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Abstract

The Wiener index, defined as the sum of distances between all unordered pairs of
vertices in a graph, is one of the most popular molecular descriptors. Congruence relations
for the Wiener index for specific families of trees were studied by several authors. Namely,
in [Gutman, Rouvray, Comput. Chem. 14 (1990) 29–32] it is shown that Wiener indices
of any two trees on the same number of vertices and with 1-factor are congruent modulo 4.
Recently, the author of [Lin, MATCH Commun. Math. Comput. Chem. 70 (2013) 575–
582] generalized this result to trees with path factors and [Gutman, Xu, Liu, to appear
in Filomat] generalized it to even much larger class of graphs. We continue this work
by establishing congruence relations for various large families of graphs with a tree-like
structure, whose “vertices” and “edges” represent some graphs of prescribed type and
congruence.

1 Introduction

All graphs considered in this paper are finite, simple and connected. Let G be a graph.

Its vertex and edge sets are denoted by V (G) and E(G), respectively. Let u, v ∈ V (G).



The length of a shortest path in G between u and v is denoted by dG(u, v) (or by d(u, v)

when no confusion is likely).

The oldest topological index related to molecular branching is the Wiener index [14],

which was introduced in 1947. It is defined as the sum of distances between all (unordered)

pairs of vertices of G,

W (G) =
∑

{u,v}⊆V (G)

d(u, v).

The Wiener index plays an important role in organic chemistry and has been exten-

sively studied. At first it was used for predicting the boiling point of paraffins [13], but

later strong correlation between the Wiener index and the chemical properties of a com-

pound was found. Nowadays this index is a tool used for preliminary screening of drug

molecules [1]. The Wiener index also predicts binding energy of protein-ligand complex

at a preliminary stage. Besides applications in chemistry it was studied also from a purely

graph-theoretical point of view. More details can be found in some of the many surveys

[2, 4, 7, 11, 15].

In [14], Wiener proved that for a tree T

W (T ) =
∑

e=ij∈E(T )

ne(i)ne(j),

where ne(i) and ne(j) are the orders of the components of T − ij. In analogy to this

result, we have the following vertex version [9].

Theorem 1. Let T be a tree on n vertices. Then

W (T ) =
∑

v∈V (T )

∑

1≤i<j≤p

n(Ti)n(Tj) +

(

n

2

)

,

where T1, T2, . . . , Tp are the components of T − v.

In addition, Gutman and Škrekovski [9] generalized this result by proving that for a

connected graph G, W (G) =
∑

v∈V (G)B(v) +
(

n

2

)

. This formula shows that the Wiener

index is related to the betweenness centrality B(v) of the vertices v ∈ V (G), a quantity

used in theory of social networks, which measures the number of times a vertex lies on a

shortest path between two other vertices.

If a tree contains a small number of branching vertices (i.e., vertices of degree at least

three) it is suitable to apply the theorem of Doyle and Graver [3]. Some applications of

this formula were elaborated in [5, 10].



Theorem 2 (Doyle and Graver). Let T be a tree on n vertices. Then

W (T ) =

(

n+ 1

3

)

−
∑

v∈V (T )

∑

1≤i<j<k≤p

n(Ti)n(Tj)n(Tk) ,

where T1, T2, . . . , Tp are the components of T − v.

It was of interest to several authors to obtain congruence relations for the Wiener index.

The first result of this kind was proved by Gutman and Rouvray [8]. They established

the congruence relation for the Wiener index of trees with perfect matchings.

Theorem 3 (Gutman and Rouvray). Let T and T ′ be two trees on the same number of

vertices. If both T and T ′ have perfect matchings, then W (T ) ≡ W (T ′) (mod 4).

A segment of a tree is its path-subtree whose terminal vertices are branching or pen-

dant vertices. Dobrynin, Entringer and Gutman [2] obtained a congruence relation for

the Wiener index in the class of k-proportional trees. Trees of this class have the same

order, the same number of segments, and the lengths of all segments are proportional to

the coefficient k. More precisely, if l1, l2, . . . , lm and l′1, l
′
2, . . . , l

′
m are the lengths of the

segments of the trees T and T ′, respectively, then li = kri and l′i = kr′i, 1 ≤ i ≤ m, where

ri and r′i are positive integers.

Theorem 4 (Dobrynin, Entringer and Gutman). Let T and T ′ be two k-proportional

trees. Then

W (T ) ≡ W (T ′) (mod k3).

Theorem 3 was recently generalized by Lin in [12] by establishing the congruence

relation for the Wiener index of trees containing T -factors. A graph G has a T -factor

if there exist m (m = |V (G)|/r) vertex disjoint trees T1, T2, . . . , Tm such that V (G) =

V (T1)∪ V (T2)∪ · · · ∪ V (Tm) and each Ti is isomorphic to a tree T on r vertices. If T is a

path on r vertices, we say that the graph G has a Pr-factor. In this sense the well-known

perfect matching (or 1-factor) is a P2-factor.

It is well known that for a path on n vertices, W (Pn) =
(

n+1
3

)

. Lin observed that for an

arbitrary tree T on n vertices with a Pr-factor, each summand of
∑

1≤i<j<k≤p n(Ti)n(Tj)n(Tk)

contains the factor r for any (branching) vertex v ∈ V (T ). Consequently, using Theorem

2 he obtained that W (T ) ≡
(

n+1
3

)

(mod r). In addition, he proved that W (T ) ≡
(

n+1
3

)

(mod 2r) in the case when r is even. As a corollary, we obtain the main result of [12]:



Theorem 5 (Lin). If T and T ′ are two trees on the same number of vertices, both with

Pr-factors, then

W (T ) ≡ W (T ′) (mod r) for odd r,

and

W (T ) ≡ W (T ′) (mod 2r) for even r.

Recently Gutman, Xu and Liu [6] showed that the first congruence in the above result

is a special case of a much more general result on the Szeged index and as a consequence

for the Wiener index they obtained the following result (compare with Corollary 13).

Theorem 6 (Gutman, Xu and Liu). Let Γ0 be the union of connected graphs G1, G2, . . . , Gp,

p ≥ 2, each of order r ≥ 2, all blocks of which are complete graphs. Denote by Γ a graph

obtained by adding p− 1 edges to Γ0 so that the resulting graph is connected. Then

W (Γ) ≡

p
∑

i=1

W (Gi) (mod r).

Here we give a straightforward argument for both congruences from Theorem 5, and

in the next two sections we describe how the idea of that proof can be generalized to show

that the Wiener index is in the same congruence class modulo r (or 2r when r is even)

for larger families G = G(H,F) of graphs with a tree-like structure, whose “vertices” are

graphs from a given set H all of congruent order, and “edges” are from a given set of

graphs F also all of congruent order (see the beginning of Section 2 for precise definitions

of these notions).

Proof of Theorem 5. Let T be a tree on n vertices having a Pr-factor. For an

edge uv ∈ E(T ), denote by Tu and Tv the connected components of T − {uv}, such that

u ∈ V (Tu) and v ∈ V (Tv).

Let ij be an edge connecting vertices from different copies of Pr of the Pr-factor.

Then |V (Ti)| = ar and |V (Tj)| = br for some integers a and b such that (a + b)r = n.

Let T ′ be a tree obtained from T by replacing the edge ij by an edge i′j, where i′ is a

neighbour of i in Ti. Note that W (T ) = W (Ti) + W (Tj) +
∑

dT (x, y), and W (T ′) =

W (Ti)+W (Tj)+
∑

d′T (x, y), where the sum in both cases is taken over all x ∈ V (Ti) and

y ∈ V (Tj). Observe that for x ∈ Ti the difference between dT (x, i
′) and dT (x, i) is either

1 or −1. Let s be the number of vertices in V (Ti) for which dT (x, i
′)− dT (x, i) = 1. We



derive

W (T ′)−W (T ) =
∑

x

∑

y

(

dT ′(x, y)− dT (x, y)
)

=
∑

x

∑

y

(

dT (x, i
′)− dT (x, i)

)

= |Tj|
∑

x

(

dT (x, i
′)− dT (x, i)

)

= br(s− (ar − s)) = 2brs− abr2,

where x ∈ V (Ti) and y ∈ V (Tj).

Hence W (T ′) ≡ W (T ) (mod r), and clearly W (T ′) ≡ W (T ) (mod 2r) in the case

when r is even. It is left to the reader to observe that by replacing edges sequentially

as described above, one can always construct a path on n vertices which is in the same

congruence class modulo r as T . Hence the result follows.

The generalizations of the above proof are given in Theorems 10 and 17. From them

we infer some interesting consequences, for example Corollary 11, where H is composed

of cycles, and F of paths. In Corollaries 12 and 18, H is a set of trees and F is composed

of edges (paths of length 1). When all graphs of H are isomorphic to a given tree T and

F contains only edges, (i.e., we consider graphs with T -factors), we get Corollaries 14

and 20. And, as a particular case, when this prescribed tree T is a path, we obtain Lin’s

Theorem.

2 Congruence modulo r

In this section we generalize the first part of Theorem 5. However, the notation introduced

here will be used also in the next section.

Let r and t be integers, r ≥ 2 and 0 ≤ t < r. We will choose three things. First, let

H = {H1, H2, . . . , Hℓ} be a set of connected graphs, such that for all i, 1 ≤ i ≤ ℓ, we

have |V (Hi)| ≡ r − t (mod r). Second, let F = {F1, F2, . . . , Fℓ−1} be a set of connected

graphs, such that for all j, 1 ≤ j ≤ ℓ − 1, we have |V (Fj)| ≡ t + 2 (mod r). Third, for

every Fj, choose vertices v
1
j , v

2
j ∈ V (Fj) (we remark that chosen vertices v1j and v2j are not

necessarily distinct). Now, when these three items are chosen, namely H, F and pairs

of vertices in graphs of F , identify the vertices vij , 1 ≤ i ≤ 2 and 1 ≤ j ≤ ℓ, with some

vertices of H1 ∪ H2 ∪ · · · ∪ Hℓ so that each vij will be identified with exactly one vertex

of H1 ∪ H2 ∪ · · · ∪ Hℓ (if v
1
j = v2j then this vertex will be identified with two vertices of

H1 ∪ H2 ∪ · · · ∪ Hℓ). After this identification the resulting graph may be disconnected.

Denote by G = G(H,F) the class of those graphs obtained by this identification process,



which are connected.

In Fig. 1 we have one graph G of G for given parameters r, t and ℓ, and for given sets

H, F and {v1j , v
2
j}

ℓ−1
j=1. The vertices of Hj ’s are depicted by full circles in Fig. 1 and the

edges of Hi’s are thick. Observe that |V (H1)| ≡ |V (H2)| ≡ |V (H3)| ≡ |V (H4)| ≡ 7 − 3

(mod 7) and |V (F1)| ≡ |V (F2)| ≡ |V (F3)| ≡ 3 + 2 (mod 7).

Figure 1: A graph of G for r = 7, t = 3, ℓ = 4 and given Hi’s, Fj ’s and vkj ’s.

In the definition above, there are ℓ graphs in H, ℓ− 1 graphs in F , and each graph of

F connects two graphs of H. Since the resulting structures (graphs in G) are connected,

if we contract every Hi to a single vertex and we consider Fj ’s as edges joining pairs of

these contracted vertices, then the resulting graph is a tree. In this way, H1, H2, . . . , Hℓ

can be regarded as supervertices, F1, F2, . . . , Fℓ−1 as superedges, and the corresponding

graph is called an associated supergraph. For example, for the graph depicted in Fig. 1

the associated supergraph is the claw K1,3 with central supervertex H2 and pendant

supervertices H1, H3 and H4.

Now we define a representative graph ΓG for G (recall that in ΓG we fixed H, F and

{v1j , v
2
j}

ℓ−1
j=1). For every i, 1 ≤ i ≤ ℓ, choose one vertex of V (Hi) and denote it by ui. Then

ΓG is obtained from H1 ∪ · · · ∪Hℓ ∪ F1 ∪ · · · ∪ Fℓ−1 by identifying v1i with ui and v2i with

ui+1. Observe that the associated supergraph for ΓG is a path of length ℓ − 1 with the

ordering of supervertices (H1, H2, . . . , Hℓ). Moreover, Hi is connected with Hi+1 by the

superedge Fi, 1 ≤ i ≤ ℓ− 1.

Roughly speaking, our main results state that it does not matter how we provide the

identification, the Wiener index of all graphs in G is in the same congruence class modulo

r. We obtain this by showing that every graph from G is in the same congruence class

modulo r as ΓG .

First, we will consider the following operation: Let G ∈ G. Choose j, 1 ≤ j ≤ ℓ− 1,



and k, 1 ≤ k ≤ 2. Assume that the vertex vkj of Fj was identified with a vertex, say u,

of Ha. So detach vkj from this vertex. This will disconnect G to two components, say G1

and G2. Assume that u ∈ V (G1). Choose u′ ∈ V (H1)∪· · ·∪V (Hℓ) such that u′ ∈ V (G1),

identify vkj with u′ and denote the resulting graph by G′. If u′ ∈ V (Hb), then we denote

this operation by [Ha, Fj, Hb].

We show that the operation defined above preserves the modularity by r.

Lemma 7. Let G,G′ ∈ G, where G′ was obtained from G by the operation [Ha, Fj, Hb] as

described above. Then W (G) ≡ W (G′) (mod r).

Proof. Due to the tree structure of G, the graphs G1 and G2 are connected and

satisfy

|V (G1)| ≡ r − t (mod r) and |V (G2 − vkj )| ≡ 0 (mod r).

However, the graph G2 − vkj may be disconnected. For this reason, denote W−w(G
2) =

∑

dG2(u, v), where the sum is taken over all two-element subsets of G2 − w. Since both

V (G) and V (G′) are disjoint unions of V (G1) and V (G2 − vkj ), we have

W (G) = W (G1) +W−vkj
(G2) +

∑

dG(x, y) and,

W (G′) = W (G1) +W−vkj
(G2) +

∑

dG′(x, y), (1)

where the sums are taken over all x ∈ V (G1) and y ∈ V (G2 − vkj ). Here all the shortest

paths from x to y must contain vkj in both G and G′. Therefore, for a fixed x ∈ V (G1)

there is dx ∈ Z (where dx = dG′(x, u′)−dG(x, u)), such that for an arbitrary y ∈ V (G2−vkj )

we have dG′(x, y) = dG(x, y) + dx. Since |V (G2 − vkj )| ≡ 0 (mod r), we have

∑

x

(

∑

y

dG′(x, y)
)

=
∑

x

(

∑

y

(

dG(x, y) + dx
)

)

≡
∑

x

(

∑

y

dG(x, y)
)

(mod r),

where x ∈ V (G1) and y ∈ V (G2 − vkj ). By (1), W (G) ≡ W (G′) (mod r).

Let G ∈ G and 1 ≤ j ≤ ℓ − 1. Assume that in the process of obtaining G, v1j was

identified with ua ∈ V (Ha) and v2j was identified with ub ∈ V (Hb). Now detach ua from

v1j and detach ub from v2j , identify ua with v2j and identify ub with v1j , and denote the

resulting graph by G′. We say that G′ was obtained from G by reversing the superedge

Fj.



Let G ∈ G. In the next lemma we show that by a sequence of operations [Ha, Fj, Hb],

the graph G can be transformed to a graph G× which is either identical with ΓG, or can

be obtained from ΓG by reversing of some superedges Fj .

Lemma 8. Let G ∈ G. By a sequence of operations [Ha, Fj , Hb] the graph G can be

transformed to a graph from G, denote it by G×, such that the associated supergraph for

G× is a path with Fi connecting Hi with Hi+1, 1 ≤ i ≤ ℓ − 1, where one of v1i and v2i is

identified with ui, while the other vertex is identified with ui+1.

Proof. Let G ∈ G. First we transform G to G′, where the associated supergraph for

G′ is the path (H1, H2, . . . , Hℓ).

Assume that we already have a subpath (H1, H2, . . . , Hi) in the associated supergraph

S. Due to the tree structure, there is a unique path fromHi toHi+1 in S. Denote by Fa the

last edge of this path and denote by Hb the end vertex of Fa which is different from Hi+1.

Consequently, provide the operation [Hb, Fa, Hi]. Observe that after this operation we

have the subpath (H1, H2, . . . , Hi, Hi+1) in the associated supergraph. Hence, repeating

this procedure we obtain the required graph G′ ∈ G.

Now we transform G′ to G′′, where the associated supergraph for G′′ is the path

(H1, H2, . . . , Hℓ), analogously as in the associated supergraph for G′, but in G′′ the su-

pervertices Hi and Hi+1 are connected by the superedge Fi.

Assume that we already have a subpath with superedges (H1, F1, H2, F2, . . . . . . , Fi−1,

Hi) in the associated supergraph S. Suppose that Fi does not connect Hi with Hi+1 in

S, but instead it connects Hj with Hj+1 for some j, j > i. For every k, i ≤ k < j,

denote by Fk′ the superedge connecting Hk with Hk+1 in S (see Fig. 2). Now provide

the operation [Hj , Fi, Hi]. This attaches Fi to Hi (see Fig. 2). Consequently, provide

[Hj−1, F(j−1)′ , Hj+1], [Hj−2, F(j−2)′ , Hj], . . . , [Hi, Fi′, Hi+2]. Finally, provide [Hj+1, Fi, Hi+1]

(see Fig. 2). After these steps we have a subpath with edges (H1, F1, H2, F2, . . . , Fi−1, Hi,

Fi, Hi+1) in the associated supergraph. Hence, repeating this procedure we obtain the

required graph G′′ ∈ G.

Finally, providing [Hi, Fi, Hi] we can attach the corresponding vertex vji to ui, and

providing [Hi+1,Fi, Hi+1] we can attach v3−j
i to ui+1. Hence, repeating this procedure we

can transform G′′ to a graph G×, such that the associated supergraph for G× is a path

(H1, F1, H2, F2, . . . , Fℓ−1, Hℓ), where one of v
1
j and v2j is identified with ui, while the pther

vertex is identified with ui+1.



Figure 2: Sequence of supergraphs during the process of obtaining G′′ from G′.

In the next lemma we show that for the graph G× from Lemma 8 it holds W (G×) ≡

W (ΓG) (mod r).

Lemma 9. Let G ∈ G and 1 ≤ j ≤ ℓ − 1. Let G′ be obtained from G by reversing the

superedge Fj. Then W (G) ≡ W (G′) (mod r).

Proof. Assume that v1j was identified with ua ∈ V (Ha) and v2j was identified with

ub ∈ V (Hb) in G. Let G1 and G2 be the connected components obtained after detaching

the vertex v1j from ua and v2j from ub, such that ua ∈ V (G1) and ub ∈ V (G2).

Having two vertices of V (G), their distance in G differs from that in G′ only if one of

the vertices is in Fj − {v1j , v
2
j} and the other is in V (G1) ∪ V (G2). Hence,

W (G)−W (G′) =
∑

(

dG(x, y)− dG′(x, y)
)

+
∑

(

dG(y, z)− dG′(y, z)
)

,

where the first sum is taken over all x ∈ V (G1) and y ∈ V (Fj−{v1j , v
2
j}), while the second

sum is taken over all y ∈ V (Fj − {v1j , v
2
j}) and z ∈ V (G2). Since all the paths from x to

y (from y to z, respectively) must pass through ua (through ub, respectively), we have

W (G)−W (G′) = |V (G1)|
∑

(

dG(ua, y)− dG′(ua, y)
)

+ |V (G2)|
∑

(

dG(y, ub)− dG′(y, ub)
)

,

where the sums are taken over all y ∈ V (Fj − {v1j , v
2
j}). Since G′ was obtained from G



by reversing Fj , we have dG(ua, y) = dFj
(v1j , y) = dG′(y, ub) and dG′(ua, y) = dFj

(y, v2j ) =

dG(y, ub).

This yields

W (G)−W (G′) =
(

|V (G1)| − |V (G2)|
)

∑

(

dFj
(v1j , y)− dFj

(y, v2j )
)

.

Since |V (G1)| ≡ |V (G2)| ≡ r− t (mod r), we have W (G) ≡ W (G′) (mod r), as required.

By Lemmas 7, 8 and 9, for every G ∈ G it holds W (G) ≡ W (ΓG) (mod r). Hence, we

have the main result of this section:

Theorem 10. Let G1, G2 ∈ G. Then W (G1) ≡ W (G2) (mod r).

Probably the most interesting case appears when all the superedges are paths. This

yields the following corollaries of Theorem 10:

Corollary 11. Let H1, H2, . . . , Hℓ be a collection of cycles with lengths congruent to r− t

(mod r). Further, let F1, F2, . . . , Fℓ−1 be a collection of paths of lengths congruent to t+1

(mod r). Finally, let G be a class of connected graphs obtained by identifying each end

vertex of Fj’s with exactly one vertex of H1 ∪H2 ∪ · · · ∪Hℓ so that the resulting graph is

connected. Then for every G1, G2 ∈ G we have W (G1) ≡ W (G2) (mod r).

Corollary 12. Let H1, H2, . . . , Hℓ be a collection of trees with numbers of vertices con-

gruent to r − t (mod r). Further, let F1, F2, . . . , Fℓ−1 be a collection of paths of lengths

congruent to t + 1 (mod r). Finally, let G be a class of connected graphs obtained by

identifying each end vertex of Fj’s with exactly one vertex of H1 ∪H2 ∪ · · · ∪Hℓ so that

the resulting graph is connected. Then for every G1, G2 ∈ G we have W (G1) ≡ W (G2)

(mod r).

Another interesting case appears when all the superedges are simple edges.

Corollary 13. Let H1, H2, . . . , Hℓ be a collection of connected graphs with numbers of

vertices congruent to 0 (mod r). Let G be a class of connected graphs obtained by adding

ℓ− 1 edges to H1 ∪H2 ∪ · · · ∪Hℓ. Then for every G1, G2 ∈ G we have W (G1) ≡ W (G2)

(mod r).



For graphs having T -factors we have the following corollary, which also follows from

Theorem 6.

Corollary 14. Let T be a tree with r vertices. Further, let G1 and G2 be trees with the

same number of vertices, both having a T -factor. Then W (G1) ≡ W (G2) (mod r).

We remark that an instance of Corollary 14 when T is a path on r vertices, r being

odd, is exactly the first part of Theorem 5.

3 Congruence modulo 2r when r is even

In this section we generalize the second part of Theorem 5. However, there are some

limitations in this case.

First, an analogue of Theorem 10 does not necessarily hold if some graph of H is not

a tree even if t = 0 and ℓ = 2. To demonstrate this, let r be even, r ≥ 4, ℓ = 2, t = 0, H1

is a path on r vertices, H2 is a cycle of length r− 1 with one pendant vertex attached, F1

is an edge, and v11 and v21 are the end vertices of F1. Denote by u the vertex of degree 3 in

H2. In G the edge F1 joins an end vertex of H1 with u, while in G′ the edge F1 joins an

end vertex of H1 with a neighbour of u on the cycle, see Fig. 3 for the case r = 4. Then

W (G′) = W (G) + r, and so W (G′) 6≡ W (G) (mod 2r). (For the case r = 2 it suffices to

consider the same graph as for r = 6.)

Figure 3: The graphs G and G′ demonstrating that an analogue of Theorem 10 is not
true if some graph in H is not a tree.

Next, an analogue of Theorem 10 does not necessarily hold if t > 0 even if ℓ = 2 and

H1, H2 and F1 are all paths. To demonstrate this, let r be even, r ≥ 4, ℓ = 2, t = 1, H1

and H2 are paths on r− 1 vertices, F1 is a path on 3 vertices, and v11 and v21 are different

end vertices of F1. Denote by u1 and u2 the central vertices of H1 and H2, respectively.

In G the end vertices of F1 are identified with u1 and u2, while in G′ the end vertices

of F1 are identified with u1 and a neighbour of u2, see Fig. 4 for the case r = 4. Then



W (G′) = W (G) + r, and so W (G′) 6≡ W (G) (mod 2r). (For the case r = 2 it suffices to

consider the same graph as for r = 6.)

Figure 4: The graphs G and G′ demonstrating that an analogue of Theorem 10 is not
true if t > 0.

In the light of the above examples we restrict ourselves to trees and to t = 0. Hence,

let r be an even number, r ≥ 2. Analogously as in Section 2, we choose three things.

First, let H = {H1, H2, . . . , Hℓ} be a set of trees, such that for all i, 1 ≤ i ≤ ℓ, we have

|V (Hi)| ≡ r (mod r). Second, let F = {F1, F2, . . . , Fℓ−1} be a set of trees, such that for

all j, 1 ≤ j ≤ ℓ − 1, we have |V (Fj)| ≡ 2 (mod r). Third, for every Fj , choose vertices

v1j , v
2
j ∈ V (Fj) (we remark that chosen vertices v1j and v2j are not necessarily distinct).

Now, when these three items (namely H, F and {v1j , v
2
j}

ℓ−1
j=1) are chosen, identify the

vertices vij , 1 ≤ i ≤ 2 and 1 ≤ j ≤ ℓ, with some vertices of H1∪H2∪ · · ·∪Hℓ so that each

vij will be identified with exactly one vertex of H1 ∪ H2 ∪ · · · ∪ Hℓ (if v
1
j = v2j then this

vertex will be identified with two vertices ofH1∪H2∪· · ·∪Hℓ). Denote by GT = GT (H,F)

the class of those graphs obtained by this identification process, which are connected.

We prove that the Wiener index of all graphs in GT belongs to the same congruence

class modulo 2r. For this, we improve Lemmas 7 and 9. We start with Lemma 7.

Lemma 15. Let r be even and G,G′ ∈ GT , where G′ was obtained from G by the operation

[Ha, Fj, Hb]. Then W (G) ≡ W (G′) (mod 2r).

Proof. Assume that vkj is identified with u ∈ V (Ha) in G and it is identified with

u′ ∈ V (Hb) in G′. Further, denote by G1 and G2 the two components which appear after

detaching vkj from u in G. Assume that u ∈ V (G1). Then the notation is identical with

that in the proof of Lemma 7. Moreover, |V (G1)| = ar and |V (G2 − vkj )| = br for some

integers a and b such that (a+ b)r = |V (G)|. Let u = z0, z1, . . . , zf = u′ be a path in G1.

Denote by Gzi a graph obtained from G1 ∪ G2 by identifying zi with vkj . Then Gz0 = G

and Gzf = G′. Now fix i, 0 ≤ i ≤ f − 1. We prove that W (Gzi+1
) ≡ W (Gzi) (mod 2r).



First, analogously as in the proof of Lemma 7 we have the following analogue of (1):

W (Gzi+1
)−W (Gzi) =

∑

(

dGzi+1
(x, y)− dGzi

(x, y)
)

,

where the sum is taken over all x ∈ V (G1) and y ∈ V (G2 − vkj ). A shortest path from

x ∈ V (G1) to y ∈ V (G2 − vkj ) contains zi(=vkj ) in Gzi and zi+1(=vkj ) in Gzi+1
. Since both

Gzi and Gzi+1
are trees, the difference dGzi+1

(x, y)−dGzi
(x, y) = dGzi+1

(x, zi+1)−dGzi
(x, zi)

is either 1 or −1. Let s be the number of vertices x in V (G1) for which dGzi+1
(x, zi+1)−

dGzi
(x, zi) = 1. Then

W (Gzi+1
)−W (Gzi) =

∑

x

∑

y

(

dGzi+1
(x, y)− dGzi

(x, y)
)

= br
∑

x

(

dGzi+1
(x, zi+1)− dGzi

(x, zi)
)

= br(s− (ar − s)) = 2brs− abr2,

where x ∈ V (G1) and y ∈ V (G2 − vkj ). Since r is even, we conclude W (Gzi+1
) ≡ W (Gzi)

(mod 2r).

In this way we get W (Gz0) ≡ W (Gz1) ≡ W (Gz2) ≡ · · · ≡ W (Gzf ) (mod 2r), and

hence W (G) ≡ W (G′) (mod 2r).

Now we prove an analogue of Lemma 9.

Lemma 16. Let r be even, G ∈ GT and 1 ≤ j ≤ ℓ − 1. Let G′ be obtained from G by

reversing the superedge Fj. Then W (G) ≡ W (G′) (mod 2r).

Proof. Assume that v1j was identified with ua ∈ V (Ha) and v2j was identified with

ub ∈ V (Hb) in G. Let G1 and G2 be the connected components obtained after detaching

the vertex v1j from ua and v2j from ub, such that ua ∈ V (G1) and ub ∈ V (G2). Then

analogously as in the proof of Lemma 9 we obtain

W (G)−W (G′) =
(

|V (G1)| − |V (G2)|
)

∑

(

dFj
(v1j , y)− dFj

(y, v2j )
)

, (2)

where the sum is taken over all y ∈ V (Fj − {v1j , v
2
j}).

Let y ∈ V (Fj − {v1j , v
2
j}). Recall that Fj is a tree. Thus, if dFj

(v1j , v
2
j ) is even,

then dFj
(v1j , y) − dFj

(y, v2j ) is also even. On the other hand if dFj
(v1j , v

2
j ) is odd, then

dFj
(v1j , y) − dFj

(y, v2j ) is also odd. Since |V (Fj)| ≡ 2 (mod r), there is even number of



vertices in V (Fj − {v1j , v
2
j}), and so the sum in (2) is even. Finally, from |V (G1)| ≡

|V (G2)| ≡ 0 (mod r), we conclude W (G) ≡ W (G′) (mod 2r).

By Lemmas 8, 15 and 16, for every G ∈ GT it holds W (G) ≡ W (ΓGT ) (mod 2r).

Hence, we obtain the main result of this section:

Theorem 17. Let r be even and G1, G2 ∈ GT . Then W (G1) ≡ W (G2) (mod 2r).

Analogously as in the previous section, we present some corollaries of Theorem 17. If

all the superedges are paths, we obtain:

Corollary 18. Let r be even and let H1, H2, . . . , Hℓ be a collection of trees which numbers

of vertices are congruent to 0 (mod r). Further, let F1, F2, . . . , Fℓ−1 be a collection of paths

of lengths congruent to 1 (mod r). Finally, let G be a class of connected graphs obtained

by identifying each end vertex of Fj’s with exactly one vertex of H1∪H2∪ · · ·∪Hℓ so that

the resulting graph is connected. Then for every G1, G2 ∈ G we have W (G1) ≡ W (G2)

(mod 2r).

Another interesting case appears when all the superedges are simple edges.

Corollary 19. Let r be even and let H1, H2, . . . , Hℓ be a collection of trees which numbers

of vertices are congruent to 0 (mod r). Let G be a class of connected graphs obtained by

adding ℓ− 1 edges to H1 ∪H2 ∪ · · · ∪Hℓ. Then for every G1, G2 ∈ G we have W (G1) ≡

W (G2) (mod 2r).

For graphs having T -factors we have the following corollary.

Corollary 20. Let r be even and let T be a tree with r vertices. Further, let G1 and G2

be trees with the same number of vertices, both having a T -factor. Then W (G1) ≡ W (G2)

(mod 2r).

We remark that an instance of Corollary 20 when T is a path on r vertices, r being

even, is exactly the second part of Theorem 5.
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[9] I. Gutman, R. Škrekovski, Vertex version of the Wiener theorem, MATCH Commun.

Math. Comput. Chem. 72 (2014) 295–300.

[10] I. Gutman, Y. N. Yeh, S. L. Lee, J. C. Chen, Wiener numbers of dendrimers, MATCH

Commun. Math. Comput. Chem. 30 (1994) 103–115.

[11] I. Gutman, Y. N. Yeh, S. L. Lee, Y. L. Luo, Some recent results in the theory of the

Wiener number, Indian J. Chem. 32A (1993) 651–661.

[12] H. Lin, A congruence relation for the Wiener index of trees with path factors,

MATCH Commun. Math. Comput. Chem. 70 (2013) 575–582.
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