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If G is a simple graph, then con(G), the common neighborhood graph of G, has the same
vertex set as G, and two vertices of con(G) are adjacent if they have a common neighbor in
G. We show that for any bipartite graph G the Wiener index (i.e., sum of distances between
all pairs of vertices) of con(G) is always smaller than the Wiener index of G. For general
graphs, however, the Wiener index of common neighbor graphs can be greater. This fact
is surprising, since we also show that the diameter of con(G) is at most the diameter of G.
We present constructions of two infinite classes of graphs, chemical and unicyclic graphs,
which have this property.
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1 Introduction

Let G be a simple graph with vertex set V (G). The common neighborhood graph (or,

shorter: congraph) of G, denoted by con(G), is the graph with V (con(G)) = V (G), in

which two vertices are adjacent if they have a common neighbor in G. The motivation

for the consideration of congraphs came from the theory of graph energy [2, 11].

In [1, 3] some basic properties of congraphs have been established. Furthermore,

common neighbor graphs are implictly used in the graph coloring theory. Namely,

an injective coloring of a graph G is precisely a proper vertex coloring of con(G) (see

e.g. [5, 8, 10, 12] for some results on this topic).

One of the obvious questions that can be asked in connection with congraphs is

the following: If Inv(G) is a numerical invariant of the graph G, what can be said

about Inv(con(G))? In particular, how Inv(G) and Inv(con(G)) are related?

In this paper, we focus our attention to the Wiener index. For reasons outlined in

the subsequent section, it looks plausible (or even, “self-evident”) state the following:

Conjecture 1. Let G be a graph. Then

W (con(G)) ≤ W (G) .

and the equality holds if and only if con(G) is isomorphic to G.

In what follows, we show that this conjecture is false. Moreover, for every integer d

we construct infinite families of graphs, such that the relationW (con(G))−W (G) = d

holds. Furthermore, we also found a construction of an infinite family of chemical

graphs for which the common neighborhood graphs have greater value than the orig-

inal graphs.

At this point we need to slightly re-define the Wiener index.

Let G be a connected graph and x, y ∈ V (G). The distance between the vertices

x and y, denoted by d(x, y|G), is defined as the length of (= number of edges in) a

shortest path connecting x and y [4]. Then, the Wiener index is defined as [6, 7, 9]

W = W (G) =
∑

{x,y}∈V (G)

d(x, y|G) . (1)

For evident reasons, this definition cannot be applied to non-connected graphs.
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Let d(G, k) be the number of vertex pairs of the graph G whose distance is equal

to k. Then the Wiener index satisfies the relation

W = W (G) =
∑

k≥1

k d(G, k) . (2)

However, contrary to formula (1), the right–hand side of formula (2) is applicable also

to non-connected graphs. Furthermore, if the Wiener index is defined via Eq. (2),

and if the graph G consists of disconnected components G1 and G2, then

W (G) = W (G1) +W (G2) .

In what follows we understand that the Wiener index of a disconnected graph is

calculated according to Eq. (2). When speaking of the Wiener indices of congraphs,

this is important, because of the following result:

Theorem 1. [1] Let G be a connected bipartite graph, so that its vertex set is parti-

tioned as V (G) = Va ∪ Vb . Then con(G) consists of two disconnected components Ga

and Gb, whose vertex sets are Va and Vb , respectively. Both graphs Ga and Gb are

connected.

By means of Eq. (2), we now have:

Corollary 2. Using the same notation as in Theorem 1,

W (con(G)) = W (Ga) +W (Gb) .

2 On Wiener Index of Common Neighborhood

Graphs of Bipartite Graphs

Throughout this section we assume that G is a connected bipartite graph, and that

the notation used in Theorem 1 is applicable.

Lemma 3. If x, y ∈ Va , then d(x, y|Ga) = 2 d(x, y|G). Analogously, if x, y ∈ Vb ,

then d(x, y|Gb) = 2 d(x, y|G).
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Proof. Suppose that x, y ∈ Va . Let a shortest path between the vertices x and y in

the graph G embraces the vertices x, u1, v1, u2, v2, . . . , uk−1, vk−1, uk, y (in that order).

Then, evidently, v1, v2, . . . , vk−1 ∈ Va and u1, u2, . . . , uk ∈ Vb, and d(x, y|G) = 2k.

Now, according the way in which the common neighborhood graphs are con-

structed, x, v1, v2, . . . , vk−1, y is a shortest path between the vertices x and y in con(G).

Consequently, d(x, y|con(G)) = k.

Lemma 3 implies the following:

Theorem 4. Using the same notation as in Theorem 1, the Wiener indices of a

bipartite graph and its congraph are related as:

W (G) = 2W (con(G)) +
∑

x∈Va ; y∈Vb

d(x, y|G) . (3)

Proof.

W (G) =





∑

{x,y}∈Va

+
∑

{x,y}∈Vb

+
∑

x∈Va ; y∈Vb



 d(x, y|G)

= 2
∑

{x,y}∈Va

d(x, y|Ga) + 2
∑

{x,y}∈Vb

d(x, y|Gb) +
∑

x∈Va ; y∈Vb

d(x, y|G)

= 2W (Ga) + 2W (Gb) +
∑

x∈Va ; y∈Vb

d(x, y|G)

and Eq. (3) follows from Corollary 2.

Bearing in mind that

∑

x∈Va ; y∈Vb

d(x, y|G) ≥ |Va| |Vb|

we obtain:

Corollary 5. If G is a connected bipartite graph with bipartition V (G) = Va ∪ Vb,

then

W (G) ≥ 2W (con(G)) + |Va| |Vb|

with equality if and only if G is the complete bipartite graph Ka,b .
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Corollary 6. If G is a bipartite (not necessarily connected) graph with m edges, then

W (G) ≥ 2W (con(G)) +m

with equality if and only if every component of G is a complete bipartite graph (which

can also be an isolated vertex).

3 On Wiener Index of Common Neighborhood

Graphs of Non-bipartite Graphs

From the results in the preceding section, we see that in the case of bipartite graphs,

the Wiener index of the congraph is necessarily (much) smaller than the Wiener index

of original graph. There are non-bipartite graphs for which G ∼= con(G), namely the

complete graphs and the odd cycles [1]. For these graphs, W (G) = W (con(G)).

Bearing this in mind, it appears to be plausible to expect that Conjecture 1 holds.

This expectation is further corroborated by Corollary 8.

The fact that the conjecture is false is surprising, since we now show that the

diameter of G, denoted by diam(G), is always at least the diameter of con(G). By

de(u, v) we denote the length of a shortest walk of even length between the vertices

u and v. Notice that de(u, v) in G is precisely d(u, v) in con(G).

Lemma 7. Let G be a connected non-bipartite graph. Then, for every pair of vertices

u, v ∈ V (G) we have

de(u, v) ≤ 2 diam(G) .

Proof. Let u, v ∈ V (G) and let u = a0, a1, . . . , ak = v be the shortest walk of even

length between u and v (since G is connected and not bipartite such a walk always

exists). If d(u, v) is even, then de(u, v) = d(u, v) ≤ diam(G). Thus, suppose that

d(u, v) < de(u, v) = k. Let j be the smallest index such that d(u, aj) < j. If

d(u, aj) ≤ j − 3, then d(u, aj−1) ≤ j − 2, which contradicts the choice of j. On the

other hand, if d(u, aj) = j − 2 then there is an even walk from u to v via aj of length

k − 2, a contradiction. Hence, d(u, aj) = j − 1.

Now, let i be the biggest index such that d(ai, v) < k− i. By analogous argument

we obtain that d(ai, v) = k− i−1. In case when j ≤ i then there is an even walk from
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u to v of length k − 2, a contradiction. Hence, i < j. Therefore, d(u, aj) = j − 1 and

d(aj, v) = k − j, which means that de(u, v) = d(u, aj) + 1 + d(aj, v) ≤ 2diam(G) + 1.

However, since de(u, v) is even, we infer that de(u, v) ≤ 2diam(G).

Observe that if u = a0, a1, . . . , ak = v is a shortest walk of even length, then for

every even i the triple ai, ai+1, ai+2 forms a path of length 2. This, together with

Lemma 7, gives the following.

Corollary 8. Let G be a connected non-bipartite graph. Then

diam(con(G)) ≤ diam(G) .

Let G be a connected non-bipartite graph. By Corollary 8, we have that the

diameter of con(G) is at most equal to the diameter of G. Moreover, con(G) has at

least as many edges as G. Therefore, one would expect that W (con(G)) ≤ W (G).

In many cases, this inequality is true, but there are also exceptional graphs violat-

ing it. In the sequel we describe a class of chemical graphs (i.e., graphs with maximum

degree at most 4) {Gk}
∞
k=0, for which limk→∞[W (Gk)−W (con(Gk))] = −∞.

Let k ≥ 0. Take a graph consisting of a triangle, to which there is attached (by

one of its endpoints) a path of length k + 2. This graph has exactly one vertex of

degree 3, one vertex of degree 1, and all the other vertices have degree 2. Attach to

each vertex of degree 2, with the exception of the three neighbors of the vertex of

degree 3, two pendent edges, and denote the resulting graph by Gk, see Fig. 1.

v0 v1 vk−1 vk

Figure 1: The graph Gk .

Finally, denote ∆k = W (Gk)−W (con(Gk)). Then we have:

Theorem 9. For every integer i ≥ 0 it holds

∆2i = −3i2 + 9i+ 2 and ∆2i+1 = −3i2 + 6i+ 11 .

Proof. It is easy to compute that W (G0) = 17 and W (con(G0)) = 15 (in Fig. 2 for

every vertex the sum of distances to all other vertices is determined), and so ∆0 = 2.
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Figure 2: The graphs G0 and con(G0) together with the sums of all distances for
every vertex.

Now, we construct Gk from Gk−1 by attaching three new vertices to the vertex

vk−1. These new vertices are depicted black in Fig. 1. For every other (i.e., white)

vertex we compute its contribution to the difference ∆k−∆k−1 for every black vertex.

Since this contribution is the same for every black vertex, we denote it in Fig. 3. For

v2i

i+1

i+1

i+1

i-2 i i-5 1 -2i-2

-2ii-3 iii-3 -2i

v2i+1

i+2

i+2

i

i+1 i-3 i 1 -2i-3

-2i-1i+1 i-4
i-4

i+1
-2i-1

Figure 3: The contributions of the vertices to the difference for every black vertex in
graphs G2i and G2i+1.

instance, in G1 the vertex of degree 4 has distance 1 to a black vertex in G1 and 4 to

a black vertex in con(G1), so its contribution to ∆1−∆0 is −3 for every black vertex.

Denote by δk the sum of the contributions of all white vertices to a black vertex

and let ∆′
k = ∆k −∆k−1. Then, ∆

′
k = 3δk + 3, since there are three black vertices in

Gk and each pair of them contributes additional 1 to ∆′
k.

In what follows, we compute δk. First, we add the contributions of the vertices of

the triangle and the contributions of the vertices of degree at least 2 at even distance

from a black vertex. Then, we add the contributions of the remaining vertices of

degree at least 2 and finally the contributions of the pendent vertices. Hence,

δ2i = 3(i+ 1) +
i
∑

j=1

j +
i
∑

j=0

(

1 + 2j − (2(i+ 1) + 1− j)
)
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+ 2

(

i
∑

j=2

j +
i
∑

j=1

(2j + 1− (2i+ 4− j))

)

= −i− 1

and

δ2i+1 = 3i+ 4 +
i+1
∑

j=1

j +
i
∑

j=0

(1 + 2j − (2i+ 4− j))

+ 2

(

i+1
∑

j=2

j +
i
∑

j=1

(2j + 1− (2i+ 5− j))

)

= −i+ 2 .

Therefore ∆′
2i = 3δ2i + 3 = −3i and ∆′

2i+1 = 3δ2i+1 + 3 = −3i+ 9. Thus we infer

∆2i = 2 +
i−1
∑

j=0

(−3j + 9) +
i
∑

j=1

(−3j) = −3i2 + 9i+ 2

and

∆2i+1 = 2 +
i
∑

j=0

(−3j + 9) +
i
∑

j=1

(−3j) = −3i2 + 6i+ 11 .

For non-chemical graphs we can prove even more. In particular, for every integer

∆, we show that there are infinitely many graphs G such that W (G)−W (con(G)) =

∆.

Denote by G the graph consisting of one triangle to which a path of length 4 is

attached (by one of its endvertices). Denote the three vertices of degree 2 of the

attached path by a, b, and c, respectively. Now attach to a, b, and c exactly q, r, and

s pendent edges, respectively, and denote the resulting graph by Gq,r,s.

Let ∆q,r,s = W (Gq,r,s) − W (con(Gq,r,s)). In the following theorem we show that

for every integer ∆ there is infinitely many graphs Gq,r,s such that ∆q,r,s = ∆.

Theorem 10. For every integer ∆, there are infinitely many graphs Gq,r,s such that

∆q,r,s = ∆. In particular, for every ℓ = 3z −∆ such that s = 4ℓ, r = 4ℓ2 − 2− (5ℓ+

∆)/3, and q = r − s+ 2ℓ are all positive, we have ∆q,r,s = ∆.

Proof. It is easy to compute that W (G0,0,0) = 51 and W (con(G0,0,0)) = 45, and so

∆0,0,0 = 6. Now we construct Gq,r,s from G0,0,0 by attaching q pendent vertices to a,

r pendent vertices to b, and finally s pendent vertices to c.
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a b c a b c

-2 1

1

1

1

-1

2

a b c

2

2

0

1 -3 1

-2

-1

a b c

2

2

2

-1 1 -4

1

2 -2

Figure 4: The graphs G0,0,0, G3,0,0, G3,3,0, and G3,3,3.

Analogously as in the previous proof, we compute the contribution of the vertices

to ∆q,r,s for every added vertex, in particular, we compute it for the vertices of the

same type, e.g. all pendent vertices at vertex a are of the same type, and then

multiply the values with the number of the vertices of that type. The contributions

(for each of the black vertices) are depicted in Fig. 4.

Since the sums of contributions when attaching pendent vertices to a, b, and c

are 3, 1 − q, and 3 + 2q − 2r, respectively, and since each pair of attached vertices

contributes by 1 (observe that the distance between them is 2), we have that

∆q,r,s = 6 + 3q +

(

q

2

)

+ (1−q)r +

(

r

2

)

+ (3+2q−2r)s+

(

s

2

)

=
1

2

(

q2 + 5q + r2 + r + s2 + 5s− 2qr + 4qs− 4rs+ 12
)

.

Our aim is to find infinitely many solutions of ∆q,r,s = ∆, i.e.,

q2 + 5q + r2 + r + s2 + 5s− 2qr + 4qs− 4rs+ 12− 2∆ = 0 . (4)

After multiplying by 4, Eq. (4) can be rewritten in the form

(2q − 2r + 4s+ 5)2 − (2s+ 5)2 = 8s2 − 24r − 48 + 8∆

that is x2 − y2 = a. We choose the solution x + y = (8s2 − 24r − 48 + 8∆)/2k and

x− y = 2k. Obviously, for such a choice it holds that 2k|(8s2−24r−48+8∆). Then

x =
2s2 − 6r − 12 + 2∆ + k2

k
and y =

2s2 − 6r − 12 + 2∆− k2

k
.
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By(5) y = 2s+ 5, so we obtain

r =
2s2 − 12 + 2∆− k2 − 2sk − 5k

6
(5)

and since x = 2q − 2r + 4s + 5, we have that 2s2−6r−12+2∆+k2

k
= 2q − 2r + 4s + 5.

After a substitution for r from Eq. (5), we obtain 2k2+2sk+5k
k

= 2q − 2r + 4s+ 5, and

so q = r − s+ k.

Now we return our attention back to r. Let k be even, say k = 2ℓ. Then

r =
2s2 − 12 + 2∆− 4ℓ2 − 4sℓ− 10ℓ

6
=

(s− ℓ)2 − 3ℓ2 − 5ℓ+∆− 6

3
.

Choosing s = 4ℓ, we infer that r = 3ℓ2− ℓ2− 2− 5ℓ−∆
3

. Hence, by setting ℓ = 3z−∆,

then q, r, and s are integers. Obviously, if z is big enough, then q, r, and s are

non-negative.

4 Discussion

Throughout the article we have discussed the Wiener index of the common neighbor-

hood graphs. We have shown that the diameter of the common neighborhood graph is

at most the diameter of the original graph, however, the difference between the Wiener

indices of these two graphs may be arbitrarily large. In fact we have shown that even

in the case of chemical graphs the difference is grows arbitrarily. Moreover, for any

integer ∆ there is an infinite family of graphs such that W (con(G))−W (G) = ∆ for

every graph of the family. We believe that the following conjecture is true.

Conjecture 2. There is an absolute constant C such that for every graph G it holds

that

W (con(G)) ≤ C ·W (G) .

Nevertheless, it is not completely clear how the difference grows in terms of the

number of the vertices in the graphs. Let G∗ be a graph on n vertices constructed

from a path of length n/3 that has attached roughly n/3 on the first and on the

second vertex and one triangle on the last vertex. We have observed that the differ-

ence W (con(G∗)) −W (G∗) ∈ Θ(n3), more precisely the leading coefficient is n3/27.
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Regarding this, it could be interesting to determine the extremal graphs for which

the considered difference is maximal.
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