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Abstract

Balaban index is defined as J(G) = m
m−n+2

∑

1√
w(u)·w(v)

, where the sum is taken over

all edges of a connected graph G, n and m are the cardinalities of the vertex and the
edge set of G, respectively, and w(u) (resp. w(v)) denotes the sum of distances from u
(resp. v) to all the other vertices of G. In this paper, we give an upper bound for the
Balaban index of r-regular graphs on n vertices. Then we concentrate on cubic graphs.
We give a better upper bound for fullerene graphs and we show that the Balaban index
tends to zero as the number of vertices increases. This means that Balaban index does
not distinguish well the fullerene graphs when they are sufficiently large. We conclude
the paper with a conjecture on the lower bound of Balaban index for cubic graphs.

1 Introduction

In this paper we consider simple and connected graphs. For a graph G, by V (G) and

E(G) we denote the vertex and edge sets of a graph G, respectively. We set n = |V (G)|
and m = |E(G)|. For vertices, u, v ∈ V (G), by distG(u, v) we denote the distance from u

to v in G. Balaban index J(G) of G is defined as

J(G) =
m

m− n+ 2

∑

e=uv

1
√

w(u) · w(v)
,



where the sum is taken over all edges e = uv of G and for x ∈ V (G), we have w(x) =
∑

y∈V (G) distG(x, y).

Balaban index is a topological index introduced by Alexandru T. Balaban near to 30

years ago [7, 8]. This topological index was used successfully in QSAR/QSPR modeling

[21, 31]. Several recent uses can be found in [18, 26, 28]. In [10] two different approaches

were presented for the calculation of Balaban index by taking into account the chemical

nature of elements. In [11], Balaban index is compared with Wiener index regarding the

alkanes, and it was obtained that Balaban index reduces the degeneracy of the later index

and provides much higher discriminating ability. Therefore Balaban index is also called

”sharpened Wiener index”. See [12] for another reference that involves these two indicies

and infinite polymers.

However, mathematical properties of Balaban index are still not studied extensively.

There are few theoretical results known. Zhou and Trinajstić [32] give tight lower and

upper bounds for general graphs, and Sun [30] and Deng [19] give the bounds in the case

of trees. Among all trees with n vertices, the star Sn and the path Pn have the maximal

and the minimal Balaban index, respectively. Also trees with the second minimal and

maximal Balaban index, respectively, were characterized, see [19].

Several authors have studied bounds on the Balaban index over given classes of graphs.

In Balaban, Ionescu-Pallas, Balaban [16], the behavior of J for various infinite families of

graphs is discussed. In many of these cases, J tends to a constant finite value. J has the

asymptotic value π for an infinitely long n-alkane (a path). In Ghorbani [25], Balaban

index of vertex transitive graphs is studied. For the study of this index over fullerene

graphs see [17, 24, 27].

The largest Balaban index among all n-vertex unicyclic graphs and n-vertex bicyclic

graphs was considered in Deng and Chang [20] and Dong and You [22]. The Balaban index

of a class of dendrimers is computed in Ashrafi, Shabani, Diudea [3, 4]. Our research was

motivated by the following problem from Dong and Guo [22]:

Problem 1. Among n-vertex graphs, find those with the minimum Balaban index.

Using the AutoGraphiX software, Aouchiche, Caporossi, Hansen [2] showed that,

among all connected graphs on n vertices the path on n vertices is not a graph for which

the lower bound is attained, as erroneously stated in [23].

Among graphs on n vertices, Balaban index attains its maximum for the complete



graph Kn, where

J(Kn) =

(

n
2

)

(

n
2

)

− n+ 2

(

n

2

)

1

n− 1
=

n3 − n2

2(n2 − 3n+ 4)
,

which is slightly more than n
2
. Its minimum value among n-vertex graphs is not known.

However, if we consider n-vertex trees, then the Balaban index attains its minimum for

the path on n vertices Pn, see [19, 30], and limn→∞ J(Pn) = π, see [16]. One may expect

that, if G is an n-vertex r-regular graph, then J(Pn) ≤ J(G) ≤ J(Kn). In the next section

we show that this is not the case. We prove that if G is an n-vertex r-regular graph (i.e.

a graph where each vertex has r neighbors), then J(G) tends to 0 as n tends to ∞. In

other words, zero is also an accumulation point for Balaban index.

2 Balaban index of regular graphs

In this section we concentrate on r-regular graphs with r ≥ 3. In the following result we

give an upper bound for J(G) for such graphs.

Theorem 2. Let G be an r-regular graph on n vertices with r ≥ 3. Then

J(G) ≤ r2(r − 1)2

2(r − 2)2⌊logr−1
(r−2)n+2

r
⌋
.

Proof. Let u ∈ V (G) and let ni be the number of vertices at distance i from u. Thus,

w(u) =
∑

i

i · ni and
∑

i

ni = n .

Since the graph is r-regular, we have ni ≤ r · (r − 1)i−1. Let s and c be such that

n = 1 + r + r · (r − 1) + · · ·+ r · (r − 1)s−1 + c and 0 ≤ c < r · (r − 1)s .

Then we can bound w(u) from below in the following way:

w(u) =
s+1
∑

i=0

i · ni ≥ 1 · r + 2 · r(r − 1) + · · ·+ s · r(r − 1)s−1 + (s+ 1) · c.

In other words, a lower bound on w(u) is attained if the breadth-search tree, rooted at

u, is an almost complete tree with all leaves at distance s and maybe s + 1 from u, and

every non-leaf vertex is of degree r. So, we have

1 + (r − 1) + (r − 1)2 + · · ·+ (r − 1)s−1 =
n− 1− c

r
,



and hence
(r − 1)s − 1

r − 2
=

n− 1− c

r
,

which gives

s = logr−1

((r − 2)n+ 2− c(r − 2)

r

)

. (1)

From (1) and from c < r · (r − 1)s we get

(r − 2)n+ 2

r
= (r − 1)s +

c(r − 2)

r
< (r − 1)s + (r − 1)s(r − 2) = (r − 1)s+1,

which means that logr−1(
(r−2)n+2

r
) < s + 1. Since logr−1(

(r−2)n+2
r

) ≥ s by (1), we have

s = ⌊logr−1(
(r−2)n+2

r
)⌋. Consequently,

w(u) ≥ s · r(r − 1)s−1 =
⌊

logr−1

((r − 2)n+ 2

r

)⌋

· r · (r − 1)⌊logr−1(
(r−2)n+2

r
)⌋−1

≥
⌊

logr−1

((r − 2)n+ 2

r

)⌋

· r · (r − 2)n+ 2

r
· 1

(r − 1)2

=
⌊

logr−1

((r − 2)n+ 2

r

)⌋

· (r − 2)n+ 2

(r − 1)2
.

Thus,

J(G) ≤ m

m− n+ 2
·m · 1

w(u)
≤

rn
2

rn
2
− n+ 2

· rn
2

· 1

⌊logr−1(
(r−2)n+2

r
)⌋ · (r−2)n+2

(r−1)2

<
r2(r − 1)2n2

2((r − 2)n+ 2)2⌊logr−1(
(r−2)n+2

r
)⌋

<
r2(r − 1)2

2(r − 2)2⌊logr−1(
(r−2)n+2

r
)⌋

.

Now we may state the following interesting consequence.

Corollary 3. For r-regular graphs G on n vertices, where r ≥ 3, it holds

lim
n→∞

J(G) = 0.

Proof. Let G be an r-regular graph on n vertices. By Theorem 2, we have

J(G) ≤ r2(r − 1)2

2(r − 2)2⌊logr−1
(r−2)n+2

r
⌋
<

c1
ln(n) + c2

,

where c1 and c2 are constants depending on r, but not on n. Hence,

lim
n→∞

J(G) ≤ lim
n→∞

c1
ln(n) + c2

= 0.

In other words, Balaban index of regular graphs which are really big in the number of

vertices, is close to 0. The number of such graphs is enormously large, and we conclude

that the Balaban index does not distinguish them well.



3 Fullerene graphs

Here we consider chemical structures called fullerenes. Fullerenes [29] are polyhedral

molecules made of carbon atoms arranged in pentagonal and hexagonal faces, and their

corresponding graphs, fullerene graphs, are 3-connected, cubic planar graphs with only

pentagonal and hexagonal faces.

By Corollary 3, if G is the class of fullerenes, then lim
n→∞

{J(G); G ∈ G and |V (G)| =
n} = 0. We remark that the upper bound given in Theorem 2 is very rough. For

instance, if G is the well-known Buckminster fullerene, then our bound with r = 3 gives

J(G) ≤ 36
2⌊log2 62/3⌋

= 4.5, while J(G) = 90
32

· 90 · 1
278

= 2025
2224

= 0.91 (by a mistake, in [25]

this value is doubled).

In what follows, for fullerenes we give a better upper bound for the Balaban index.

Notice that the bound in the next theorem tends to 0 for n → ∞ much faster than

18/⌊log2(n+ 2)/3⌋.

Theorem 4. Let G be a fullerene graph on n ≥ 60 vertices. Then

J(G) ≤ 25√
n
.

Proof. We argue similarly as in the previous proof. Let G be a fullerene on n vertices

and let u ∈ V (G). Let ni be the number of vertices at distance i from u. Then n0 = 1

and n1 = 3. Moreover in [1, Lemma 6], it is shown that ni+1 ≤ ni + 3 for i ≥ 1. This

immediately gives the bound ni ≤ 3i for i ≥ 1. We obtain a lower bound of w(u) by

assuming each ni = 3i for i ≥ 1, as in this way we have fewer vertices at higher distance.

So

w(u) =
∑

i

i · ni ≥ 1 · 3 + 2 · 6 + 3 · 9 + · · ·+ s · 3s+ (s+ 1)c,

for some c and s, where 0 ≤ c < 3s+ 3 and 1 + 3 + 6 + 9 + · · ·+ 3s+ c = n. Hence,

3(1 + 2 + 3 + · · ·+ s+ (s+ 1)) ≥ n,

and from here

s2 + 3s+ 2 ≥ 2n

3
.

Since n ≥ 60, we have s ≥ 5, and hence s2 ≥ 3s + 2, which gives s ≥
√

n/3. Since s

is integer, we obtain

s ≥ ⌈
√

n/3⌉ .



Consequently,

w(u) ≥ 1 · 3 + 2 · 6 + 3 · 9 + · · ·+ 3⌈
√

n/3⌉2 + c(⌈
√

n/3⌉+ 1) ≥ 3

⌈
√

n/3⌉
∑

j=1

j2

> 3
2(
√

n/3)3 + 3(
√

n/3)2 +
√

n/3

6
>

n

3

√

n

3
.

Thus,

J(G) ≤ m

m− n+ 2
·m · 1

w(u)
≤

3
2
n

3
2
n− n+ 2

· 3
2
n · 1

n
3

√

n
3

≤ 27
√
3

2
√
n

<
25√
n
.

4 Cubic graphs with small value of Balaban index

There are cubic graphs for which the Balaban index tends to 0 even faster than for the

fullerene graphs. While for the fullerene graphs Balaban index is bounded by 25n−1/2,

these cubic graphs have the Balaban index 32n−1 and even less.

Let n be divisible by 4, and let Hn be a graph obtained from the cycle of length 3 · n
4
,

in which every third vertex is doubled, see Figure 1 for H16. Observe that Hn is obtained

from n/4 copies of K4− e (i.e., K4 without one edge) which are joined by n/4 extra edges

to form a connected cubic graph. Obviously, Hn has n vertices. We have the following

statement.

Figure 1: The graph H16.

Proposition 5. For positive n divisible by 4, it holds

J(Hn) ≤
32

n
.

Proof. For simplicity, let l = 3n/4. Analogously as in the previous proofs, first we give

a lower bound for w(u), u ∈ V (Hn). In order to do so, we find the total distance cw(u)



from u to the vertices of the original cycle. If l is even, then

cw(u) = 1 + 2 + · · ·+ l

2
+ 1 + 2 + · · ·+

( l

2
− 1

)

=

(

l
2
+ 1

2

)

+

(

l
2

2

)

=
l2

4
.

Similarly, if l is odd, then

cw(u) = 2
(

1 + 2 + · · ·+ l − 1

2

)

= 2

( l+1
2

2

)

=
l2 − 1

4
.

As there is at least one vertex in Hn not on the original cycle and different from u, and

as the distance of this vertex to u is at least one, for both the above cases we get

w(u) ≥ cw(u) + 1 >
l2

4
=

9n2

64
.

Hence,

J(G) ≤
3
2
n

3
2
n− n + 2

· 3n
2

· 1
9n2

64

<
32

n
.

The last result means that if n approaches to ∞, then J(Hn) approaches to 0 quite

fast. However, among cubic graphs on n vertices Hn does not have the smallest value of

Balaban index. We introduce a class of graphs Ln with J(Ln) < J(Hn). Since it seems

to be difficult to find a good upper bound for J(Ln), below we present a table of values

obtained by a computer program.

Let n be even and n ≥ 10. If 4 ∤ n, then Ln is obtained from (n − 10)/4 copies of

K4− e joined to a path by edges connecting the vertices of degree 2, to which at the ends

we attach two pendant blocks, each on 5 vertices, see Figure 2 for L18. On the other hand

if 4 | n, then Ln is obtained from (n− 12)/4 copies of K4 − e, joined into a path by edges

connecting the vertices of degree 2, to which ends we attach two pendant blocks, one on

5 vertices and the other on 7 vertices, see Figure 3 for L20.

Figure 2: The graph L18.

In Table 1 we have J(Ln) for small values of n, as well as J(Hn) (if n is divisible by

4) and the bound 32
n
.

We conclude the paper with a conjecture about Ln.

Conjecture 6. Among n-vertex cubic graphs, Ln has the smallest Balaban index.



Figure 3: The graph L20.

n 8 10 12 14 16 18 20 22 24 26 28 30
32/n 4 - 2.68 - 2 - 1.60 - 1.33 - 1.14 -
J(Hn) 1.92 - 1.50 - 1.19 - 1.00 - 0.85 - 0.75 -
J(Ln) - 1.48 1.36 1.10 1.03 0.89 0.83 0.74 0.70 0.64 0.61 0.56

Table 1: Balaban index for Hn and Ln for small numbers of vertices.

5 Concluding remarks

Beside the above conjecture one can study some more problems related to the results of

this paper. As a diversity of the Balaban index J , further indices were developed omitting

the fraction factor m/(m− n+ 2) before the sum, and it would be interesting to explore

similar bounds as in this paper for indices introduced in [13].

Shortly speaking, the main result of our paper is showing that 0 (beside π and other

values mentioned in [16]) is also an accumulation point for Balaban index. From this

point of view, it would be interesting problem to find some more new accumulation points

for this index.

In this paper, we were restricted to simple cubic but general graphs. Note that from

the point of view of chemistry one interesting class of cubic multigraphs are annulenes, and

also some other particular cubic graphs are. So as further work one could extend our study

to multigraphs as well as restrict to some particular regular graphs. See [5, 6, 9, 14, 15]

for some (chemical) results of such classes of graphs.
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