.

Theorem 7. Let G be a connected graph of minimum degree δ. Then,

$$W_e(G) \geq \frac{\delta^2}{4} W(G)$$

with equality holding if and only if G is isomorphic to a path on three vertices or a cycle.
Proof. We distinguish two cases.

Case 1: G is non-regular.

Then G has a vertex $w \in V(G)$ of degree at least $\delta + 1$. By Proposition 3, we have

$$4W_e(G) = \text{Gut}(G) - |E(G)| + 4|D_1| + |D_{\frac{3}{2}}| + 2|D_{\frac{1}{2}}| + 3|D_{\frac{4}{2}}|$$

$$\geq \text{Gut}(G) - |E(G)|$$

$$\geq \delta^2 \sum_{\{u,v\} \in V(G) \setminus \{w\}} d(u,v) + (\delta + 1) \sum_{u \in V(G) \setminus \{w\}} \deg(u)d(u,w) - |E(G)|$$

$$\geq \delta^2 W(G) + \sum_{u \in V(G) \setminus \{w\}} \deg(u) - |E(G)|$$

$$\geq \delta^2 W(G).$$

Note that in order to obtain equality in (7), no edge lies on a cycle by Lemma 5, otherwise we have $|D_{\frac{3}{2}}| > 0$ or $|D_{\frac{1}{2}}| > 0$. This implies that G is a tree, and so $\delta = 1$. Moreover, each edge is incident with w, as we need that

$$\sum_{u \in V(G) \setminus \{w\}} \deg(u) = |E(G)|,$$

which implies that G is a star. And finally, we need $\deg(w) = \delta + 1 = 2$, which implies that G is isomorphic to P_3. This establishes the case.

Case 2: G is regular.

Let B be the set of bridges of G and let E_c be the set of edges of G that lie on at least one cycle. Then $E(G) = B \cup E_c$ and $B \cap E_c = \emptyset$. One can check that if a pair of edges belongs to $D_{\frac{1}{2}}$ or $D_{\frac{3}{2}}$, then this pair belongs to the same block. Now, applying Lemma 5 to every nontrivial block of G, i.e. to every block containing a cycle, we obtain cumulatively that

$$2|D_{\frac{1}{2}}| + |D_{\frac{3}{2}}| \geq |E_c|.$$

If G has bridges, i.e. if $B \neq \emptyset$, then G has at least two end-blocks. Now, Lemma 6 assures the existence of two distinct edges e' and e'' such that for every bridge b each of the pairs b, e' and b, e'' belongs to $D_{\frac{3}{2}}$. So we have

$$|D_{\frac{3}{2}}| \geq 2|B|.$$

Now, starting with the equality (3) and using the fact that $\text{Gut}(G) = \delta^2 W(G)$ for regular graphs, we obtain

$$4W_e(G) = \text{Gut}(G) - |E(G)| + 4|D_1| + |D_{\frac{3}{2}}| + 2|D_{\frac{1}{2}}| + 3|D_{\frac{4}{2}}|$$

$$= \delta^2 W(G) - |E_c| - |B| + 4|D_1| + |D_{\frac{3}{2}}| + 2|D_{\frac{1}{2}}| + 2|D_{\frac{3}{2}}| + 3|D_{\frac{4}{2}}|$$

$$\geq \delta^2 W(G) - |E_c| - |B| + 4|D_1| + |E_c| + 4|B| + 3|D_{\frac{4}{2}}|$$

$$= \delta^2 W(G) + 4|D_1| + 3|B| + 3|D_{\frac{4}{2}}|$$

$$\geq \delta^2 W(G).$$

Note that in order to obtain equality in (7), $B = \emptyset$, i.e., G must have no bridges. So there are no trivial blocks in G. Next, in order to have the equality, by Lemma 5 every nontrivial block must be a cycle. This means that all blocks of G are cycles. Consequently, since G is regular, we conclude that G is a cycle. \qed

Now we consider the upper bound for $W_e(G)$. In [32] we have the following theorem:
Theorem 8. Let G be a connected graph on n vertices. Then

$$\text{Gut}(G) \leq \frac{2^4}{5^5} n^5 + O(n^4).$$

Using this theorem we prove the following statement.

Theorem 9. Let G be a connected graph on n vertices. Then

$$\text{We}(G) \leq \frac{2^2}{5^5} n^5 + O(n^4).$$

Proof. For all pairs of edges $e, f \in E(G)$ and for all u_i, v_j, where $e = u_iu_2$, $f = v_1v_2$ and $i, j \in \{1, 2\}$, we sum the distances $d_{L(G)}(e, f)$. In this way we get $4\text{We}(G)$. Now we group these distances according to the pairs u_i, v_j. That is, for all pairs of vertices $u, v \in V(G)$ (including the pairs of identical vertices) we take all edges e incident to u and all edges f incident to v, and we sum $d_{L(G)}(e, f)$. Let e be an edge incident to u and let f be an edge incident to v. Then

$$d_{L(G)}(e, f) \leq d_G(u, v) + 1.$$

By $c(u, v)$ we denote the sum $\sum_{e, f} d_{L(G)}(e, f)$ taken over all edges e, f such that e is incident with u and f is incident with v. Then

$$c(u, v) = \sum_{e, f} d_{L(G)}(e, f) \leq \deg(u)\deg(v)\left(d_G(u, v) + 1\right).$$

By Theorem 8, we have

$$4\text{We}(G) = \sum_{u \neq v} c(u, v) + \sum_u c(u, u) \leq \sum_{u \neq v} \deg(u)\deg(v)\left(d_G(u, v) + 1\right) + \sum_u (\deg(u))^2 \cdot 1 \leq \text{Gut}(G) + \sum_{u \neq v} \deg(u)\deg(v) + \sum_u (\deg(u))^2 \leq \frac{2^4}{5^5} n^5 + O(n^4) + O(n^4) + O(n^3) = \frac{2^4}{5^5} n^5 + O(n^4).$$

4 A lower bound for $\text{We}(G)/\text{W}(G)$

The problem of finding the graphs on n vertices, whose line graph has maximal Wiener index (i.e. whose edge-Wiener index is maximal) was given by Gutman [13] (see also [7]). Moreover, Dobrynin and Mel’nikov [7] proposed to estimate the ratio $\text{W}(L^i(G))/\text{W}(G)$, where $L^i(G)$ stands for an iterated line graph, defined inductively as

$$L^i(G) = \begin{cases} G & \text{if } i = 0, \\ L(L^{i-1}(G)) & \text{if } i > 0. \end{cases}$$

In this section we consider the case $i = 1$ and give a tight lower bound for $\frac{\text{We}(G)}{\text{W}(G)}$.

We need two well-known results. While the first one is already a folklore (and follows from a result in [9]), the second was proved by Buckley in [1].
Theorem 10. Among all trees on \(n \) vertices, the star \(S_n \) has the smallest Wiener index.

Theorem 11. If \(T \) is a tree on \(n \) vertices, \(n \geq 2 \), then \(W_e(T) = W(T) - \binom{n}{2} \).

Now we are able to prove our lower bound.

Theorem 12. Among all connected graphs on \(n \) vertices, the fraction \(\frac{W_e(G)}{W(G)} \) is minimum for the star \(S_n \), in which case \(\frac{W_e(G)}{W(G)} = \frac{n-2}{2(n-1)} \).

Proof. First we prove that if \(G \) is not a tree, then \(\frac{W_e(G)}{W(G)} \geq \frac{1}{2} \). Thus, assume that \(G \) is not a tree. We start with the following claim.

Claim 1. There is \(f : V(G) \to E(G) \) such that for every \(v \in V(G) \) the edge \(f(v) \) is incident with \(v \) and \(f(u) \neq f(v) \) whenever \(u \neq v \).

By Claim 1, \(G \) has a collection of \(n \) edges that can be considered as a system of distinct representatives for the vertices in such a way, that a vertex and an edge representing the vertex must be incident.

Proof of Claim 1. We start with trees. Since trees have only \(n-1 \) edges, they cannot satisfy Claim 1. However, for every tree \(T \) and for every vertex \(v_0 \in V(T) \), one can find \(f : V(T) \setminus \{v_0\} \to E(T) \) satisfying Claim 1. To see this, it suffices to set \(f(v) \) to be the first edge of the unique \(v, v_0 \)-path in \(T \).

Now let \(e_0 \) be an edge of \(G \) such that deleting \(e_0 \) results in a connected graph. Further, let \(T \) be a spanning tree of \(G \) which does not contain \(e_0 \). Denote by \(v_0 \) a vertex incident with \(e_0 \) in \(G \) and construct \(f : V(T) \setminus \{v_0\} \to E(T) \) as described above. Then the extension of \(f \) to \(V(T) = V(G) \) by setting \(f(v_0) = e_0 \) satisfies Claim 1.

Now we proceed with the proof of Theorem 12. Consider a function \(f \) satisfying Claim 1. We have

\[
W_e(G) = \sum_{\{e,f\} \subseteq E(G)} d_{L(G)}(e,f) \geq \sum_{\{u,v\} \subseteq V(G)} d_{L(G)}(f(u),f(v)),
\]

where the sums are taken over all pairs of distinct elements of \(E(G) \) and \(V(G) \), respectively. Hence,

\[
\frac{W_e(G)}{W(G)} \geq \frac{\sum_{\{u,v\} \subseteq V(G)} d_{L(G)}(f(u),f(v))}{\sum_{\{u,v\} \subseteq V(G)} d_G(u,v)}.
\]

The fraction on the right-hand side is the smallest when the denominator is as big as possible compared with the numerator. Since \(d_{L(G)}(f(u),f(v)) \geq d_G(u,v) - 1 \), that is \(d_G(u,v) \leq d_{L(G)}(f(u),f(v)) + 1 \), we get

\[
\frac{W_e(G)}{W(G)} \geq \frac{\sum_{\{u,v\} \subseteq V(G)} d_{L(G)}(f(u),f(v))}{\sum_{\{u,v\} \subseteq V(G)} (d_{L(G)}(f(u),f(v)) + 1)}.
\]

Since \(f(u) \neq f(v) \) whenever \(u \neq v \), we have \(d_{L(G)}(f(u),f(v)) \geq 1 \), which gives \(\frac{W_e(G)}{W(G)} \geq \frac{1}{2} \).

Thus, assume that \(G \) is a tree. By Theorem 11, we have

\[
\frac{W_e(G)}{W(G)} = \frac{W(G) - \binom{n}{2}}{W(G)}.
\]

Hence, \(\frac{W_e(G)}{W(G)} \) achieves its minimum for a tree with the minimum Wiener index. Since \(W(S_n) = 2^{\binom{n}{2}} + (n-1) = (n-1)^2 \), Theorem 10 completes the proof.
Acknowledgment. The first author acknowledges partial support by Slovak research grants VEGA 1/0781/11, VEGA 1/0065/13 and APVV 9223-10. All authors are partially supported by Slovenian research agency ARRS, program no. P1–00383, project no. L1–4292, and Creative Core–FISNM–3330-13-500033.

References

Figures

Figure 1: Different configurations of pairs of edges.