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Abstract

It was shown by Babai in 1980 that almost all Steiner triple systems

are rigid; that is, their only automorphism is the identity permutation.

Those Steiner triple systems with the largest automorphism groups are the

projective systems of orders 2n − 1. In this paper we show that each such

projective system may be transformed to a rigid Steiner triple system by at

most n Pasch trades whenever n ≥ 4.
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1 Introduction

A Steiner triple system of order v, STS(v), is an ordered pair (V,B) where V is
a v-element set (the points) and B is a set of triples from V (the blocks), such
that each pair from V appears in precisely one block. The necessary and sufficient
condition for the existence of an STS(v) is that v ≡ 1 or 3 (mod 6) [9]; such values
of v are called admissible. We often omit set brackets and commas from triples of
points so that {x, y, z}may be written as xyz when no confusion is likely, and pairs
(or n-tuples) may be treated similarly. An automorphism of an STS(v) = (V,B) is
a permutation on the points of V that preserves the set of blocks B. An STS(v) is
said to be rigid if its only automorphism is the identity permutation. Alternative
terms to “rigid” are “automorphism-free” and “asymmetric”.

It was shown by Lindner and Rosa [10] that a rigid STS(v) exists for admissible

v if and only if v ≥ 15. Subsequently, Babai [1] proved that at most vv
2( 5

48+o(1))

distinct STS(v)s have an automorphism group of order greater than 1. Since (for

admissible v) the number of distinct STS(v)s is vv
2( 1

6−o(1)) [2, 12], it follows that
the proportion of rigid STS(v)s tends to 1 as v → ∞. Speaking colloquially,
almost all Steiner triple systems are rigid.

The most symmetric STS(v)s are the projective systems; these exist when v is
of the form 2n−1. The projective STS(v) of order v = 2n−1 may be represented
on the points of Zn

2 \{0} by taking the block set to comprise all triples of points xyz
such that x⊕y⊕z = 0 in Z

n
2 . Here and subsequently we use ⊕ to denote addition

of points in Z
n
2 . We will identify the integer 2n−1an−1+2n−2an−2+ . . .+2a1+a0

with the point (an−1, an−2, · · · , a1, a0) ∈ Z
n
2 \{0} so that, for example, 12⊕5 = 9

because 12 is identified with 1100, 5 with 0101 and 9 with 1001 = 1100 ⊕ 0101.
(In the vector representation, leading zeros are suppressed so that, for example,
101 and 0101 are both identified with 5, and it is not necessary to specify n when
using ⊕.) We use the symbol Sn to denote the projective STS(2n − 1). It is well-

known that Sn has automorphism group PSL(n, 2) of order 2
n(n−1)

2

∏n

i=2(2
i − 1)

[7, page 41].
It is an interesting question how close the most and the least symmetric sys-

tems can be to one another. In this paper we investigate how far Sn is from a
rigid system of the same order. The systems S2 and S3 are, up to isomorphism,
the unique Steiner triple systems of orders 3 and 7 (the latter being generally
known as the Fano plane), so there are no rigid systems of these orders.

If T1 and T2 are disjoint sets of triples from a common point set V that cover
the same pairs of points, then the pair T = {T1, T2} is called a trade pair, and
T1 and T2 are called tradeable configurations. If an STS(v) contains a copy of
T1, then that copy may be replaced by the corresponding copy of T2 to give
another STS(v). This operation is called a T -trade. The set of points covered
by T1 and T2 is called the foundation of the trade, and the number of blocks
in each Ti (i = 1, 2) is called the volume of the trade. A Pasch configuration
or quadrilateral or 4-cycle P (a, b, c, d, e, f) is a set of four triples on six distinct
points having the form {abc, ade, bdf, cef}. The opposite Pasch configuration is
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P (a, b, c, d, e, f) = P (f, b, c, d, e, a), and this covers the same pairs with a disjoint
set of triples. If P1 and P2 are opposite Pasch configurations then P = {P1, P2} is
a trade pair and the corresponding replacement operation is called a Pasch trade.
This is the smallest possible trade in an STS(v), both by foundation and volume.

It is sometimes impossible to transform one given STS(v) to another by any
sequence of Pasch trades. For 79 of the 80 nonisomorphic STS(15)s, it is possible
to transform any one system to an isomorphic copy of another by a sequence of
Pasch trades [4]. It was shown in [5] that, by allowing more general k-cycle trades,
all 80 STS(15)s are connected. More recently, it was shown in [8] that the same is
true for STS(19)s. However, the existence of perfect Steiner triple systems [6, 3]
establishes that such transformations are not possible for all admissible orders.

Our main result is that, for n ≥ 4, the projective system Sn of order 2n − 1
may be converted to a rigid system of the same order by Pasch trades, and that n
block-disjoint Pasch trades suffice. So, if the distance between systems is measured
by Pasch trades, Sn is distance at most n from a rigid system whenever n ≥ 4.
If the distance is measured by blocks then Sn is distance at most 4n from a rigid
system whenever n ≥ 4.

2 Preliminaries

An STS(2n − 1) with point set An = {1, 2, . . . , 2n − 1}, may be extended to
an STS(2n+1 − 1) with point set An+1 by adjoining new blocks. Put Bn =
{2n, 2n + 1, . . . , 2n+1 − 1}, so that An ∪ Bn = An+1 and take the new blocks to
be all triples of the form xyz, where x ∈ An, y, z ∈ Bn and x ⊕ y ⊕ z = 0. If
this construction is applied to the projective system Sn, then Sn+1 is the result.
We will apply the construction recursively, starting with a rigid STS(15) which
may be obtained from the projective system of order 15 (that is, S4) by applying
four block-disjoint Pasch trades. At each stage of the recursion we will apply one
further block-disjoint Pasch trade and show that the resulting system is rigid.
Thus for n ≥ 4 we obtain a rigid STS(2n − 1), which we denote by S∗

n, and which
is n Pasch trades distant from Sn.

The rigid STS(15), S∗

4 , with which we start the recursion is given in Table
1. In fact it is system number 23 in the standard listing of [11]. It follows from
results in [5] that the minimum number of Pasch trades required to convert S4

to a rigid STS(15) is 4. The blocks which result from the trades are indicated
by asterisks. More generally, a block xyz of an STS(2n − 1) with point set An

will be called a projective block (pr-block for short) if x ⊕ y ⊕ z = 0, otherwise
it will be called a non-projective block (npr-block for short). Thus in Table 1,
the asterisked blocks are the npr-blocks and all remaining blocks are pr-blocks.
The number of Pasch configurations containing the point x in S∗

n will be denoted
by pn(x), and p4(x) is also tabulated in Table 1. Altogether there are 18 Pasch
configurations in S∗

4 .
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{1, 2, 4}∗ {1, 3, 5}∗ {1, 6, 12}∗ {1, 7, 13}∗ {1, 8, 10}∗ {1, 9, 11}∗

{1, 14, 15} {2, 3, 6}∗ {2, 5, 7} {2, 8, 9}∗ {2, 10, 11}∗ {2, 12, 14}
{2, 13, 15} {3, 4, 13}∗ {3, 7, 14}∗ {3, 8, 11} {3, 9, 10} {3, 12, 15}
{4, 5, 6}∗ {4, 7, 9}∗ {4, 8, 12} {4, 10, 14} {4, 11, 15} {5, 8, 13}
{5, 9, 12} {5, 10, 15} {5, 11, 14} {6, 7, 10}∗ {6, 8, 14} {6, 9, 15}
{6, 11, 13} {7, 8, 15} {7, 11, 12} {9, 13, 14}∗ {10, 12, 13}∗

x 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
p4(x) 5 5 9 7 6 5 9 8 7 9 11 8 7 6 6

Table 1. The rigid STS(15), S∗

4 .

There are two important points to note about S∗

4 . First, the Pasch configura-
tion P ∗ = P (6, 2, 3, 4, 5, 1) is the only Pasch configuration in which all four blocks
lie in one and only one Pasch configuration. Second, the block {1, 14, 15} is the
only pr-block containing the point 1. In general for n ≥ 4, we will call the triple
Dn = {1, 2n − 2, 2n − 1} the distinguished triple of order n, so {1, 14, 15} is the
distinguished triple of order 4, D4.

As previously indicated, the construction of S∗

n+1 from S∗

n is in two stages.
First we apply the recursive construction as described above, adding new points
and new projective blocks to form an STS(2n+1 − 1), denoted by Tn+1. Then
we apply a Pasch trade involving the distinguished triple of order n and three
of the new triples. We take the Pasch configuration Pn+1 = P (1, 2n − 2, 2n − 1,
2n + 1, 2n, 2n+1 − 1) in Tn+1 and trade it for the opposite Pasch configuration,
Pn+1. If {a, b, c} is one of the four blocks of S∗

n+1 lying in Pn+1, then either all
the points a, b, c are in Bn, or one is in Bn and two are in An. On the other hand,
if this block is not in Pn+1, then either all the points a, b, c are in An, or one is
in An and two are in Bn.

It is easy to show that S∗

4 is rigid. Examining Table 1, the only point lying
in 11 Pasch configurations is the point 11, so any automorphism must fix this
point. The points 8 and 12 are the unique points lying in 8 Pasch configurations,
so they are either fixed or transposed, and consideration of the block {4, 8, 12}
establishes that 4 is a fixed point. Then 9 and 13 are either fixed or transposed,
so consideration of {9, 13, 14} gives 14 fixed. But then {4, 11, 15} gives 15 fixed,
{4, 10, 14} gives 10 fixed and {5, 11, 14} gives 5 fixed. From {1, 14, 15} we deduce
that 1 is fixed and from {1, 2, 4}, 2 must be fixed. It is now trivial to show that
all the remaining points are fixed by any automorphism.
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3 Main result

In this section we prove that S∗

n is rigid for n ≥ 5. The main step in our proof is
Lemma 3.4, where we establish that any automorphism φ of S∗

n fixes the Pasch
configuration P ∗ = P (6, 2, 3, 4, 5, 1). In order to do this, in Lemmas 3.1, 3.2
and 3.3, we determine some lower bounds on the number of Pasch configurations
containing each block of S∗

j . Note that if a Pasch configuration contains three
pr-blocks and a fourth block xyz, then the sum of the three pr-blocks is both
x⊕ y ⊕ z and 0⊕ 0⊕ 0 = 0, so xyz is also a pr-block.

Lemma 3.1. Suppose that i ≥ 4 and that B = xyz is an npr-block of S∗

i which
appears in exactly k Pasch configurations in S∗

i . Then

(i) B appears in at least k − 2 Pasch configurations in S∗

i+1;

(ii) if i ≥ 5 and B 6= {1, 2i−1 − 2, 2i−1 + 1}, {1, 2i−1 − 1, 2i−1}, {2i−1 − 2,
2i−1−1, 2i−1} or {2i−1, 2i−1+1, 2i−1} then B appears in at least k Pasch
configurations in S∗

i+1;

(iii) if i ≥ 5 then B appears in at least k − 2 Pasch configurations in S∗

j for
j ≥ i+1 (at least k if B is not one of the four npr-blocks identified in (ii));

(iv) if i = 4 then B appears in exactly k Pasch configurations in S∗

j for j ≥ 4.

Proof. (i) The distinguished triple Di = {1, 2i − 2, 2i − 1} of order i is the only
block of S∗

i which is not a block of S∗

i+1. So B can only appear in fewer Pasch
configurations in S∗

i+1 if in S∗

i it lies in Pasch configurations with Di. But two
distinct blocks can lie together in at most two Pasch configurations, so B must
appear in at least k − 2 Pasch configurations in S∗

i+1.
(ii) Now suppose that i ≥ 5 and that B and Di lie together in a Pasch config-

uration Q in S∗

i . Without loss of generality, the block B = xyz cannot lie with Di

in a Pasch configuration unless x ∈ {1, 2i−2, 2i−1}. But there are no npr-blocks
of S∗

i containing the point 2i−2. The only npr-blocks of S∗

i that contain the point
2i−1 are {2i−1−2, 2i−1−1, 2i−1} and {2i−1, 2i−1+1, 2i−1}. The only remain-
ing possibility is that x = 1 and Q has blocks B,Di, {2

i − 2, y, w}, {2i − 1, z, w}.
Since there are no npr-blocks in S∗

i containing the point 2i − 2, {2i − 2, y, w}
must be a pr-block and therefore y = (2i − 2) ⊕ w. If {2i − 1, z, w} were also
a pr-block then Q would comprise three pr-blocks and one npr-block, which is
impossible. Thus {2i − 1, z, w} must be an npr-block, but the only npr-blocks
containing the point 2i−1 are {2i−1−2, 2i−1−1, 2i−1} and {2i−1, 2i−1+1, 2i−1}.
Hence {z, w} = {2i−1 − 2, 2i−1 − 1} or {2i−1, 2i−1 + 1}. Examining the resulting
four possibilities for the ordered pair (z, w), and computing y in each case, there
are just two possibilities for B when x = 1, namely {1, 2i−1 − 2, 2i−1 + 1} and
{1, 2i−1 − 1, 2i−1}. (In fact, the four blocks B identified in this paragraph each
lie in two Pasch configurations with Di, but we do not use this result.)
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(iii) By applying (i) and (ii) it follows that if i ≥ 5 then B lies in at least k− 2
Pasch configurations in S∗

j for j ≥ i + 1 (at least k if B is not one of the four
npr-blocks identified in (ii)).

(iv) In the case i = 4, note that D4 appears in no Pasch configurations in S∗

4 .
Hence B does not lie in any Pasch configurations with D4 in S∗

4 , so B appears
in at least k Pasch configurations in S∗

5 and also in S∗

i for i > 5. Suppose B lies
in an additional Pasch configuration Q in S∗

5 . At least one of the other blocks
must be an npr-block. If this is an npr-block in S∗

4 , then at least 5 points of
Q lie in A4, and in this case the remaining two blocks of Q must each contain
two points from A4 and one from B4. But the only such blocks are three of
the npr-blocks from P 5, namely {1, 14, 17}, {1, 15, 16} and {14, 15, 31}. Hence Q
must contain an npr-block not in S∗

4 and consequently B must contain one of the
points 1, 14 and 15. From Table 1, there are six npr-blocks in S∗

4 containing the
point 1, two containing the point 14 and none containing the point 15. Pairing
each of these eight npr-blocks in turn with an intersecting block from P 5 gives 16
pairs. For each such pair there are two possibilities for the formation of a Pasch
configuration, giving a total of 32 cases to be considered. In each of these cases
one of the two additional blocks contains a point from A4 and the other contains a
point from B4, and so these additional blocks cannot intersect one another and no
Pasch configuration is formed. Thus if B is an npr-block which appears in exactly
k Pasch configurations in S∗

4 , then it appears in exactly k Pasch configurations in
S∗

5 . It only remains to prove that it lies in no additional Pasch configurations in
S∗

j for j ≥ 6.
So, suppose that j ≥ 6 and that B lies in an additional Pasch configuration

Q in S∗

j , but not in S∗

j−1. As above, at least one of the other blocks must be
an npr-block. If this is an npr-block in S∗

j−1, then at least 5 points of Q lie
in Aj−1, and in this case the remaining two blocks of Q must each contain two
points from Aj−1 and one from Bj−1. But the only such blocks are the npr-blocks
{1, 2j−1 − 2, 2j−1 +1}, {1, 2j−1 − 1, 2j−1} and {2j−1 − 2, 2j−1 − 1, 2j − 1}. Hence
Q must contain an npr-block not in S∗

j−1. The only possible intersection that B
can have with such a block is the point 1 so, without loss of generality, we may
take x = 1 and the two blocks as 1yz (which implies that neither y nor z is 14
or 15) and either {1, 2j−1 − 2, 2j−1 + 1} or {1, 2j−1 − 1, 2j−1}. Note there are no
npr-blocks containing any pairs from {y, z}× {2j−1 − 2, 2j−1 − 1, 2j−1, 2j−1 +1}.
Hence, in either case, the remaining two blocks of the Pasch configuration are
pr-blocks. By adding the six entries in these two blocks in each case, it can be
seen that y ⊕ z = 2j − 1. But this contradicts the fact that y, z ∈ A4. Hence B
does not appear in any additional Pasch configurations in S∗

j for j ≥ 6.

Lemma 3.2. For i ≥ 5, all the blocks of the Pasch configuration P i lie in at least
4 Pasch configurations in S∗

i , and hence in at least 2 Pasch configurations in S∗

j

for j ≥ i+ 1.
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Proof. The blocks of Pi lie in an STS(7) subsystem of Ti with the additional
point 2i − 2 and the three additional blocks {2i−1 − 2, 2i−1, 2i − 2}, {2i−1 − 1,
2i−1 + 1, 2i − 2} and {1, 2i − 2, 2i − 1}. When Pi is traded for P i to form S∗

i , the
blocks of P i continue to form an STS(7) subsystem with the same three additional
blocks. Since every block of an STS(7) lies in 4 Pasch configurations within that
STS(7), it follows that all the blocks of P i lie in at least 4 Pasch configurations
in S∗

i .

Lemma 3.3. For i ≥ 5 every pr-block of S∗

i lies in at least 12 Pasch configurations
in S∗

i .

Proof. In S∗

4 there are 6 npr-blocks through the point 1, so in S∗

i (i ≥ 4) there are
6+ 2(i− 4) = 2i− 2 npr-blocks through the point 1. In S∗

4 there are 2 npr-blocks
through the point 14, none through the point 15 and at most 4 npr-blocks through
every other point, so in S∗

i (i ≥ 4) there are at most 4 npr-blocks through any
point other than 1.

Let xyz be any pr-block of S∗

i , where i ≥ 6. First we estimate the number
of other pr-blocks containing x. There are (2i − 2)/2 = 2i−1 − 1 blocks of S∗

i

that contain x. If x = 1, 2i − 2 of these are npr-blocks, otherwise at most 4 of
these are npr-blocks. So the number of pr-blocks through x other than xyz is
2i−1 − 2i if x = 1 and at least 2i−1 − 6 otherwise. Potentially, each of these other
pr-blocks xvw may be paired with xyz to give two Pasch configurations. A Pasch
configuration will certainly result if the two blocks generated by the pairs yv and
zw are pr-blocks (and likewise for the pairs yw and zv). But if y 6= 1 at most 8
pairs through y lie in an npr-block, and similarly for z. So, for i ≥ 6, there are
at least 2(2i−1 − 2i)− 16 = 2i − 4i− 16 ≥ 24 Pasch configurations containing the
block xyz.

Finally, in the case i = 5, direct computation establishes that for each pr-block
of S∗

5 , the minimum number of Pasch configurations in S∗

5 containing it is 12.

Lemma 3.4. For i ≥ 4 P ∗ = P (6, 2, 3, 4, 5, 1) is the only Pasch configuration
in S∗

i that has all four of its blocks lying in exactly one Pasch configuration.
Consequently, any automorphism of S∗

i maps this Pasch configuration to itself.

Proof. By computation, this is true for i = 4. Moreover, all four blocks of P ∗

are npr-blocks, so they continue to lie in exactly 1 Pasch configuration in S∗

i for
i ≥ 5. Apart from the four npr-blocks of P ∗, every other npr-block in S∗

4 lies in at
least 2 Pasch configurations in S∗

4 and hence also in S∗

i for i ≥ 5. All npr-blocks
of S∗

i other than those already present in S∗

4 arise from P j for some j ≥ 4, and
so these appear in at least 2 Pasch configurations in S∗

i . Finally, for i ≥ 5, all
pr-blocks of S∗

i appear in at least 12 Pasch configurations in S∗

i .

Theorem 3.1. For n ≥ 4, the Steiner triple system S∗

n is rigid.
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Proof. Let φ be an automorphism of S∗

n. When n = 4 we have already shown
that φ is the identity permutation, so now assume n ≥ 5. Consider P ∗ =
P (6, 2, 3, 4, 5, 1). This has blocks 124, 135, 236, 456 and it must be fixed by φ;
in other words, φ is an extension of an automorphism of this Pasch configu-
ration. A Pasch configuration has an automorphism group of order 24. Note
that the pairs 16, 25 and 34 do not appear in the blocks of P ∗, so φ(1) forces
φ(6), and φ(2) forces φ(5). Table 2 lists all the automorphisms of P ∗ in two
formats. For example, the entry labelled φ1 indicates that φ1 is the permutation
(

1 2 3 4 5 6
1 3 2 5 4 6

)

= (1)(2, 3)(4, 5)(6). Our aim is to show that only φ0 ex-

φ0 123456 (1)(2)(3)(4)(5)(6) φ12 415263 (1, 4, 2)(3, 5, 6)
φ1 132546 (1)(2, 3)(4, 5)(6) φ13 426153 (1, 4)(2)(3, 6)(5)
φ2 145236 (1)(2, 4)(3, 5)(6) φ14 451623 (1, 4, 6, 3)(2, 5)
φ3 154326 (1)(2, 5)(3, 4)(6) φ15 462513 (1, 4, 5)(2, 6, 3)
φ4 213465 (1, 2)(3)(4)(5, 6) φ16 514362 (1, 5, 6, 2)(3, 4)
φ5 231645 (1, 2, 3)(4, 6, 5) φ17 536142 (1, 5, 4)(2, 3, 6)
φ6 246135 (1, 2, 4)(3, 6, 5) φ18 541632 (1, 5, 3)(2, 4, 6)
φ7 264315 (1, 2, 6, 5)(3, 4) φ19 563412 (1, 5)(2, 6)(3)(4)
φ8 312564 (1, 3, 2)(4, 5, 6) φ20 624351 (1, 6)(2)(3, 4)(5)
φ9 321654 (1, 3)(2)(4, 6)(5) φ21 635241 (1, 6)(2, 3, 5, 4)
φ10 356124 (1, 3, 6, 4)(2, 5) φ22 642531 (1, 6)(2, 4, 5, 3)
φ11 365214 (1, 3, 5)(2, 6, 4) φ23 653421 (1, 6)(2, 5)(3)(4)

Table 2. Automorphisms of P ∗ = P (1, 2, 4, 3, 5, 6).

tends to an automorphism of S∗

n. Since φ2
21 = φ2

22 = φ3, showing that φ3 cannot
be extended will suffice to do the same for φ21 and φ22. Similarly, elimination of
φ20 (respectively, φ23) eliminates φ10 and φ14 (respectively, φ7 and φ16). We also
have φ2

8 = φ5, φ
2
12 = φ6, φ

2
17 = φ15, φ

2
18 = φ11. So we need only consider φi for

i = 1, 2, 3, 4, 5, 6, 9, 11, 13, 15, 19, 20, 23. In each case we assume that φi extends
to an automorphism of S∗

n and derive a contradiction. Note that S∗

n contains all
the blocks listed in Table 1, apart from the block {1, 14, 15}.

For i = 1, 2, φi fixes the block {1, 6, 12}, and maps {2, 5, 7} to {3, 4, 13} and
vice-versa. Hence φi fixes the point 12 and transposes 7 and 13. But then φi maps
the block {7, 12, 11} to {13, 12, 10} and vice-versa, so it transposes the points 10
and 11. But consideration of the block {10, 11, 2} then shows that φi fixes the
point 2, a contradiction.

For i = 4, 19, φi fixes the block {3, 4, 13}, and maps {2, 5, 7} to {1, 6, 12} and
vice-versa. Hence φi fixes the point 13 and transposes 7 and 12. But then it
must map the block {13, 12, 10} to {13, 7, 1}, which implies that φi(10) = 1, a
contradiction.

For i = 9, 13, φi fixes the block {2, 5, 7}, and maps {1, 6, 12} to {3, 4, 13} and
vice-versa. Hence φi fixes the point 7 and transposes 12 and 13. But then it
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must map the block {7, 12, 11} to {7, 13, 1}, which implies that φi(11) = 1, a
contradiction.

For i = 3, 20, 23, φi fixes the blocks {1, 6, 12}, {2, 5, 7} and {3, 4, 13}. So φi

fixes each of the points 7, 12 and 13. Hence φi fixes the block {7, 13, 1}, and
consequently the point 1. The blocks {7, 12, 11} and {12, 13, 10} are fixed by φi,
so the points 11 and 10 are also fixed. But then the block {2, 10, 11} establishes
that φi fixes the point 2. But points 1 and, 2 are not both fixed in any of these
cases, so we have a contradiction.

For i = 5, 6, consideration of the blocks {1, 6, 12}, {2, 5, 7} and {3, 4, 13} gives
φi(12) = 7, φi(7) = 13, so φi maps the block {7, 12, 11} to {13, 7, 1}, implying
that φi(11) = 1, a contradiction.

For i = 11, 15 consideration of the blocks {1, 6, 12}, {3, 4, 13} and {2, 5, 7} gives
φi(12) = 13, φi(13) = 7, so φi maps the block {12, 13, 10} to {13, 7, 1}, implying
that φi(10) = 1, a contradiction.

It now follows that any automorphism φ of S∗

n fixes each of the points
1, 2, . . . , 6. Consideration of the following blocks in the order given proves that
the points 7, 8, . . . , 15 are also fixed by φ: {1, 6, 12}, {2, 5, 7} ,{3, 4, 13}, {3, 7, 14},
{4, 7, 9}, {4, 8, 12}, {4, 10, 14}, {5, 10, 15} and {5, 11, 14}. Note that the block
D4 = {1, 14, 15} of S∗

4 which is destroyed by a Pasch trade in creating S∗

5 has not
been employed in this argument.

Now suppose that for some i with 4 ≤ i < n, all the points of Ai are known
to be fixed by φ; this has just been proven for i = 4. We will prove that all the
points of Bi are also fixed by φ. The system S∗

n contains the Pasch configuration
P i+1 and consequently the block {1, 2i − 1, 2i}. Hence the point 2i is fixed by φ.
The block {2, 2i, 2i + 2} lies in S∗

n, so the point 2i + 2 is also fixed by φ. Now
consider all the triples of the form {x, 2i+2, (2i+2)⊕x} for x ∈ Ai. These are all
blocks of S∗

n and so all the points (2i + 2)⊕ x (x ∈ Ai) are fixed points of φ. But
these cover all points of Bi \ {2

i + 2}. Hence all the points of Bi are fixed by φ.
Since Ai∪Bi = Ai+1, we deduce that all the points of Ai+1 are fixed by φ. Then,
by induction, φ fixes all the points of An, and so φ is the identity permutation on
An, and S∗

n is rigid.

4 Concluding remarks

In this section we investigate the scope for improvements to the result of Section
3. In the discussions below it is convenient to consider each system of order 2n−1
as having point set Zn

2 \ {0}.

Theorem 4.1. Suppose that Sn is converted to another STS, say S′

n, of the same
order by a trade T whose foundation lies in a subspace Vd ⊆ Z

n
2 of dimension d.

If d < n then S′

n is not rigid.

Proof. If d < n − 1, add points to the subspace Vd to form a subspace Vn−1 of
dimension n− 1 that contains the foundation of T . Put W = Z

n
2 \ Vn−1 so that
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|W | = 2n − 2n−1 = 2n−1. If w∗ is any fixed point of W then all the points w∗ ⊕ v
for v ∈ Vn−1 must lie in W for otherwise we have w∗ = (w∗ ⊕ v) ⊕ v ∈ Vn−1, a
contradiction. Hence W = {w∗ ⊕ v : v ∈ Vn−1}.

First suppose that xyz is a block of S′

n with x, y ∈ Vn−1. If it is an npr-
block then it arose in the trade and so z ∈ Vn−1, while if it is a pr-block then
z = x ⊕ y ∈ Vn−1. So a block with two points in Vn−1 has all three points in
Vn−1.

Second suppose that xyz is a block of S′

n with x, y ∈ W and consequently xyz
is a pr-block. Then z = x⊕ y = (w∗ ⊕ u)⊕ (w∗ ⊕ v) for some u, v ∈ Vn−1. This
gives z = u ⊕ v ∈ Vn−1, and so a block with two points in W has its third point
in Vn−1.

Now choose a fixed point v∗ 6= 0 ∈ Vn−1 and define a mapping φ on Z
n
2 by

φ(z) =

{

z if z ∈ Vn−1,
z ⊕ v∗ if z ∈ W.

If xyz is a block of S′

n with all three points in Vn−1 then φ(xyz) = xyz. On the
other hand, if xyz is a block of S′

n with x, y ∈ W then z ∈ Vn−1 and so φ(x, y, z) =
{(x⊕v∗), (y⊕v∗), z} and this is a block of S′

n because (x⊕v∗)⊕(y⊕v∗) = x⊕y = z.
Hence φ is a non-trivial automorphism of S′

n, which is therefore not rigid.

Corollary 4.1. Suppose that Sn is converted to another STS, say S′

n, of the same
order by a trade T consisting of p Pasch trades. If p < n

3 then S′

n is not rigid.

Proof. The points of a Pasch configuration generate a subspace of dimension 3.
So, if p < n

3 , then the foundation of T lies in a subspace of dimension d < n, and
the result follows.

Theorem 3.1 shows that for n ≥ 4, we can convert the projective system Sn to
a rigid system using n Pasch trades. Corollary 4.1 proves that any such conversion
requires at least n/3 Pasch trades. Our next result shows that an incremental
approach has some limitations if we wish to improve on Theorem 3.1. First we
define a projective extension.

Suppose that Un is an STS(2n − 1) on the point set Zn
2 \ {0}. Then Un may

be embedded in an STS(2n+1− 1), say Un+1, by the addition of a new coordinate
so that a point x ∈ Z

n
2 \ {0} generates two new points 0x, 1x ∈ Z

n+1
2 \ {0}, and

we also add a further new point 100 · · ·0. Each block {a, b, c} of Un generates the
block {0a, 0b, 0c} of Un+1, and the remaining blocks of Un+1 are all the triples of
the form {0x, 1y, 1z} where x⊕ y⊕ z = 0 in Z

n
2 and y 6= z. The system Un+1 will

be called the projective extension of Un. The process may be repeated to give
successive projective extensions Un+1, Un+2, . . . of Un.

Theorem 4.2. Suppose that Rn is a rigid STS(2n − 1) on the point set Zn
2 \ {0}

obtained from Sn by some sequence of block-disjoint Pasch trades. If Tn+2 is the
projective extension of Rn to a system of order 2n+2−1, then Tn+2 is not rigid and
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it cannot be converted to a rigid system by a single further block-disjoint Pasch
trade.

Proof. A block {a, b, c} of Rn generates a block {00a, 00b, 00c} of Tn+2. We will
call blocks of this form type 0 blocks. The remaining blocks, which are all pr-
blocks, are of four further types:

type 1 : {00x, 01y, 01z}, type 2 : {00x, 10y, 10z},
type 3 : {00x, 11y, 11z}, type 4 : {01x, 10y, 11z},

where, in each case, x⊕ y ⊕ z = 0.
Using this classification of blocks, we may classify the Pasch configurations of

Tn+2. If a Pasch configuration has an 00x point then it must have two blocks
containing this point, so the four blocks have the block types 0000, 0111, 0222,
0333, 1111, 1244, 1344, 2222, 2344, or 3333. If the Pasch configuration has no 00x
point then the only possibility is 4444. So there are 11 types of Pasch configuration
to consider. The type 0000 Pasch configurations correspond to those present in
Rn.

We only consider trading a block-disjoint Pasch configuration, that is to say
one that does not include any blocks resulting from trades already made in gen-
erating Rn from Sn. Thus any type 0 block involved in such a trade will be a
pr-block. We will denote the resulting system obtained from Tn+2 by Tn+2.

First we argue that Tn+2 itself is not rigid. We may consider that Tn+2 is
formed directly from Sn+2 by a sequence of Pasch trades all of whose points have
their first two coordinates 0. All the points of these trades lie in the subspace
of dimension n+ 1 given by the equation ξn+2 = 0, where ξn+2 denotes the first
coordinate of a point. So, by Theorem 4.1, Tn+2 is not rigid.

Now consider the case when Tn+2 is obtained from Tn+2 by trading a type
0000 Pasch configuration. Again, all the points of all the trades used to convert
Sn+2 to Tn+2 satisfy ξn+2 = 0, so Tn+2 is not rigid. The same argument applies
when Tn+2 is obtained from Tn+2 by trading a type 0111 or a type 1111 Pasch
configuration. For types 0222 and 2222, the argument is essentially the same but
with the equation ξn+1 = 0, where ξn+1 denotes the second coordinate of a point.
For types 0333 and 3333, the argument may be repeated but with the equation
ξn+2 ⊕ ξn+1 = 0.

Consider next trading a type 1244 Pasch configuration P . This has blocks of
the form:

{00a, 01b, 01c} (a⊕ b⊕ c = 0), {00a, 10d, 10e} (a⊕ d⊕ e = 0),
{01b, 10d, 11f} (b⊕ d⊕ f = 0), {01c, 10e, 11f} (c⊕ e⊕ f = 0).

The traded Pasch configuration P comprises the blocks:

{11f, 01b, 01c}, {11f, 10d, 10e},
{01b, 10d, 00a}, {01c, 10e, 00a}.

12



Define φ : 00x → 00x, 11x → 11x, 01x → 10(x ⊕ f), 10x → 01(x⊕ f). This
mapping stabilizes P , maps the image of Rn in Tn+2 to itself, and maps all the
remaining blocks (which are pr-blocks) amongst themselves. So φ is a non-trivial
automorphism of Tn+2.

A similar argument works for Pasch types 1344 and 2344.
Finally consider trading a type 4444 Pasch configuration P . This has blocks

of the form:

{01a, 10b, 11c} (a⊕ b⊕ c = 0), {01a, 11d, 10e} (a⊕ d⊕ e = 0),
{10b, 11d, 01f} (b⊕ d⊕ f = 0), {11c, 10e, 01f} (c⊕ e⊕ f = 0).

The traded Pasch configuration P comprises the blocks:

{01f, 10b, 11c}, {01f, 11d, 10e},
{10b, 11d, 01a}, {11c, 10e, 01a}.

Define φ : 00x → 00x, 11x → 11x, 01x → 10(x ⊕ c), 10x → 01(x ⊕ c). This
mapping stabilizes P , maps the image of Rn in Tn+2 to itself, and maps all the
remaining blocks (which are pr-blocks) amongst themselves. So φ is a non-trivial
automorphism of Tn+2.

It follows that we cannot apply a single (block-disjoint) Pasch trade to Tn+2

to get a new rigid system of order 2n+2 − 1.

Despite Theorem 4.2, the following example shows that it is possible to do
better than the result of Theorem 3.1.

Example 4.1. The projective system S5 may be converted to a rigid system using
three block-disjoint Pasch trades.

Take the point set to be A5 and the three block-disjoint Pasch configurations
P1 = P (1, 2, 3, 4, 5, 6), P2 = P (1, 6, 7, 8, 9, 14), and P3 = P (2, 9, 11, 16, 18, 25).
Trading all three gives a new system, say R5. For each x ∈ A5, Table 3 gives the
number, q5(x), of Pasch configurations in R5 containing the point x.

x 1 2 3 4 5 6 7 8 9 10 11
q5(x) 113 117 146 146 143 110 154 150 117 178 147

x 12 13 14 15 16 17 18 19 20 21 22
q5(x) 177 177 146 187 146 176 142 175 175 174 175

x 23 24 25 26 27 28 29 30 31
q5(x) 175 175 142 174 186 174 174 175 174

Table 3. The number of Pasch configurations in R5 containing x.

It follows from Table 3 that any automorphism of R5 must fix the points 1, 5,
6, 7, 8, 10, 11, 15, 17, and 27. It is then easy to argue that all remaining points
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are fixed; for example the block {1, 3, 5} must be stabilized, and so 5 is a fixed
point. By exhaustive computer search we have also shown that it is not possible
to convert S5 to a rigid system using just two Pasch trades. We hope to publish
a more comprehensive study of Pasch trades on S5 in a future paper.

Example 4.1 is not an isolated case. For specific values of n it is easy to find
examples which convert Sn to a rigid system by employing fewer than n Pasch
trades. Thus the question of finding, as a function of n, the minimum number of
Pasch trades necessary to convert Sn to a rigid system remains open. It seems
likely that there is some constant c satisfying 1

3 ≤ c ≤ 1 such that the minimum
number of Pasch trades required is asymptotic to cn. Given a collection of k < n0

Pasch trades which convert Sn0 to a rigid system, we speculate that a modest
generalization of our construction, albeit with a more complicated proof, might
facilitate a result that for n ≥ n0, n − (n0 − k) Pasch trades suffice to convert
Sn to a rigid system. But to obtain a result which is substantially better than
our Theorem 3.1, that is to say one that improves the putative constant c, a new
construction is likely to be required.
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