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Abstract

For every d and k we determine the smallest order of a vertex-transitive graph of

degree d and diameter k, and in each such case we show that this order is achieved by

a Cayley graph.

1 Introduction

Determination of the largest order N(d, k) of a graph of maximum degree d and diameter
k, known as the degree/diameter problem, has become a classical open question in extremal
graph theory. The problem has generated considerable activity since its 1960 statement in
the pioneering paper [8]; for a survey we refer to [12]. A spanning tree argument gives
the Moore bound N(d, k) ≤ M(d, k) where M(d, 1) = 1 + d for any d ≥ 1 and M(d, k) =
1 + d + d(d − 1) + . . . + d(d − 1)k−1 for every d, k ≥ 2. Apart from the trivial cases when
d ≤ 2 or k = 1, the Moore bound is known to be achieved only when k = 2 and d = 3, 7,
and possibly 57, by results of [8] for diameters 2 and 3, and [1, 5] for all larger diameters.
For all the remaining pairs (d, k) we have the inequality N(d, k) ≤ M(d, k) − 2, proved for
k = 2 in [6] and for all k ≥ 3 in [2]. It has been conjectured in [7] that N(d, k) ≤ M(d, k)− 3
for every d, k ≥ 4; for results towards this conjecture and other related facts see [7] and
references therein. More general improvements of the Moore bound currently appear to be
beyond reach.

Motivated by the methods of generating large graphs of given degree and diameter [11],
there has been growing interest in determining or at least estimating the largest order V (d, k)
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of a vertex-transitive graph of degree d and diameter k, cf. [12]. Indeed, about a half of the
current largest orders of graphs of a given maximum degree and diameter, kept in online tables
[16], have been found by searching over Cayley graphs or over lifts of small-order quotients
resulting in vertex-transitive graphs, cf. [11]. A focus on such a restriction is also natural
in the light of the fact that, except the case of diameter 2 and degree 57 (due to a result
of Higman, see [4]), all the extremal graphs establishing the equality N(d, k) = M(d, k) are
vertex-transitive. A new impetus for research in this direction is the paper [9] where it was
shown that vertex-transitivity can indeed keep the number V (d, k) arbitrarily far away from
the Moore bound in a considerable number of cases by proving that for every fixed integers
d ≥ 3 and δ ≥ 1, the set of positive integers k for which V (d, k) ≤ M(d, k) − δ has positive
lower asymptotic density.

In extremal graph theory it is customary to consider both extremes of any given scalar
parameter of graphs. Here, however, one has to be careful about the formulation of the
problem. Asking for the smallest order of a graph of maximum degree d and diameter k
would not be interesting, as the answer is trivial: An extremal graph in this situation would
have to contain an induced path on k + 1 vertices and, leaving the trivial case of diameter
1 aside, for k ≥ 2 one just needs to attach d − 2 pendant edges to some inner vertex o f
the path, which yields the smallest order d+ k − 1 if d, k ≥ 2. Asking for the smallest order
n(d, k) of a graph of minimum degree d and diameter k changes the answer but one just needs
a little extra effort to obtain it. Indeed, let v be a vertex of eccentricity k in an extremal
graph and let xi (0 ≤ i ≤ k) denote the number of vertices at distance i from v. The quantity
n(d, k) is then equal to the minimum of x0 + x1 + . . .+ xk over positive integers x0, x1, . . . , xk

with x0 = 1 subject to the conditions that all of x0 + x1, xk−1 + xk, and xi−1 + xi + xi+1,
1 ≤ i ≤ k− 1, be at least d+1, since these conditions are also sufficient for the existence of a
corresponding graph. An evaluation gives n(d, k) = (d−2)⌊k/3⌋+d+k+1 for any d ≥ 3 and
k ≥ 3, with similar formulae for the remaining cases. Almost the same values are obtained
when asking for the smallest order of a regular graph with degree d and diameter k, see [10],
where the most interesting part is the construction of extremal graphs.

Asking about the smallest order v(d, k) of a vertex-transitive graph of degree d and diam-
eter k, however, is a much more interesting question, both per se as well as in the context
of the ‘opposite end’ of the vertex-transitive version of the degree-diameter problem. In this
paper we solve the problem of determining v(d, k) completely and our main result can be
formulated in the following way:

Main Result. For all d ≥ 2 and k ≥ 4 we have v(d, k) = 2⌈d+1
3
⌉k − δ, where δ = 4 if

d ∈ {3, 6, 9}; δ = 2 if d = 4 or if d ∈ {12, 24} and k = 4; and δ = 0 otherwise.

In particular, in terms of the product dk, the value of v(d, k) is only about two times that of
n(d, k), which appears to be rather surprising.

The paper is organized as follows. We begin by treating small values of d and k in Section
2. To be able to handle the remaining values, in Section 3 we prove a few auxiliary results
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on vertex-transitive graphs. Section 4 then deals with large values of d and k and the final
Section 5 contains a number of remarks.

2 Small values of the degree and the diameter

In the paper, G will always denote a vertex-transitive graph. For any vertex x of G and for
any i ≥ 0 we let Ni(x) be the set of vertices of G at distance i from x; formally, Ni(x) = {y ∈
V (G); distG(x, y) = i}. By vertex-transitivity, for every i ≥ 0 the quantity ni = |Ni(x)| is
independent of the choice of x. Dependence of the sets Ni(x) and the numbers ni on G will
be automatically assumed throughout.

We begin with an observation which will be used frequently. By connectivity of a graph
we will always mean vertex-connectivity.

Lemma 2.1. Let G be a vertex-transitive graph of order n, degree d ≥ 2, diameter k ≥ 3 and
connectivity κ. Then n ≥ 2d+ 2 + (k−3)κ.

Proof. Let x and y be vertices of G at distance k. The set N0(x) ∪N1(x) contains x and all
the vertices adjacent to x, and Nk−1(x) ∪ Nk(x) contains y and all the vertices adjacent to
y. For every i, 2 ≤ i ≤ k − 2, we have ni ≥ κ since Ni(x) is a cut set of G. It follows that
n =

∑k

i=0 ni ≥ (d+ 1) + (k−3)κ+ (d+ 1).

If H is a complete graph or a complete bipartite graph with equal parts, we let H(−1) and
H(−2) denote the graph obtained from H by removing all edges of a perfect matching and a
Hamilton cycle, respectively. For small diameters we have the following statement.

Theorem 2.2. For every d ≥ 2 we have the following:

(i) if k = 1 then v(d, k) = d+ 1 and Kd+1 is an extremal graph;

(ii) if k = 2 and d is even then v(d, k) = d+ 2 and K
(−1)
d+2 is an extremal graph;

(iii) if k = 2 and d is odd then v(d, k) = d+ 3 and K
(−2)
d+3 is an extremal graph;

(iv) if k = 3 then v(d, k) = 2d+ 2 and K
(−1)
d+1,d+1 is an extremal graph.

Proof. The case k = 1 is obvious since Kd+1 is the unique graph of diameter 1 and degree d.

Let k = 2. As in the proof of Lemma 2.1 one can show that n0 + n1 ≥ d+ 1 and n2 ≥ 1.
Thus, v(d, 2) ≥ d + 2. But there is no graph of odd degree on an odd number of vertices,

and therefore v(d, 2) ≥ d + 3 if d is odd. Since K
(−1)
d+2 and K

(−2)
d+3 are vertex-transitive graphs

of diameter 2 and degree d for d even and odd, respectively, the result follows.

It remains to deal with the value k = 3. By Lemma 2.1 we have v(d, 3) ≥ 2d+2. The graph

K
(−1)
d+1,d+1 is vertex-transitive and has degree d and diameter 3, implying v(d, 3) = 2d+ 2.
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We now turn our attention to small values of the degree.

Lemma 2.3. Let G be a vertex-transitive graph of connectivity κ and degree d, where d ∈
{3, 4, 6}. Then κ = d.

Proof. The case d = 3 can be derived from [15, Theorem 3] and the cases d = 4 and d = 6
follow from [15, Corollary 3B].

We will, however, need more detailed information regarding the parameters ni in cubic
graphs, that is, graphs of degree d = 3.

Lemma 2.4. Let G be a cubic vertex-transitive graph of diameter k ≥ 4. Then ni ≥ 4 for
every i such that 2 ≤ i ≤ k − 2.

Proof. For each vertex x of G we let N<j(x) = ∪i<jNi(x). By way of contradiction, suppose
that there is some t, 2 ≤ t ≤ k − 2, such that nt ≤ 3. By Lemma 2.3 we have nt = 3. Let ax,
bx and cx be the three vertices of Nt(x); obviously, each of these has a neighbour in Nt−1(x).
But each of ax, bx and cx must also have a neighbour in Nt+1(x), since otherwise there is a
2-cut in G, which contradicts Lemma 2.3.

In what follows we fix one vertex v of G. Let u be a neighbour of v lying on a shortest
v−av path. Then all of au, bu, cu belong to Nt−1(v)∪Nt(v)∪Nt+1(v). Since av has a neighbour
in Nt+1(v) and this neighbour lies also in Nt(u), we may assume that au ∈ Nt+1(v) and avau
is an edge of G.

Observe thatNt(u) 6⊆ ∪i≥tNi(v), since otherwise for every x ∈ N<t(v)∪{av} there would be
a v−x path avoiding Nt(u) and this would mean that |N<t(u)| ≥ |N<t(v)|+1, a contradiction.
Thus, there is a vertex of Nt(u), say, cu, such that cu ∈ Nt−1(v). We distinguish three cases,
depending on the position of bu in our graph.

Case 1: bu ∈ Nt+1(v). If neither bv nor cv were reachable from v in G − {cu, av}, then
{av, cu} would be a 2-cut, contradicting Lemma 2.3. On the other hand, if there is a vertex
of Nt(v), say bv, with the property that there is a v − bv path in G − {cu, av}, then N<t(u)
would contain the sets N<t(v)\{cu} and {av, bv}, implying that |N<t(u)| ≥ |N<t(v)| + 1, a
contradiction.

Case 2: bu ∈ Nt−1(v). If bv /∈ Nt−1(u) and cv /∈ Nt−1(u), then bv, cv ∈ Nt+1(u). Conse-
quently, N<t(u) ⊆ (N<t(v) \ {bu, cu})∪ {av}, and so |N<t(u)| ≤ |N<t(v)| − 1, a contradiction.
We may therefore assume that bv ∈ Nt−1(u). Since all vertices of Nt+1(v) are contained in
Nt(u) ∪ Nt+1(u) ∪ Nt+2(u) and bu, cu ∈ Nt−1(v), the vertex au is the unique neighbour of bv
in Nt+1(v). One can show in a similar way that au is the unique neighbour of av in Nt+1(v).
Thus, {au, cv} is a 2-cut, a contradiction.

Case 3: bu ∈ Nt(v). Since av ∈ Nt−1(u), we have either bu = bv or bu = cv. Without
loss of generality, suppose that bu = bv. Because of (N<t(v) \ {cu}) ∪ {av} ⊆ N<t(u) we
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have N<t(u) = (N<t(v)\{cu}) ∪ {av}, which implies that cv ∈ Nt+1(u). Since there is an
edge joining a vertex of Nt−1(v) with cv, and since Nt−1(v) \ {cu} ⊆ N<t(u), it follows that
cucv ∈ E(G) and, moreover, cv has no other neighbour in Nt−1(v). From cv ∈ Nt+1(u) and
av ∈ Nt−1(u), we conclude that there is no edge in G joining the vertices av and cv. By a
similar argument the same conclusion applies to the vertices au and cu. But as u, v ∈ Nt(bv)
and uv ∈ E(G), there is an edge within Nt(u) and, analogously, there is an edge within Nt(v).
That is, one of aubv, bvcu and also one of avbv, bvcv are edges of G. Consequently, one of the
three neighbours of bv must lie in Nt(v). As stated earlier, bv has also neighbours in both
Nt−1(v) and Nt+1(v). If aubv ∈ E(G) then, since au is the unique neighbour of av in Nt+1(v)
(otherwise Nt(u) would not be a cut-set), the set {au, cv} would be a 2-cut, a contradiction.
The only remaining possibility is that bvcu ∈ E(G). Then, since cu is the unique neighbour
of cv in Nt−1(v), the set {av, cu} would be a 2-cut in G. This contradiction completes the
proof.

Let Pn be a prism on 2n vertices, that is Pn = Cn�K2, where � stands for the box product
of graphs. Further, let An denote an antiprism on 2n vertices, that is An = C2

2n, where G2 is
obtained from G by adding all edges xy between vertices x, y at distance 2 in G. For small
degrees we now can state and prove the following.

Theorem 2.5. For any k ≥ 4 we have:

(i) if d = 2 then v(d, k) = dk, with C2k as an extremal graph;

(ii) if d = 3 then v(d, k) = (d+1)k − 4, with P2k−2 as an extremal graph;

(iii) if d = 4 then v(d, k) = dk − 2, with A2k−1 as an extremal graph.

Proof. Since there are only two non-isomorphic cycles of diameter k, namely C2k and C2k+1,
the result is obvious for d = 2.

Let G be a cubic vertex-transitive graph of order n and diameter k, that is, we are in
the case d = 3. As in the proof of Lemma 2.1 one can show that n0 + n1 ≥ d + 1 = 4 and
nk−1 + nk ≥ 4. By Lemma 2.4 for every i, 2 ≤ i ≤ k − 2, we have ni ≥ 4. It follows that
n =

∑k

i=0 ni ≥ 4k− 4. Since P2k−2 is a cubic vertex-transitive graph of diameter k and order
4k − 4, we have v(3, k) = 4k − 4.

Finally, let G be a vertex-transitive graph of order n, degree 4, diameter k, and connectivity
κ. Lemma 2.1 implies that n ≥ 2d + 2 + (k−3)κ. By Lemma 2.3 we have κ = 4, and so
n ≥ 4k − 2. Observing that A2d−1 is a vertex-transitive graph of order 4k − 2, degree 4 and
diameter k, we conclude that v(4, k) = 4k − 2.
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3 Auxiliary results on vertex-transitive graphs

We will keep to the notation introduced earlier and study the ‘fine’ structure of vertex-
transitive graphs. For a graph G with connectivity κ we let C(G) denote the set of all
vertex-cuts of size κ in G. Let

p(G) = min{min{|V (P )|; P is a component of G− C}; C ∈ C(G)}.

Following [15], if C ∈ C(G), a component P of G − C is said to be an atomic part of G
if |V (P )| = p(G). The following theorem summarizes and extends (in the last item) some
results of [15] for vertex-transitive graphs we will need in our considerations.

Theorem 3.1. Let G be a vertex-transitive graph and let P be an atomic part of G corre-
sponding to a cut C. Then

(i) P is a vertex-transitive graph;

(ii) G is isomorphic to a disjoint union of several copies of P together with some edges
joining them;

(iii) if P ′ is another atomic part of G, then either V (P ′) ⊆ C or V (P ′) ∩ C = ∅;

(iv) κ = t · p(G) for some t ≥ 2;

(v) if G∗ is a simple graph obtained from G by contracting every atomic part into a single
vertex, then G∗ is vertex-transitive.

Proof. Items (i) and (ii) are proved in [15, Theorem 2], (iii) is proved in [15, Lemma 3.5] and
(iv) is proved in [15, Lemma 4.1]. In fact, in [15] the proofs are made for the case κ < d, but
the case κ = d is trivial (and useless) as then every atomic part is a single vertex.

It remains to prove (v). Let ϕ be an automorphism of G. As the set of vertices x ∈
V (G) \ V (P ) adjacent to a vertex of P is a cut-set in G, its ϕ-image, that is, the set of
vertices y ∈ V (G) \ V (ϕ(P )) adjacent to a vertex of ϕ(P ), forms a cut-set in G as well.
Thus, the image of an atomic part is again an atomic part, which means that ϕ induces
an automorphism of G∗. Take two vertices, say u1 and u2 of G∗ and denote P1 and P2,
respectively, the corresponding atomic parts in G. Further, choose two vertices x1 and x2 in G
such that x1 ∈ V (P1) and x2 ∈ V (P2). Since G is vertex-transitive, there is an automorphism
in G mapping x1 to x2, and this automorphism induces an automorphism of G∗ mapping u1

onto u2. Hence, G
∗ is a vertex-transitive graph.

Throughout the rest of this paper, G∗ and t = t(G) will denote the objects associated
with G as introduced in Theorem 3.1; note that t is the degree of G∗.

The next statement is a slight generalization of [15, Theorem 3].
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Theorem 3.2. Let G be a vertex-transitive graph of connectivity κ and degree d, and let
t = t(G). Then t ≥ 2 and

κ ≥
t

t+ 1

(

d+ 1
)

.

Proof. By Theorem 3.1 (iv), we have κ = t · p(G), where t ≥ 2. Any vertex in an atomic part
P is adjacent to at most |V (P )| − 1 vertices in P and at most p(G) vertices of every atomic
part that is included in the cut-set corresponding to P . It follows that

d ≤ p(G)− 1 + t · p(G),

and so

κ = t · p(G) ≥
t

t+ 1

(

d+ 1
)

.

For any given degree one may regard Theorem 3.2 as giving a lower bound on κ in terms
of a function of t. Later in the proof of Theorem 4.3 we will need the reverse inequality; since
by Theorem 3.2 we have t ≤ κ/(d+ 1− κ), it follows that

t ≤
⌊ κ

d+ 1− κ

⌋

. (1)

We proceed with presenting a tool which will, in some cases, help reduce our problem for
a given degree to a smaller one.

Lemma 3.3. Let G be a vertex-transitive graph of degree d ≥ 3 and diameter k ≥ 4. Let G∗

and t be as in Theorem 3.1 and let k∗ be the diameter of G∗. If d > (2t+1)p(G)/2− 1, then
k∗ = k.

Proof. For any x ∈ V (G) let Px be the atomic part containing x and let zx be the correspond-
ing vertex of G∗. If zxzy ∈ E(G∗) then we will say that Px is adjacent to Py and vice versa. De-
note by Px,1, Px,2, . . . , Px,t the atomic parts adjacent to Px. Let (δ0(x); δ1(x), δ2(x), . . . , δt(x))
be a sequence such that δ0(x) is the degree of x in Px and δi(x) = |{xy ∈ E(G); y ∈ Px,i}|,
where 1 ≤ i ≤ t. (We note that one can deduce from Theorem 3.1 that the multiset
{δ1(x), δ2(x), . . . , δt(x)} does not depend on the choice of x ∈ V (G), but we will not use
this here.) Observe that δ0(x) + δ1(x) + . . .+ δt(x) = d, δ0(x) ≤ p(G)− 1 and δi(x) ≤ p(G),
where 1 ≤ i ≤ t. By our assumption, for every x ∈ V (G) and each i, 1 ≤ i ≤ t, we have

δi(x) > p(G)/2. (2)
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Obviously, k∗ ≤ k, and we now prove the reverse inequality. Let u, v ∈ V (G). We show
that either distG(u, v) ≤ 3 or distG(u, v) ≤ distG∗(zu, zv), distinguishing three cases.

Case 1: zu = zv. Let P be an atomic part adjacent to Pu. According to (2), the vertices
u and v have a common neighbour in P , and so distG(u, v) ≤ 2.

Case 2: zuzv ∈ E(G∗). By (2), there is a vertex w ∈ Pv such that uw ∈ E(G). Since in
Case 1 we have already shown that distG(w, v) ≤ 2, we have distG(u, v) ≤ 3.

Case 3: distG∗(zu, zv) ≥ 2. Let zu, zx1
, zx2

, . . . , zxq−1
, zv be a shortest path from zu to zv

in G∗. From (2) it follows that for every i, 2 ≤ i ≤ q−1, there exists wi ∈ Pxi
such that

w2, w3, . . . , wq−1, v is a path in G. Further, by (2) the vertices u and w2 have a common
neighbour in Px1

. Thus, distG(u, v) ≤ distG∗(zu, zv).

The proof can now be completed easily. By the assumption that k ≥ 4, there are u, v ∈
V (G) such that distG(u, v) ≥ 4. Since for all pairs u, v ∈ V (G) such that distG(u, v) ≥ 4 we
have distG(u, v) ≤ distG∗(zu, zv), we conclude that k ≤ k∗.

4 Large values of the degree and the diameter

Let H and H ′ be graphs. By H ◦H ′ we denote the graph on the vertex set {(x, y); x ∈
V (H) and y ∈ V (H ′)}, in which a pair of distinct vertices (x1, y1)(x2, y2) forms an edge if either
x1x2 ∈ E(H) or x1 = x2 and y1y2 ∈ E(H ′). The operation ◦ is known as the lexicographic
product. We will need two more operations derived from ◦, applicable to graphs satisfying
certain extra conditions. Assume that H contains a pair of disjoint perfect matchings and let
M1 and M2 be such a pair. Further, for i ∈ {1, 2} let M i = {(x1, y)(x2, y); (x1, y), (x2, y) ∈
V (H ◦H ′) and x1x2 ∈ Mi}. Then both M 1 and M 2 are perfect matchings in H ◦H ′. By
H ◦–H ′ we denote a graph obtained from H ◦H ′ by removing the edges of M 1, and by H ◦= H ′

we denote a graph obtained from H ◦H ′ by removing the edges of both M 1 and M 2.

As we shall see, in almost all cases considered in the theorems of this section, the graphs
C2k ◦Kj , C2k ◦

–Kj and C2k ◦
= Kj will be examples of extremal graphs, i.e., of order v(d, k) for

the corresponding values of d and k. An exception is Theorem 4.3 where we will also use
powers of cycles. In general, if H is a graph and t ≥ 2, then H t, the t-th power of H , is the
graph with V (H t) = V (H) in which xy ∈ E(H t) if and only if distH(x, y) ≤ t.

Theorem 4.1. Let d = 3j − 1, j ≥ 2 and let k ≥ 4. Then v(d, k) = 2jk and C2k ◦Kj is an
extremal graph.

Proof. By Theorem 3.2 and Theorem 3.1 (iv), we have κ ≥ t
t+1

(d+1), where t is an integer such

that t ≥ 2. Thus, κ ≥ 2
3
(d+ 1) = 2j. By Lemma 2.1 we obtain v(d, k) ≥ 2d+ 2+ (k−3)2j =

2jk. On the other hand, it is easy to see that C2k ◦Kj is a vertex-transitive graph of degree
3j − 1, diameter k and order 2jk.

9



Theorem 4.2. Let d = 3j − 2, j ≥ 3 and let k ≥ 4. Then v(d, k) = 2jk and C2k ◦
–Kj is an

extremal graph.

Proof. It is easy to see that C2k ◦
– Kj is a vertex-transitive graph of degree 3j − 2, diameter

k and order 2jk, implying that v(d, k) ≤ 2jk. But by Theorem 3.2 and Theorem 3.1 (iv) we
have κ ≥ t

t+1
(d + 1) for some integer t ≥ 2. Thus, κ ≥ 2

3
(d + 1) = 2j − 2

3
, and so κ ≥ 2j.

By Lemma 2.1 we obtain v(d, k) ≥ 2d + 2 + (k−3)2j = 2jk − 2. In the rest of the proof we
show that there is no vertex-transitive graph of degree d and diameter k on 2jk−2 or 2jk−1
vertices.

By way of contradiction, suppose that there is a vertex-transitive graph G of degree d
and diameter k of order 2j − 2 or 2j − 1. If κ ≥ 2j + 2, then by Lemma 2.1 |V (G)| ≥
2d+ 2 + (k−3)(2j + 2) = 2jk + 2(k − 4) ≥ 2jk, a contradiction. Hence, κ ≤ 2j + 1.

If the degree of G∗ is 2, that is, if t = 2, then κ = 2p(G) and so p(G) = j and κ = 2j. By
Theorem 3.1 (ii), j divides |V (G)|. Since j ≥ 3, the graph G cannot have 2jk − 2 or 2jk − 1
vertices. Hence, t ≥ 3.

Suppose that κ = 2j + 1. Then |V (G)| ≥ 2d + 2 + (k−3)(2j + 1) = 2jk + (k − 5),
and so necessarily k = 4 and |V (G)| = 2jk − 1. Since there is no regular graph of odd
degree on an odd number of vertices, d is even and consequently j is even. If j ≥ 8 then
κ ≥ 3

4
(d+1) = 2j + j−3

4
> 2j + 1, a contradiction. Thus, j ≤ 6. We distinguish two cases.

Case 1: j = 6. Then, κ = 2j + 1 = 13. But as t ≥ 3 and κ = t · p(G) = 13, we obtain
t = 13 and p(G) = 1. Hence, every atomic part consists of a single vertex, which means that
κ = d. Since d = 3j − 2 = 16 > 13, this is impossible.

Case 2: j = 4. It follows that κ = 2j + 1 = 9 and from d = 3j − 2 = 10 we have t =
p(G) = 3. The facts that |V (G)| = 2jk− 1 = 31 and 3 ∤ 31 now contradict Theorem 3.1 (ii).

It remains to consider the situation when κ = 2j. If j ≥ 4 then κ ≥ 3
4
(d+1) = 2j + j−3

4
>

2j, a contradiction. Thus, j = 3, and then κ = 2j = 6. Since d = 7 and κ = t · p(G)
for some t ≥ 3, we have t = 3 and p(G) = 2. From d = 7 > 6 = (2t+1)p(G)/2 − 1 and
Lemma 3.3 we have diam(G∗) = diam(G). Since G∗ is a cubic vertex-transitive graph of
diameter k, by Theorem 2.5 it has at least 4(k−1) vertices. The inequality k ≥ 4 finally
implies |V (G)| ≥ 2 · 4(k−1) = 6k + 2(k−4) ≥ 6k = 2jk.

Theorem 4.3. Let d = 3j − 3, j ≥ 3, and let k ≥ 4. We have:

(i) if d = 6 then v(d, k) = 2jk − 4 and C3
6k−4 is an extremal graph;

(ii) if d = 9 then v(d, k) = 2jk − 4 and A2k−1 ◦K2 is an extremal graph;

(iii) if d = 12 and k = 4 then v(d, k) = 2jk − 2 and C6
38 is an extremal graph;

(iv) if d = 24 and k = 4 then v(d, k) = 2jk − 2 and A7 ◦K5 is an extremal graph.

In all the remaining cases we have v(d, k) = 2jk and C2k ◦
= Kj is an extremal graph.
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Proof. It is easy to see that C2k ◦
= Kj is a vertex-transitive graph of degree 3j−3, diameter k

and order 2jk. Thus, v(d, k) ≤ 2jk. On the other hand, by Theorem 3.2 and Theorem 3.1 (iv)
we have κ ≥ t

t+1
(d+1), where t ≥ 2. It follows that κ ≥ 2

3
(d+1) = 2j − 4

3
> 2j − 2, and

so κ ≥ 2j − 1. But if t = 2, then κ = 2p(G) and so κ has to be even, while if t ≥ 3 then
κ ≥ 3

4
(d+1) = 2j + j−6

4
> 2j − 1 since j ≥ 3. We conclude that κ ≥ 2j. By Lemma 2.1

we have v(d, k) ≥ 2d + 2 + (k−3)2j = 2jk − 4. Since C3
6k−4 is a 6-regular graph of diameter

k on 6k − 4 vertices, we have v(6, k) = 6k − 4, which proves the theorem for j = 3. In the
remaining (and longer) part of the proof we will assume that there is a vertex transitive graph
G of degree d and diameter k with 2jk− 4 ≤ |V (G)| < 2jk. The result for j = 3 has already
been shown and so we assume j ≥ 4.

If κ ≥ 2j + 4 then by Lemma 2.1 |V (G)| ≥ 2d+ 2+ (k−3)(2j+4) ≥ 2jk + 4(k−4) ≥ 2jk,
because k ≥ 4; therefore κ ≤ 2j + 3. Suppose that the degree of G∗ is 2, that is, t = 2. Then
κ = 2j + 2 or κ = 2j. We consider the two cases separately.

Case 1: κ = 2j + 2. Then |V (G)| ≥ 2d + 2 + (k−3)(2j+2) ≥ 2jk + 2(k−5) ≥ 2jk if
k ≥ 5, implying that k = 4 and |V (G)| ≥ 2jk − 2 = 8j − 2. Since κ = 2j + 2 = 2p(G), we
have p(G) = j + 1. Consequently, (j+1) divides |V (G)| by Theorem 3.1 (ii).

If |V (G)| = 2jk − 2 = 8j − 2, then (j+1) divides 8j − 2, and so 8j − 2 = i(j+1) for some
i ≤ 7. If i = 7, then 8j − 2 = 7j + 7 which gives j = 9 and d = 24. This is exactly the
case (iv) and later we show that there exists a graph G of order 2jk − 2 with the required
properties. If i = 6, then 8j − 2 = 6j + 6 which gives j = 4. Then d = 9 and κ = 10, which
is impossible. If i ≤ 5, then j < 4, a contradiction.

Now suppose that |V (G)| = 2jk−1. Then |V (G)| = 8j−1 and (j+1) divides 8j−1, that
is, 8j − 1 = i(j+1) for some i ≤ 7. If i = 7, then 8j − 1 = 7j + 7 which gives j = 8. Then
d = 21 and |V (G)| = 63, which is impossible since both d and |V (G)| cannot be odd. If i ≤ 6
then j < 4, a contradiction again.

Case 2: κ = 2j. We have already seen that |V (G)| ≥ 2jk − 4. Since κ = 2j = 2p(G),
we have p(G) = j and, by Theorem 3.1 (ii), j divides |V (G)|. Since j ≥ 4, we obtain
|V (G)| = 2jk − 4 and j = 4, which means that d = 9. This is exactly the case (ii) and later
we show that there is a required graph G with |V (G)| = 2jk − 4.

Thus, from now on we assume that t ≥ 3. We already derived 2j ≤ κ ≤ 2j + 3, so let
κ = 2j + ℓ, where 0 ≤ ℓ ≤ 3. Since κ ≥ 3

4
(d+1) = 2j + j−6

4
, we have j ≤ 4ℓ+ 6. This implies

the following.

• If κ = 2j + 3 then j ≤ 18 and |V (G)| ≥ 2d + 2 + (k−3)(2j+3) ≥ 2jk + 3(k−4) − 1.
Thus, |V (G)| ≥ 2jk if k ≥ 5 and so k = 4 and |V (G)| = 2jk − 1. Since |V (G)| is odd,
d must be even, which means that j must be odd.

• If κ = 2j+2 then j ≤ 14 and |V (G)| ≥ 2jk+2(k−5). Thus, k = 4 and |V (G)| ≥ 2jk−2.

• If κ = 2j+1 then j ≤ 10 and |V (G)| ≥ 2jk+(k−7). Thus, k ≤ 6 and |V (G)| ≥ 2jk−3.
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• If κ = 2j then j ≤ 6, |V (G)| ≥ 2jk − 4 and there is no bound on k.

In what follows we consider every value of j, j ≤ 18, separately. As noted above, the cases
j = 18 and j = 16 are impossible due to parity restrictions.

Case 1: j = 17. Then κ = 2j + 3 = 37. Since κ = t · p(G) and t ≥ 3, we have t = 37.
However, by (1) we have t ≤ ⌊2j+3

j−5
⌋ = 3, a contradiction.

Case 2: j = 15. Then κ = 2j + 3 = 33 = t · p(G), where t ≥ 3. By (1) we have
t ≤ ⌊2j+3

j−5
⌋ = 3, and so t = 3, p(G) = 11 and d = 42. Since d = 42 > 7 · 11/2 − 1 =

(2t+1)p(G)/2 − 1, we have diam(G∗) = diam(G), by Lemma 3.3. From k = 4 we obtain
|V (G∗)| ≥ 12 by Theorem 2.5, which implies that |V (G)| ≥ 11 · 12 > 120 = 2jk.

Case 3: j = 14. Since d is odd, the case |V (G)| = 2jk − 1 is impossible and therefore
|V (G)| = 2jk − 2 and κ = 2j + 2 = 30 = t · p(G). By (1), t ≤ ⌊2j+2

j−4
⌋ = 3, and so

t = 3 and p(G) = 10. From d = 39 > 7 · 10/2 − 1 = (2t+1)p(G)/2 − 1 it follows that
diam(G∗) = diam(G), by Lemma 3.3. Since k = 4, we have |V (G∗)| ≥ 12 by Theorem 2.5,
and so |V (G)| ≥ 10 · 12 > 112 = 2jk.

Case 4: j = 13. If κ = 2j+3 = 29, then t ≥ 3 and t ≤ ⌊2j+3
j−5

⌋ = 3 by (1), a contradiction.

Thus, κ = 2j + 2 = 28. By (1) we have t ≤ ⌊2j+2
j−4

⌋ = 3, a contradiction.

Case 5: j = 12. Since d is odd, we have κ = 2j + 2 = 26. By (1), t ≤ ⌊2j+2
j−4

⌋ = 3, which
is impossible.

Case 6: j = 11. If κ = 2j + 3 = 25 then t ≤ ⌊2j+3
j−5

⌋ = 4, which is impossible as

neither 3 nor 4 divides 25. Therefore κ(G) = 2j + 2 = 24. By (1), t ≤ ⌊2j+2
j−4

⌋ = 3,

and so t = 3 and p(G) = 8. Since d = 30 > 7 · 8/2 − 1 = (2t+1)p(G)/2 − 1, we have
diam(G∗) = diam(G), by Lemma 3.3. Since k = 4, we have |V (G∗)| ≥ 12 by Theorem 2.5,
and so |V (G)| ≥ 8 · 12 > 88 = 2jk.

Case 7: j = 10. Oddness of d implies that κ ≤ 2j+2. If κ = 2j+2 = 22, then t ≤ ⌊2j+2
j−4

⌋ =

3, a contradiction. Thus, κ = 2j+1 = 21. By (1), t ≤ ⌊2j+1
j−3

⌋ = 3, and so t = 3 and p(G) = 7.

Since d = 27 > 7 · 7/2−1 = (2t+1)p(G)/2−1, we have diam(G∗) = diam(G), by Lemma 3.3.
Theorem 2.5 now shows that |V (G∗)| ≥ 4(k−1), and so |V (G)| ≥ 20k + 4(2k−7) > 2jk as
k ≥ 4.

Case 8: j = 9. If κ = 2j + 1 = 19, then t ≤ ⌊2j+1
j−3

⌋ = 3 yields a contradiction, while

if κ = 2j + 3, then k = 4 and |V (G)| ≥ 2jk − 1. We therefore have to consider the case
κ = 2j + 2. Then k = 4, d = 24 and |V (G)| ≥ 2jk − 2. But A7 ◦K5 is a vertex-transitive
graph of degree 24, diameter 4 and order 70 = 2jk − 2, showing that v(24, 4) = 2jk − 2.

Case 9: j = 8. If κ = 2j + 1 = 17, then t ≤ ⌊2j+1
j−3

⌋ = 3, which is impossible. The case

κ = 2j + 3 is impossible since d is odd; therefore κ = 2j + 2 = 18. By (1), t ≤ ⌊2j+2
j−4

⌋ = 4,

giving t = 3 and p(G) = 6. Since d = 21 > 7 ·6/2−1 = (2t+1)p(G)/2−1, Lemma 3.3 implies
that diam(G∗) = diam(G). From k = 4 we obtain |V (G∗)| ≥ 12 by Theorem 2.5, and hence
|V (G)| ≥ 6 · 12 > 64 = 2jk.
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Case 10: j = 7. If κ = 2j + 3 = 17, then t ≤ ⌊2j+3
j−5

⌋ = 8, a contradiction. Suppose

that κ = 2j + 2 = 16. By (1) we have t ≤ ⌊2j+2
j−4

⌋ = 5, and so t = 4 and p(G) = 4. From

d = 18 > 9 ·4/2−1 = (2t+1)p(G)/2−1, we deduce that diam(G∗) = diam(G), by Lemma 3.3.
Since k = 4, Theorem 2.5 shows that |V (G∗)| ≥ 14, and then |V (G)| ≥ 4 · 14 ≥ 56 = 2jk.
Suppose now that κ = 2j + 1 = 15. By (1) we have t ≤ ⌊2j+1

j−3
⌋ = 3, and therefore t = 3 and

p(G) = 5. The facts that d = 18 > 7 · 5/2− 1 = (2t+1)p(G)/2− 1 together with Lemma 3.3
imply that diam(G∗) = diam(G). Thus, |V (G∗)| ≥ 4k−4, by Theorem 2.5, which shows that
|V (G)| ≥ 14k + 2(3k−10) > 2jk since k ≥ 4.

Case 11: j = 6. Since d is odd, we have κ ≤ 2j+2. If κ = 2j+1 = 13, then t ≤ ⌊2j+1
j−3

⌋ = 4,

which is impossible as neither 3 nor 4 divides 13. Suppose that κ = 2j + 2 = 14. By (1),
t ≤ ⌊2j+2

j−4
⌋ = 7, and so t = 7 and p(G) = 2. From d = 15 > 15 · 2/2− 1 = (2t+1)p(G)/2− 1

and from Lemma 3.3 we have diam(G∗) = diam(G). As k = 4, we have |V (G∗)| ≥ 24 by
Theorem 4.2, and so |V (G)| ≥ 2 · 24 ≥ 48 = 2jk. Now suppose that κ = 2j = 12. By
(1), t ≤ ⌊ 2j

j−2
⌋ = 3, and so t = 3 and p(G) = 4. Lemma 3.3 and the inequality d = 15 >

7 · 4/2 − 1 = (2t+1)p(G)/2 − 1 imply diam(G∗) = diam(G). Theorem 2.5 then shows that
|V (G∗)| ≥ 4k − 4, and from k ≥ 4 we obtain |V (G)| ≥ 12k + 4(k−4) ≥ 2jk.

Case 12: j = 5. If κ = 2j = 10, then t ≤ ⌊ 2j
j−2

⌋ = 3, a contradiction. Similarly, if

κ = 2j + 1 = 11, then t ≤ ⌊2j+1
j−3

⌋ = 5, which is impossible. Thus, κ ≥ 2j + 2, and then

k = 4, d = 12 and |V (G)| ≥ 2jk − 2. However, C6
38 is a vertex-transitive graph of degree 12,

diameter 4 and order 38 = 2jk − 2, which shows that v(12, 4) = 2jk − 2.

Case 13: j = 4. Then, d = 9. Since A2k−1 ◦K2 is a vertex-transitive graph of degree 9
and diameter k on 2jk − 4 vertices, we have v(9, k) = 2jk − 4.

5 Remarks

In the computer assisted generation of large graphs of a given degree and diameter described
in [11] it turned out that some of the record large vertex-transitive graphs found as lifts
of small quotients turned out to be Cayley graphs. Here we have the case that among our
examples of smallest vertex-transitive graphs of a given degree and diameter there is always at
least one Cayley graph. In the Table below we give, for each such case (and with a reference
to the relevant theorem) an example of the corresponding Cayley graph of order v(d, k) by
listing a group and a generating set that is closed under taking inverse elements and does
not contain the unit element of the group. We use the standard additive notation for cyclic
groups Zn of order n. There is one appearance of a dihedral group D2k of order 2k in the
Table, presented in the form 〈α, β; α2 = β2 = (αβ)k = ε〉, with ε being the unit element. If
a variable in the fifth column is not quantified, it means that it can have any value in the
corresponding group. The star in the bottom left cell is included to make the reader cautious
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that there are exceptions to the set of degrees listed in this cell, formed by the degrees referred
to in Theorem 4.3 (i) – (iv).

Degree Diameter v(d, k) Group Generating set Theorem

d 1 d+ 1 Zd+1 Zd+1\{0} 2.2 (i)
even d 2 d+ 2 Zd+2 Zd+2\{0, (d+2)/2} 2.2 (ii)
odd d 2 d+ 3 Zd+3 Zd+3\{0,±1} 2.2 (iii)
d 3 2d+ 2 Zd+1 × Z2 {(a, 1); a 6= 0} 2.2 (iv)
2 k ≥ 4 2k Z2k {±1} 2.5 (i)
3 k ≥ 4 4k − 4 Z2k−2 × Z2 {(±1, 0), (0, 1)} 2.5 (ii)
4 k ≥ 4 4k − 2 Z4k−2 {±1,±2} 2.5 (iii)

3j−1, j≥2 k ≥ 4 2jk Z2k × Zj {(0, x), (±1, y); x 6= 0} 4.1
3j−2, j≥3 k ≥ 4 2jk D2k × Zj {(ε, x), (α, y), (β, z); x, y 6= 0} 4.2

6 k ≥ 4 6k − 4 Z6k−4 {±1,±2,±3} 4.3 (i)
9 k ≥ 4 8k − 4 Z4k−2 × Z2 {(0, 1), (±1, x), (±2, y)} 4.3 (ii)
12 4 38 Z38 {±1,±2,±3,±4,±5,±6} 4.3 (iii)
24 4 70 Z14 × Z5 {(0, x), (±1, y), (±2, z); x 6= 0} 4.3 (iv)

3j−3, j≥3∗ k ≥ 4 2jk Z2k × Zj {(0, x), (±1, y); x, y 6= 0} 4.3 (v)

One may now introduce c(d, k) to be the smallest order of a Cayley graph of degree d
and diameter k. Our finding not only imply that v(d, k) = c(d, k) for all d ≥ 2 and k ≥ 1,
but (leaving a few cases of small diameter aside) allow to formulate our Main result from the
Introduction as follows.

Theorem 5.1. For every d ≥ 2 and k ≥ 4 we have v(d, k) = c(d, k) = 2⌈d+1
3
⌉k − δ, with

δ = 4 if d ∈ {3, 6, 9}, δ = 2 if either d = 4 or (d, k) ∈ {(12, 4), (24, 4)}, and δ = 0 otherwise.

This appears to be in a sharp contrast with the degree-diameter problem for vertex-
transitive graphs. Along the parameter V (d, k) mentioned in the Introduction one also studies
the largest order C(d, k) of a Cayley graph of degree d and diameter k; see again [12] for a
survey of results in this direction. Obviously, V (d, k) ≥ C(d, k), with an obvious equality if
d ≤ 2 or k = 1. In the nontrivial cases, however, that is, for d ≥ 3 and k ≥ 2, the only
known cases of equality between the two parameters are C(4, 2) = V (4, 2) = 13, C(3, 3) =
V (3, 3) = 14, C(3, 5) = V (3, 5) = 60, C(3, 7) = V (3, 7) = 168 and C(3, 8) = V (3, 8) = 300;
the last three follow from the census [13] of cubic vertex-transitive graphs of order up to
1280. As regards inequalities, it is well known that 8 = C(3, 2) < V (3, 2) = 10, and the
census [13] implies that 24 = C(3, 4) < V (3, 4) = 30, 72 = C(3, 6) < V (3, 6) = 82 and
36 = C(7, 2) < V (7, 2) = 50. In fact, for d ≥ 3 and k ≥ 2 there are just 21 pairs (d, k) for
which the exact value of C(d, k) is known and these were determined earlier by M. Conder, see
[17]. The situation is even worse for V (d, k), and for d ≥ 3 and k ≥ 2 the only known exact
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values seem to be the ones listed above. We believe that the inequality C(d, k) < V (d, k)
holds for infinitely many pairs (d, k), although the current evidence is slim. As a further
example we mention that running the Magma system [3] on the data of [14] one can show that
V (4, 3) ≥ 35, while by [17] one has C(4, 3) = 30.
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