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Abstract

We construct biembeddings of some Latin squares which are Cay-

ley tables of dihedral groups. These facilitate the construction of n
an2

nonisomorphic face 2-colourable triangular embeddings of the com-

plete tripartite graph Kn,n,n and the complete graph Kn for linear

classes of values of n and suitable constants a. Previously the best

known lower bounds for the number of such embeddings that are ap-

plicable to linear classes of values of n were of the form 2an2
. We

remark that trivial upper bounds are n
n2/3 in the case of complete

graphs Kn and n
2n2

in the case of complete tripartite graphs Kn,n,n.
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1 Introduction

Establishing the existence of a minimum genus surface embedding of each
complete graph Kn was a crucial step in Ringel and Youngs’ solution of the
famous Heawood map colouring problem for surfaces of positive genus [21].
For some residue classes modulo 12 such embeddings necessarily have all their
faces triangular. Until 1999 the maximum number of known nonisomorphic
triangular embeddings of Kn for any particular n in either an orientable or
nonorientable surface was a mere three [20]. In [15, 16, 17, 18, 19] a lower
bound of the form 2an for all sufficiently large n was established for the
number of minimum genus embeddings of Kn. At the same time in [2, 10] it
was proved that, for linear classes of values of n, there are at least 2an2

such
triangular embeddings for some constants a > 0. In fact these embeddings
are face 2-colourable and the triangular faces in each colour class determine a
Steiner triple system of order n. In order to obtain results of this latter type,
the authors first constructed 2an2

nonisomorphic face 2-colourable triangular
embeddings of the complete tripartite graph Kn,n,n; each such embedding
can be viewed as a pair of Latin squares.

With regard to an upper bound, by using the method of Lemma 5.2 of [4],
it is easily shown that the number of distinct twofold triple systems of order
n is at most nn2/3. As observed in [1], there is a one-to-one correspondence
between twofold triple systems of order n and triangular embeddings of Kn

in generalized pseudosurfaces. Consequently the number of nonisomorphic
triangular surface embeddings of Kn cannot exceed nn2/3, and a slight refine-
ment of the argument extends this bound to all minimum genus embeddings
of Kn. Again using the method of Lemma 5.2 of [4], a trivial upper bound
for the number of triangular embeddings of Kn,n,n is n2n2

.
More recently, the gap between these best known upper and lower bounds

was substantially narrowed for an infinite, but rather sparse, set of values of
n. (By “sparse” we mean that the number of suitable values not exceeding
m is of order log m.) It was shown that for these values of n and for a certain
positive constant a, there are at least nan2

nonisomorphic triangular embed-
dings of Kn in a nonorientable [6] as well as in an orientable surface [12]. As
in the case of the 2an2

lower bound, a major component of the proof was the
establishment of a similar lower bound on the number of nonisomorphic face
2-colourable triangular embeddings of Kn,n,n. This bound was itself a con-
siderable improvement on the previous best known lower bound, although
it was also achieved for a rather sparse set of values of n. In the current
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paper we establish lower bounds of the form nan2
for linear classes of values

of n. This adds weight to the conjecture that the numbers of minimum genus
embeddings of Kn and of Kn,n,n are of this form for all values of n and not
just for some sparsely distributed special values. Moreover, the constants a
in our bounds are equal to the best so far achieved for much sparser values
of n.

When a triangular embedding of Kn,n,n is face 2-colourable, the triangular
faces in each colour class determine a Latin square of order n by taking these
faces as the (row, column, entry) triples, where the row labels, the column
labels and the entries form the three sets of the partition. Hence, one ap-
proach to constructing (roughly) nn2

nonisomorphic triangular embeddings
of Kn,n,n would be to find for every Latin square L of order n a mate L′,
such that L and L′ form the two colour classes of a face 2-colourable tri-
angular embedding of Kn,n,n. Focusing on the problem from this direction,
in [11] it was shown that, with the single exception of the group C2

2 , each
Cayley table of an Abelian group of order n appears as a colour class in a
face 2-colourable triangular embedding of Kn,n,n. However, at present we are
not able to find such a mate for a general Latin square L. Here, therefore,
we use an alternative approach based on particular squares of order n hav-
ing the “nice” property of containing a cubic number of Latin subsquares of
order 2 (see Lemma 2.1 below). Then by applying a generalized product con-
struction using different subsets of disjoint subsquares of order 2, we obtain
a large number of nonisomorphic embeddings of certain complete tripartite
graphs. This in turn leads to a large number of face 2-colourable triangular
embeddings of certain complete graphs by use of a construction described in
[2, 10].

All the surfaces we consider will be closed, connected 2-manifolds, without
a boundary: that is, in the orientable case, Sg the sphere with g handles and,
in the nonorientable case, Nγ the sphere with γ crosscaps. Given a triangular
embedding of some simple graph G with vertex set V (G), the rotation at a
vertex v ∈ V (G) is the cyclically ordered permutation of vertices adjacent
to v, with the ordering determined by the embedding. Conversely, given a
set of triangular faces with each edge appearing in precisely two faces, the
faces may be sewn together along their common edges; if at each vertex v the
resulting permutation of neighbouring vertices is a single cycle, then the faces
form a triangulation of some surface with the cycle at v forming the rotation
at v. A triangular embedding of a graph G1 is said to be isomorphic to a
triangular embedding of a graph G2 if there is a bijection between the vertex
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sets of G1 and G2, preserving all incidences between vertices, edges and faces.
Two triangular embeddings (which may or may not be isomorphic) of the
same graph are said to be differently labelled if there exists a triple of vertex
labels that corresponds to a triangular face in one of the embeddings but not
in the other.

Ringel and Youngs’ results [21, 22] establish that for n ≡ 3 or 7 (mod 12)
there exists a face 2-colourable triangular embedding of Kn in an orientable
surface, and embeddings given in [21] and in [13] establish the existence of
such embeddings in a nonorientable surface for n ≡ 1 or 3 (mod 6) when
n ≥ 9.

A parallel class in a triangular embedding of Kn,n,n is a set of n triangular
faces that cover all 3n vertices. A partial parallel class is a set of triangular
faces in which each vertex appears at most once. When discussing face 2-
colourable triangular embeddings of Kn,n,n, we may alternatively refer to
them as biembeddings of the associated Latin squares and we may use the
terms triangles, triangular faces or triples interchangeably to refer to the
faces of the embeddings or to the triples of the Latin squares. The colour
classes of a face 2-coloured embedding will be taken as black and white. We
write A ⊲⊳ B to denote the fact that the Latin square A biembeds with the
Latin square B, and we also use this notation to denote the biembedding
itself, taking A white and B black. A parallel class in one colour class of
the embedding corresponds to a transversal in the associated Latin square
of side n, that is to say a set of n entries from the square that contains every
entry symbol, and covers every row and every column. Similarly, a partial
parallel class corresponds to a partial transversal. When convenient we may
switch between usage of these equivalent terms. It was shown in [7], by a very
easy argument, that a face 2-colourable triangular embedding of Kn,n,n, i.e.
a biembedding of two Latin squares, is necessarily in an orientable surface.

A Pasch configuration in a triangular embedding of a graph consists of
four triangles having the form (a, b, c), (a, d, e), (f, b, e), (f, d, c). In a biem-
bedding of two Latin squares A ⊲⊳ B, a Pasch configuration in the white
(respectively, black) colour class corresponds to a subsquare of order 2 in A
(B). When convenient we may switch between usage of these two terms. We
will use Pasch configurations to construct large numbers of embeddings.

We say that the Latin square B is paratopic to A (or is in the same main
class as A) if A can be transformed to B by permuting each of the sets of
row labels, column labels, and entries, and then permuting these 3 sets in
any one of the 6 possible permutations. If A ⊲⊳ B where B is paratopic to
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A, then we may say that A has a self-embedding.
Whenever n is odd, there is a face 2-colourable triangular embedding of

Kn,n,n with a parallel class in each colour class. Such an embedding is given
by the pair of Latin squares Cn and Cn + 1 with rows and columns indexed
by, and entries in, Zn; here Cn(i, j) = i+ j and (Cn +1)(i, j) = i+ j +1 with
arithmetic in Zn, see for example [7, 9].

We will identify a group G with its Cayley table, so that we may write
G ⊲⊳ H , meaning that the Latin square formed by a Cayley table of G
biembeds with the Latin square H . For any remaining undefined items of
terminology and for background information we refer the reader to [3, 14, 21].

2 Biembeddings

In [11] it was shown that, with the single exception of the group C2
2 , each

Abelian group appears in a biembedding. In the course of proving this result,
biembeddings were obtained covering the dihedral groups Dn for n = 2i when
i ≥ 2. We now show that, for n ≡ 1 or 5 (mod 6), the Latin square Dn formed
from the Cayley table of the dihedral group of order 2n has a self-embedding.

Theorem 2.1 If n ≡ 1 or 5 (mod 6) then Dn ⊲⊳ Hn, for some Hn.

Proof. The proof is by direct construction. In our squares of order 2n,
the row labels, column labels and entries will be taken as 0, 1, . . . , n −
1, 0′, 1′, . . . , n − 1′, where n − 1′ is written for (n − 1)′ to save on exces-
sive use of brackets; a similar gloss will be applied to other compound terms.
The standard form for Dn is shown in Figure 1 of [11]. However, in the
current context, the argument is simplified by reversing the order of the last
n − 1 rows. This gives the representation of Dn shown in Figure 1.

With Cn(i, j) = i+j (mod n), this representation of Dn has the schematic
form

Dn =
Cn C ′

n

−C ′
n −Cn

.

We will prove that, for suitable constants α, β, γ and δ, we may take

Hn =
Cn + α′ Cn + β
−Cn + γ −Cn + δ′

,

6



0 1 2 . . . n − 1 0′ 1′ 2′ . . . n − 1′

0 0 1 2 . . . n − 1 0′ 1′ 2′ . . . n − 1′

1 1 2 3 . . . 0 1′ 2′ 3′ . . . 0′

2 2 3 4 . . . 1 2′ 3′ 4′ . . . 1′

...
...

...

n − 1 n − 1 0 1 . . . n − 2 n − 1′ 0′ 1′ . . . n − 2′

0′ 0′ n − 1′ n − 2′ . . . 1′ 0 n − 1 n − 2 . . . 1

1′ n − 1′ n − 2′ n − 3′ . . . 0′ n − 1 n − 2 n − 3 . . . 0
...

...
...

n − 2′ 2′ 1′ 0′ . . . 3′ 2 1 0 . . . 3

n − 1′ 1′ 0′ n − 1′ . . . 2′ 1 0 n − 1 . . . 2

Figure 1: A representation of Dn.

where (Cn + α)(i, j) = (i + j + α) (mod n). To do this we compute sections
of the rotations at typical row, column and entry vertices. All arithmetic
encountered is to be taken in Zn.

So, consider first the rotation at the row vertex i (0 ≤ i ≤ n−1). Starting
at the column vertex j and proceeding to the entry vertex i+ j given by Dn,
the following sequence of column and entry vertices is obtained.

col. entry col. entry col. · · ·
j i + j j − β ′ i + j − β ′ j − (α + β) · · ·

Provided that α + β is coprime with n, this rotation will form a single cycle
of length 4n. Similarly, the rotation at the row vertex i′ (0 ≤ i ≤ n − 1) is
given by

col. entry col. entry col. · · ·
j −i − j′ j + δ′ −i − j − δ j + (δ + γ) · · ·

Provided that δ + γ is coprime with n, this rotation will form a single cycle
of length 4n.

The column vertex j gives the sequence

entry row entry row entry · · ·
k k − j k + α′ −k − j − α′ k + (α + γ) · · ·

and the column vertex j′ gives the sequence
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entry row entry row entry · · ·
k −k − j′ k + δ′ k − j + δ k + (δ + β) · · ·

Both of these rotations are single cycles of length 4n provided that α+γ and
δ + β are coprime with n.

The entry vertex k gives the sequence

row col. row col. row · · ·
i k − i −2k + i + γ′ k − i − γ′ i + (γ − β) · · ·

and the entry vertex k′ gives the sequence

row col. row col. row · · ·
i k − i′ −2k + i + δ′ k − i − δ i + (δ − α) · · ·

Both of these rotations are single cycles of length 4n provided that γ−β and
δ − α are coprime with n.

Hence if all of α + β, δ + γ, α + γ, δ +β, γ −β and δ −α are coprime with
n then Dn ⊲⊳ Hn. It is easy to show that if n is even or if 3|n, then there is
no solution for (α, β, γ, δ). However, if n ≡ 1 or 5 (mod 6), then solutions
do exist, examples of which are given by (α, β, γ, δ) = (0, 1, n − 1, 2) and
(1, 1, 2, 2).

Corollary 2.1.1 If n ≡ 1 or 5 (mod 6) then Dn has a self-embedding Dn ⊲⊳
D∗

n.

Proof. Following the notation of the proof of Theorem 2.1, if we take
(α, β, γ, δ) = (1, 1, 2, 2), then the resulting square Hn is in the same main
class as Dn. To see this, observe that

Hn =
Cn + 1′ Cn + 1
−Cn + 2 −Cn + 2′

,

and an obvious permutation of the rows gives the array

C ′
n Cn

−Cn −C ′
n

.

If the entries are then permuted using
∏n−1

k=0(k, k′) we obtain the square Dn

as shown in Figure 1. Hence, by taking D∗
n = Hn, we get a self-embedding

of Dn.
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We remark that not all the solutions for Hn given by Theorem 2.1 give
self-embeddings of Dn. An example of this occurs for H19 when (α, β, γ, δ) =
(0, 1, 3, 5). A Latin square L is (a paratopic copy of) a group Cayley ta-
ble only if it satisfies the quadrangle criterion (see [5]), meaning that if
(e, f, w), (g, h, w), (i, f, x), (j, h, x), (i, k, y), (j, l, y), (e, k, z) ∈ L then (g, l, z) ∈
L . It is easy to show that this is not the case for this H19, and so this square
is not a copy of a group Cayley table.

Lemma 2.1 The Latin square Dn has at least n3 distinct Pasch configura-
tions; if n is odd then the number is precisely n3. If n ≡ 1 or 5 (mod 6) then
the self-embedding Dn ⊲⊳ D∗

n from the previous corollary has a parallel class
formed from n triples of Dn and n triples from D∗

n.

Proof. Take Dn in the form shown in Figure 1. Choose any column j1

from those labelled 0 to n − 1, any row i1 from those labelled 0 to n − 1,
and any other row i′2 from those labelled 0′ to n − 1′. The corresponding
triples are (i1, j1, i1 + j1) and (i′2, j1,−(i2 + j1)

′). Let j′2 be the column of
row i1 that contains the entry −(i2 + j1)

′ so that i1 + j2 = −(i2 + j1). The
corresponding triple is (i1, j

′
2,−(i2 + j1)

′). The entry in row i′2, column j′2 is
−(i2 + j2) = i1 + j1 and the corresponding triple is (i′2, j

′
2, i1 + j1). Thus the

four triples form a Pasch configuration. There are n3 choices for (i1, i2, j1),
so there are at least n3 Pasch configurations in Dn. If there are any further
Pasch configurations then there must be a Pasch configuration in Cn, but it
is easily seen that this is not the case when n is odd.

When n ≡ 1 or 5 (mod 6), the leading diagonal of Cn provides a partial
transversal in Dn, and the leading diagonal of −Cn + 2′ provides a disjoint
partial transversal in D∗

n. Together these form a parallel class in the embed-
ding.

We will apply a product construction for biembeddings of Latin squares
with the biembedding Dn ⊲⊳ D∗

n as one of the ingredients. The result is a large
number of nonisomorphic embeddings of the same graph. Our construction
is a modification of one given in [10], and the modification is described in [6].
We start by giving an informal description of the original version and follow
this with an explanation of the modification which uses Pasch configurations.

Take a face 2-coloured triangular embedding P of Kp,p,p and another Q
of Kq,q,q, and assume that the latter has a parallel class of triangular faces in
one of the two colour classes, say black. Now take q copies of P , say Pi for
i = 1, 2, . . . , q. For each oriented white triangular face W = (a, b, c) of P , we
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“bridge” the corresponding white triangles Wi = (ai, bi, ci) of the embeddings
Pi. To do this we glue a copy of Q to these triangles in the following manner.
We take a copy of Q and label the vertex parts with {ai}, {bi}, {ci} in such
a way that the parallel class has oriented black triangles labelled (ai, ci, bi).
We then glue the black triangle (ai, ci, bi) of Q onto the white triangle Wi of
Pi, so that corresponding vertices and edges are identified and the interiors
of the two triangles are removed at the same time. Repeating this process for
every white triangle of P results in a face 2-coloured triangular embedding
of Kpq,pq,pq in an orientable surface.

In this construction, the bridging operation provides all the “missing”
adjacencies between the q copies Pi. The bridge across the q triangles Wi =
(ai, bi, ci) yields the adjacencies aibj , aicj, bicj for i, j = 1, 2, . . . , q, i 6= j.
Now suppose that P contains a Pasch configuration (a, b, c), (a, d, e), (f, b, e),
(f, d, c). The four corresponding bridges provide the missing adjacencies
aibj , aicj , bicj , aidj, aiej , diej , fibj , fiej , biej , fidj, ficj, dicj for i 6= j. It is, how-
ever, possible to provide these adjacencies by an alternative arrangement of
bridges. Concentrating for a moment on the adjacencies between P1 and P2,
we may bridge (a1, b1, c1) to (a2, d2, e2), (a1, d1, e1) to (a2, b2, c2), (f1, b1, e1) to
(f2, d2, c2), and (f1, d1, c1) to (f2, b2, e2) by suitable renaming of the vertices
of the four bridges involved. The first bridge then provides the adjacencies
a1d2, a1e2, b1a2, b1e2, c1a2, c1d2, the second provides a1b2, a1c2, d1a2, d1c2, e1a2,
e1b2, the third provides f1d2, f1c2, b1f2, b1c2, e1f2, e1d2, and the fourth pro-
vides f1b2, f1e2, d1f2, d1e2, c1f2, c1b2. These 24 adjacencies are the same as
the 24 adjacencies arising for the original bridging arrangement across the
Pasch configuration between P1 and P2.

We will call the original arrangement of bridges standard and an ar-
rangement of the type just described non-standard. We slightly tighten this
definition of a non-standard arrangement below, but before doing so we give
an example to help clarify the situation.

So consider the case q = 3 where the bridges are face 2-coloured triangular
embeddings of K3,3,3 in the torus. In the standard arrangement we may take
the four bridges on a Pasch configuration as shown in Figure 2. The lightly
shaded triangles are glued to the corresponding triangles on the surfaces
defined by P1, P2 and P3. In the non-standard arrangement the four bridges
are relabelled as shown in Figure 3, and the gluing operation is carried out
in the same manner.
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Figure 2: Standard bridging arrangement.
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Figure 3: Non-standard bridging arrangement.

The embedding that results when a standard arrangement of these par-
ticular four bridges on a Pasch configuration is replaced by a non-standard
arrangement will always be differently labelled from the original. For exam-
ple, the triangle (a1, b1, c2) appears in Figure 2, but not in Figure 3. To en-
sure that such different labelling occurs in the general case where the bridges
are biembeddings of Kq,q,q, we now tighten our definition of a non-standard
bridging arrangement on a Pasch configuration {{a, b, c}, {a, d, e}, {f, b, e},
{f, d, c}} by requiring that for some i, j, j 6= i, the four bridges contain white
triangles of the form (ai, bi, ej), (ai, di, cj), (fi, bi, cj) and (fi, di, ej). Since a
standard bridge on (a, b, c) must contain a white triangle (ai, bi, cj), j 6= i
(in fact one such triangle for each value of i), this requirement is easily satis-
fied by relabelling the black triangle (aj, bj , cj) as (aj, dj, ej), and then doing
likewise for the other three bridges, when forming the non-standard bridge
arrangement.

Lemma 2.2 Suppose that P is a face 2-coloured triangular embedding of
Kp,p,p having a parallel class T = Tw ∪ Tb, where Tw comprises p1 white
triangles and Tb comprises p2 black triangles (so that p1 + p2 = p). Suppose
also that q ≥ 3 is odd and Q = Cq ⊲⊳ (Cq +1) where Cq defines the white faces
and Cq + 1 the black with transversal U = {(i, i, 2i + 1) : i ∈ Zq}. Let R be
an embedding of Kpq,pq,pq formed by the product construction described above
using the black transversal U , but with the restriction that standard bridges
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are applied to all the white triangles of Tw. Then R has the parallel class of
black triangles
{(ai, bi+2, ci+1) : (a, b, c) ∈ Tw, i ∈ Zq} ∪ {(xi, yi, zi) : (x, y, z) ∈ Tb, i ∈ Zq}.

Proof. Suppose that W = (a, b, c) ∈ Tw. To apply a standard bridge to
W , the triple (i, i, 2i + 1) of U is identified with the triple (ai, bi, ci) of P ,
so that the row vertex i is relabelled ai, the column vertex i is relabelled
bi, and the entry vertex 2i + 1 is relabelled ci. Consequently each triple
(i, j, i + j + 1) of Cq + 1 yields a black triangle (ai, bj , c(i+j)/2) of R. Hence R
has q black triangles (ai, bi+2, ci+1) (i ∈ Zq), and these form a partial parallel
class in R. Furthermore, each black triangle (x, y, z) ∈ Tb results in q black
triangles (xi, yi, zi) (i ∈ Zq) which form a disjoint partial parallel class in
R. So altogether we have a parallel class of p1q + p2q = pq black triangles
{(ai, bi+2, ci+1) : (a, b, c) ∈ Tw, i ∈ Zq} ∪ {(xi, yi, zi) : (x, y, z) ∈ Tb, i ∈ Zq}.

Definition 2.1 Given a face 2-coloured triangular embedding M of a graph
G, a collection C of Pasch configurations in one of the colour classes will
be called independent if no two of the Pasch configurations have a common
triple.

The following lemma was established in [6]. It will assist us in estimating
the number of embeddings of some complete tripartite graphs.

Lemma 2.3 Suppose that P is a face 2-coloured triangular embedding of
Kp,p,p and that C1 and C2 are two different independent collections of Pasch
configurations in the white colour class. For i = 1, 2, let Ri be the embedding
that results when we apply standard Kq,q,q bridges to each white face not in
Ci and non-standard bridge arrangements to each Pasch configuration in Ci.
Then the embeddings R1 and R2 will be differently labelled.

Lemma 2.4 Suppose that n is odd. Then the number of different indepen-
dent collections of Pasch configurations in Dn that do not contain any of the
triples (i, i, 2i) (i ∈ Zn) is at least

(1 + 4n)⌊
n
2
−n

4
⌋.

Proof. As shown in Lemma 2.1, Dn has precisely n3 Pasch configurations.
It is also easy to see that every triple of Dn occurs in precisely n Pasch
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configurations, so the number of Pasch configurations that contain no triple
(i, i, 2i) (i ∈ Zn) is n3 − n2.

Denote by Ik the number of distinct independent collections of Pasch
configurations in Dn that contain precisely k Pasch configurations but omit
any Pasch configuration containing a triple (i, i, 2i) (i ∈ Zn). Each Pasch
configuration contains four triples. So, for k − 1 < n3−n2

4n
we have

Ik ≥ (n3 − n2)(n3 − n2 − 4n)(n3 − n2 − 8n) · · · (n3 − n2 − 4(k − 1)n)/k!

≥ (4n)kN(N − 1)(N − 2) · · · (N − (k − 1))/k!

= (4n)k

(

N

k

)

,

where N = ⌊n2−n
4

⌋. Then, summing over k = 0, 1, . . . , N gives the number
of distinct independent collections of Pasch configurations in Dn as at least

(1 + 4n)N = (1 + 4n)⌊
n
2
−n

4
⌋.

Theorem 2.2 Suppose that n ≡ 1 or 5 (mod 6) and that q ≥ 3 is odd. Then
there are at least

(1 + 4n)⌊
n
2
−n

4
⌋

differently labelled face 2-colourable triangular embeddings of K2nq,2nq,2nq all
of which have a common parallel class of black triangular faces. Furthermore,
there are at least

(1 + 4n)⌊
n
2
−n

4
⌋

6((2nq)!)3

nonisomorphic face 2-colourable triangular embeddings of K2nq,2nq,2nq.

Proof. Take the face 2-coloured triangular embedding of K2n,2n,2n given by
Dn ⊲⊳ D∗

n. By Lemma 2.4, the number of independent collections of Pasch
configurations in Dn that miss all the triples (i, i, 2i) (i ∈ Zn) is at least

(1 + 4n)⌊
n
2
−n

4
⌋.

By applying Lemma 2.3 and bridging the white triangles, using standard
bridges on the triangles given by (i, i, 2i) (i ∈ Zn), we see that there is at
least this number of differently labelled face 2-coloured triangular embeddings
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of K2nq,2nq,2nq. And by Lemmas 2.1 and 2.2, all the resulting embeddings of
K2nq,2nq,2nq have a common parallel class of black triangles.

The maximum possible size of an isomorphism class of such an embedding
is 6((2nq)!)3, and so the number of isomorphism classes is at least

(1 + 4n)⌊
n
2
−n

4
⌋

6((2nq)!)3
.

As mentioned in the Introduction, a face 2-colourable triangular embed-
ding of a complete regular tripartite graph is necessarily orientable, so all
the embeddings described in Theorem 2.2 and in Corollary 2.2.1 below are
orientable.

Corollary 2.2.1 For r ≡ 6 or 30 (mod 36), as r → ∞ there are at least

rr2( 1
144

−o(1)) nonisomorphic face 2-colourable triangular embeddings of Kr,r,r.

Proof. In Theorem 2.2, take q = 3, write r = 6n, and note that r! < rr.

This gives the first linear class of values r for which the number of non-
isomorphic triangular embeddings of Kr,r,r is known to be of the form rar2

for some positive constant a. Also, the constant a = 1/144 is equal to the
best so far achieved in [8] for sparse values of r. We now use Theorem 2.2
to get a similar estimate for some complete graphs. The following theorem
is taken from [6] and is obtained by applying a recursive construction to the
embeddings from [13, 21, 22] mentioned in the Introduction.

Theorem 2.3 Suppose that m ≡ 3 or 7 (mod 12) and that r ≡ 0 or 4
(mod 6). Suppose also that there are k differently labelled face 2-colourable
triangular embeddings of Kr,r,r, all of which have a common parallel class
of black triangular faces. Then we may construct k(m−1)(m−3)/6 differently
labelled face 2-colourable triangular embeddings of Kr(m−1)+1, all of which
are nonorientable.

Combining this with our results above, we obtain the following corollary.
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Corollary 2.3.1 Suppose that q ≥ 3 and that either (a) n ≡ 1 (mod 6) and
q ≡ 3 or 5 (mod 6), or (b) n ≡ 5 (mod 6) and q ≡ 1 or 3 (mod 6). Then, if
m ≡ 3 or 7 (mod 12), there are at least

(1 + 4n)⌊
n
2
−n

4
⌋
(m−1)(m−3)

6

differently labelled face 2-colourable triangular embeddings of K2nq(m−1)+1, all
of which are nonorientable. The number of nonisomorphic embeddings of this
type is at least this number divided by (2nq(m − 1) + 1)!.

Proof. The first part follows by taking r = 2nq in the theorem. The
maximum size of an isomorphism class is (2nq(m − 1) + 1)! and this gives
the second part.

Corollary 2.3.2 If s = 6n(m−1)+1, where n ≡ 1 or 5 (mod 6) and m ≡ 3

or 7 (mod 12), then for fixed m as n → ∞, there are at least ss2( m−3
864(m−1)

−o(1))

nonisomorphic nonorientable face 2-colourable triangular embeddings of Ks.

Proof. In the previous corollary take q = 3 and note that s! < ss.

By taking, for example, m = 7, a bound of ss2( 1
1296

−o(1)) is obtained for
s ≡ 37 or 181 (mod 216). The linear classes produced by these corollaries
are the first for which the number of nonisomorphic triangular embeddings
of Ks is known to be of the form sas2

for some positive constant a. Again,
the constant m−3

864(m−1)
(respectively 1

1296
in the case m = 7) is currently the

best known, see [8].
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