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Abstract. A t-regular graph of radius s is radial Moore if it has diameter at most s + 1 and
1 + t + t(t−1) + · · · + t(t−1)s−1 vertices. We construct radial Moore graphs of radius 3 and
degrees t = 3, 5, 7, 9, 10, . . . , 30 with at least t+1 central vertices and at most t+ 2 orbits under
the automorphism group.
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1. Introduction

It is well-known that a graph of diameter s and degree not exceeding t can have at most

Ms,t = 1 + t+ t(t−1) + t(t−1)2 + · · ·+ t(t−1)s−1

vertices. The value Ms,t is called Moore bound and regular graphs of degree t and diameter s with
Ms,t vertices are called Moore graphs.

Moore graphs would be ideal models (in terms of largest number of vertices) of interconnection
networks if no other restrictions are considered. The problem is that they are extremely rare and
exist only for diameter 1, or degree 2, or for diameter 2 and degree 2, 3, 7 and possibly also for
degree 57; see [6] for diameters 2 and 3 and [1] and [4] for the general case.

To approach Moore bound for the remaining pairs (s, t), relaxations are needed for at least one
of the three parameters involved: the degree, the diameter, and the number of vertices. The most
frequently considered relaxation is on the number of vertices, leading to the well-known degree-
diameter problem [10]. Let us recall that this problem has been motivated by applications in
network design to maximize the number of nodes in a network, with limitations on the number t of
links attached to each node (degree) and with the requirement that communication between any
two nodes is delayed by processing in at most s− 1 intermittent nodes. Another type of relaxation
is to allow a few vertices whose degrees slightly exceed t, obtaining “near Moore graphs”; see
[9]. However, one may relax also the requirement that the eccentricities of all vertices are s. In
1993 Znám in a personal communication suggested to study regular graphs of degree t with Ms,t

vertices, some of which have eccentricity s and the other have eccentricity at most s + 1. Since
such graphs have radius s (and diameter at most s + 1), they are called radial Moore graphs (in
earlier papers the notion radially Moore graphs was used as well).

Since the degree-diameter problem has also been widely considered for digraphs, we make a
corresponding short digression in this place. A digraph with (in- and out-) degree at most t and
diameter s can have at most

MDs,t = 1 + t+ t2 + · · ·+ ts

vertices, and if it has MDs,t vertices then it is called Moore digraph. Also Moore digraphs are rare.
They exist only for degree 1 or diameter 1; see [2]. A digraph of degree t, radius s (radius being
min{e(v); v ∈ V (D)} where e(v) = max{dist(u, v), dist(v, u); u ∈ V (D)}), diameter at most s+ 1
with MDs,t vertices is a radial Moore digraph. In [7] we proved that radial Moore digraphs exist
for every pair (s, t), s, t ≥ 1.

Key words and phrases. Moore bound, radial Moore graph, center, group of automorphisms.

1



2 M. KNOR

The situation for graphs appears to be much more complicated than the one for digraphs.
Obviously, complete graphs are radial Moore graphs of radius 1. It is easy to construct radial
Moore graphs of radius 2, and enumeration of all these graphs is considered in [3]. However,
already the case of radius 3 seems to be complicated. In [8] we found radial Moore graphs of radius
3 and degree 3, 4, 5, 6 and 7. Here we extend the class of radial Moore graphs of radius 3. We
present a construction, using which we found radial Moore graphs for odd degrees 3, 5, . . . , 29 and
for even degrees 10, 12, . . . , 30. Moreover, for degrees 3, 5, 7, 9, 10, . . . , 18 we know all radial Moore
graphs which are produced by our construction. Using a generalization of this construction we
found radial Moore graphs for degrees 6 and 8, so that now we have radial Moore graphs of radius
3 for degrees 3, 4, . . . , 30. With the help of generalized de Bruijn graphs, recently Exoo et al proved
that if t ≥ 22 then there exists a radial Moore graph of radius 3 and degree t; see [5]. Hence, we
have the following statement:

Theorem 1.1. For every t ≥ 3 there exists a radial Moore graph of radius 3 and degree t.

As regards higher radii, we know that there exist radial Moore graphs of radius 4 and degrees
3, 4 and 5, and also radial Moore graphs of radius 5 and degree 3; see [5].

If a radial Moore graph has properties close to ideal properties of a Moore graph, then it should
have as many central vertices as possible. (For other measures of how well a radial Moore graph
approximates a Moore graph; see [3].) Radial Moore graphs which are not Moore graphs cannot
be vertex transitive. For practical applications, however, it would be convenient to have graphs
having a very small number of orbits under the automorphism group. In this paper we present a
construction which in some cases produces radial Moore graphs of radius 3 and degree t having
M3,t = t3 − t2 + t + 1 vertices. Our graphs have at least t + 1 central vertices and at most t + 2
orbits under the automorphism group.

In the next section we describe the construction and summarize the results. We use standard
notation. A graph with vertex set V and edge set E is denoted by (V,E). An edge from u to v is
denoted by [u, v]. Eccentricity of a vertex v ∈ V is e(v) = maxu∈V dist(v, u), where by dist(v, u)
we denote the distance from v to u. Then maxv∈V e(v) and minv∈V e(v) are the diameter and
radius, respectively.

2. Results

We start with a construction which, in some cases, yields radial Moore graphs of diameter 3
and degree t. Denote by Z

∗
t−1 the set of strings (of finite length), all elements of which are from

Zt−1. The length of a string β will be denoted by l(β). Then the vertex set is

V = {∅} ∪ {aβ; a ∈ Zt, β ∈ Z
∗
t−1, 0 ≤ l(β) ≤ 2}.

Obviously, |V | = 1 + t(1 + (t−1) + (t−1)2) = M3,t. The edge set consists of E1 and E2.

E1 = {[∅, a]; a ∈ Zt}
∪ {[aβ, aβb]; a ∈ Zt, β ∈ Z

∗
t−1, 0 ≤ l(β) ≤ 1, b ∈ Zt−1}.

The edges of E1 form a spanning tree of the graph, see Figure 1 for the case t = 4. Due to these
edges, the radius is 3 and ∅ is the central vertex. Observe that all vertices aβ, l(β) = 2, are incident
with one edge of E1 while the other vertices are incident with t edges of E1. Hence, it remains to
define edges connecting aβ and a′β′, where l(β) = l(β′) = 2. Let d = ⌊t/2⌋. We set

E2 = ∪d
i=1{[aβ, (a+i)pi(β)]; a ∈ Zt, β ∈ Z

∗
t−1, l(β) = 2},

where the addition is in Zt and pi is a permutation of (t−1)2 elements b1b2, b1, b2 ∈ Zt−1. The
permutations p1, p2, . . . , pd−1 can be arbitrary, so as the permutation pd in the case when t is odd.
If t is even, then pd must be an involution since a+d+d = a in Zt, and so the edge [aβ, (a+d)pd(β)]
must be the same as [(a+d)pd(β), apd(pd(β))]. Then all vertices aβ, l(β) = 2, are incident with
t− 1 edges of E2, adjacent vertices being (a+i)pi(β) and (a−i)p−1

i (β), 1 ≤ i ≤ d.
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Figure 1. Edges of E1 forming a spanning tree.

As already mentioned, e(∅) = 3. But the center of our graph is larger.

Lemma 2.1. Let a ∈ Zt. In graph (V,E1 ∪E2) we have e(a) = 3.

Proof. Due to the edges of E1 we have dist(a, ∅) = 1, dist(a, a′β′) ≤ 3 for every a′ ∈ Zt, β
′ ∈ Z

∗
t−1,

0 ≤ l(β) ≤ 1, and dist(a, aβ) ≤ 2 for β ∈ Z
∗
t−1, l(β) ≤ 2. Since the edges of E2 are defined by

permutations, for every a′ ∈ Zt, a
′ 6= a, the edges between aβ’s and a′β′’s, l(β) = l(β′) = 2, form a

perfect matching. Thus, for every a′ and β′, where a′ ∈ Zt, β
′ ∈ Z

∗
t−1 and l(β) = 2, there is β such

that [aβ, a′β′] ∈ E2, where β ∈ Z
∗
t−1 and l(β) = 2. Since dist(a, aβ) = 2, we have dist(a, a′β′) = 3,

and so dist(a, v) ≤ 3 for every v ∈ V . Consequently e(a) = 3. �

Corollary 2.2. In the graph (V,E1 ∪ E2) there are at least t+ 1 vertices with eccentricity 3.

Since the eccentricities of adjacent vertices differ at most by 1, we have e(ab) ≤ 4 for every
a ∈ Zt and b ∈ Zt−1. Hence, we have

Corollary 2.3. The graph (V,E1 ∪E2) is radial Moore if and only if dist(aβ, a′β′) ≤ 4 for every

a, a′ ∈ Zt and β, β′ ∈ Z
∗
t−1, l(β) = l(β′) = 2.

Although in different notation, this general construction of graph (V,E1∪E2) was used in [8] to
find radial Moore graphs of radius 3 and degrees 3, 4, . . . , 7. Now we choose special permutations,
which allow us to find radial Moore graphs of higher degrees.

Denote

S(b1, i) = {c1; pi(b1b2) = c1c2, b2 ∈ Zt−1}.
Our idea is to choose the permutations pi so that for every b1 and i, b1 ∈ Zt−1 and 1 ≤ i ≤ d, we
have S(b1, i) = Zt−1. Such a property means that if two pendant vertices of the tree (V,E1) are
close to each other, then by edges of E2 they have neighbours which are far apart in (V,E1). A
natural candidate for this property is the involution p(b1b2) = b2b1. Unfortunately, if we choose
all pi’s so that pi(b1b2) = b2b1, then the resulting graph is not radial Moore. Hence, we “shift” the
result a bit. Choose c ∈ Zt−1 and set pi(b1b2) = (b2+c)b1. Then S(b1, i) = Zt−1 as required, see
Figure 2 for c = 0 and 1 in the case t = 4.
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Figure 2. Permutations pi, where pi(b1b2) = (b2+ci)b2, for ci = 0 and 1.

Denote by G(t; c1, c2, . . . , cd) a graph of radius 3 and degree t on M3,t vertices described above,
d = ⌊t/2⌋, in which pi(b1b2) = (b2+ci)b1, the addition being in Zt−1. (Recall that pd must be an
involution if t is even.) Although G(t; c1, c2, . . . , cd) has t

3− t2+ t+1 vertices, its number of orbits
under the automorphism group is small.

Proposition 2.4. The graph G(t; c1, c2, . . . , cd) has at most t+ 2 orbits under the automorphism

group.

Proof. We use two automorphisms. Let v ∈ V . Define

σ(v) =

{

∅ if v = ∅,
(a+1)β if v = aβ, a ∈ Zt, β ∈ Z

∗
t−1, 0 ≤ l(β) ≤ 2,

the addition being in Zt. Since

[σ(∅), σ(a)] = [∅, a+1] ∈ E1,

[σ(aβ), σ(aβb)] = [(a+1)β, (a+1)βb] ∈ E1 where 0 ≤ l(β) ≤ 1,

[σ(aβ), σ((a+i)pi(β))] = [(a+1)β, (a+1+i)pi(β)] ∈ E2 where l(β) = 2,

σ maps edges to edges, i.e., it is an automorphism. Analogously define

ρ(v) =















∅ if v = ∅,
a if v = a, a ∈ Zt,
a(b1+1) if v = ab1, a ∈ Zt, b1 ∈ Zt−1,
a(b1+1)(b2+1) if v = ab1b2, a ∈ Zt, b1, b2 ∈ Zt−1,

the addition being in Zt−1. Since

[ρ(∅), ρ(a)] = [∅, a] ∈ E1,

[ρ(a), ρ(ab1)] = [a, a(b1+1)] ∈ E1,

[ρ(ab1), ρ(ab1b2)] = [a(b1+1), a(b1+1)(b2+1)] ∈ E1,

[ρ(ab1b2), ρ(a(b2+ci)b1)] = [a(b1+1)(b2+1), a(b2+1+ci)(b1+1)] ∈ E2,

ρ is an automorphism of G(c1, c2, . . . , cd).
The automorphism σ decomposes V into 1 + 1 + (t−1) + (t−1)2 orbits represented by ∅, 0, 0b1

and 0b1b2, where b1, b2 ∈ Zt−1. Consequently, ρ merges the vertices 00, 01, . . . , 0(t−2) as well as
00b2, 01(b2+1), . . . , 0(t−2)(b2+t−2). Thus, under σ and ρ we have 1+ 1+ 1+ (t−1) = t+2 orbits
represented by ∅, 0, 00 and 00b2, where b2 ∈ Zt−1. �
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Observe that in (V,E1∪E2), where V , E1 and E2 are defined as at the beginning of this section,
σ (defined as in the previous proof) is an automorphism for arbitrary choice of pi. By Corollary 2.3,
it then suffices to check the eccentricities of vertices 0b1b2, b1, b2 ∈ Zt−1. However, by Corollary 2.3
and Proposition 2.4, in G(t; c1, c2, . . . , cd) it suffices to check the eccentricities of 00b2, b2 ∈ Zt−1.
Using this observation we show that the graph G(5; 1, 3) of degree 5 on 106 vertices is radial Moore.

Proposition 2.5. G(5; 1, 3) is a radial Moore graph.

Proof. Let v be a vertex such that v = xy1y2, where x ∈ Z5 and y1, y2 ∈ Z4. Denote by N2(v) the
set of vertices which are at distance at most 2 from v. In Table 1 we have the vertices u ∈ N2(v)
which are at distance 3 from ∅. The columns correspond to the first coordinate of u (that from
Z5) and the entries correspond to other two coordinates of u (those from Z4). Observe that the
first entry in columns x+1, x+2, . . . , x+4 corresponds to a vertex adjacent to v, so that if z1z2 is
the first entry in the column x+i, 1 ≤ i ≤ 4, then (x+i)z1 ∈ N2(v).

Table 1: Vertices of N2(xy1y2) at distance 2 from ∅.

x+0 x+1 x+2 x+3 x+4
y10 (y2+1)y1 (y2+3)y1 y2(y1+1) y2(y1+3)
y11 y1(y2+2) (y1+1)(y2+1) (y1+3)(y2+1) y1(y2+2)
y12 (y1+1)(y2+1) (y1+1)(y2+3) (y1+1)(y2+3) (y1+3)(y2+3)
y13 (y1+2)y2 (y1+3)(y2+1) (y1+3)(y2+3) (y1+2)y2

By Corollary 2.3, it suffices to show that dist(ab1b2, a
′b′1b

′
2) ≤ 4 for every a, a′ ∈ Z5 and

b1, b2, b
′
1, b

′
2 ∈ Z4. Denote I = N2(ab1b2) ∩ N2(a

′b′1b
′
2). We show that I 6= ∅ which implies

dist(ab1b2, a
′b′1b

′
2) ≤ 4.

By Proposition 2.4 (recall that it is enough to consider orbits under σ) we can assume that
a = 0 and a′ = 0, a′ = 1 or a′ = 2. This gives three cases.

Case 1. a′ = 0. In this case 0 ∈ N2(0b1b2) and 0 ∈ N2(0b
′
1b

′
2), that is, 0 ∈ I. Therefore,

dist(0b1b2, 0b
′
1b

′
2) ≤ 4.

Case 2. a′ = 1. Comparing the column x+0 for ab1b2 with the column x+4 for a′b′1b
′
2 we see

that 0z1z2 ∈ I for some z1, z2 ∈ Z4 if b1 = b′2, b1 = b′1, b1 = b′1+3 or b1 = b′1+2; see Table 1. By the
last three subcases, dist(0b1b2, 1b

′
1b

′
2) ≤ 4 if b1 6= b′1+1. Further, from the first row of Table 1 we

deduce that 2z1 ∈ I if b2+3 = b′2+1, 3z1 ∈ I if b2 = b′2+3, and 4z1 ∈ I if b2 = b′2, z1 ∈ Z4. This gives
dist(0b1b2, 1b

′
1b

′
2) ≤ 4 if b2 6= b′2+1. Hence, it suffices to consider dist(0b1b2, 1(b1+3)(b2+3)). But

2(b1+3)(b2+1) ∈ N2(0b1b2) and 2(b1+3)(b2+1) ∈ N2(1(b1+3)(b2+3)). So dist(0b1b2, 1b
′
1b

′
2) ≤ 4

for every b1, b2, b
′
1, b

′
2 ∈ Z4.

Case 3. a′ = 2. Then 0z1z2 ∈ I if b1 ∈ {(b′1+3), (b′1+1)}; see Table 1. Thus, dist(0b1b2, 1b′1b′2) ≤
4 if b1 6= b′1 and b1 6= b′1+2. Further, 1z1 ∈ I if b2+1 = b′2 and 3z1 ∈ I if b2 = b′2+1.
This gives dist(0b1b2, 1b

′
1b

′
2) ≤ 4 if b2 6= b′2 and b2 6= b′2+2. So we reduced the problem to

dist(0b1b2, 2b
′
1b

′
2), where b′1 ∈ {b1, b1+2} and b′2 ∈ {b2, b2+2}. Since 1b1(b2+2) ∈ N2(0b1b2) ∩

N(2b1b2), we have dist(0b1b2, 2b1b2) ≤ 4; further, as 3(b1+3)(b2+1) ∈ N2(0b1b2) ∩N(2(b1+2)b2),
we have dist(0b1b2, 2(b1+2)b2) ≤ 4; since 3(b1+1)(b2+3) ∈ N2(0b1b2) ∩ N(2b1(b2+2)), we have
dist(0b1b2, 2b1(b2+2)) ≤ 4; and as 1b1(b2+2) ∈ N2(0b1b2) ∩ N(2(b1+2)(b2+2)), we have
dist(0b1b2, 2(b1+2)(b2+2)) ≤ 4. So dist(0b1b2, 1b

′
1b

′
2) ≤ 4 for every b1, b2, b

′
1, b

′
2 ∈ Z4. �

We remark that analogously one can prove that also other graphs G(t; c1, c2, . . . , cd) are radial
Moore. The problem is that if t is bigger, then we have to solve more pairs separately in each case
1 ≤ a′ ≤ d. Therefore, we let this work for a computer.
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At the moment we do not know under which conditions G(t; c1, c2, . . . , cd) and G(t; c′1, c
′
2, . . . , c

′
d)

are isomorphic graphs. However, applying relabelling τ :

τ(v) =















∅ if v = ∅,
a if v = a, a ∈ Zt

a(q·b1) if v = ab1, a ∈ Zt, b1 ∈ Zt−1,
a(q·b1)(q·b2) if v = ab1b2, a ∈ Zt, b1, b2 ∈ Zt−1,

where q is coprime with t−1, we obtain G(t; qc1, qc2, . . . , qcd). So the graphs G(t; qc1, qc2, . . . , qcd)
and G(t; c1, c2, . . . , cd) are isomorphic. This fact was used when computing the number of realiza-
tions G(t; c1, c2, . . . , cd) which give radial Moore graphs.

It is easy to check that the graph G(t; 0, 0, . . . , 0) is not radial Moore. (If dist(aaa, x) ≤ 2 in
G(t; 0, 0, . . . , 0), then either x = a or x = aa or x = aay2 or x = y1aa or x = y1a, where y1 ∈ Zt

and y2 ∈ Zt−1. Hence, dist(000, 111) > 4 in G(t; 0, 0, . . . , 0).) Not only this. Our experiments
show that only a very few graphs G(t; c1, c2, . . . , cd) with ci = 0 for some i, 1 ≤ i ≤ d, are radial
Moore. Therefore we focused our attention on graphs G(t; c1, c2, . . . , cd) for which ci 6= 0. The
unique exception is cd in the case when t is even. Since pd must be an involution in this case, we
have pd(pd(b1b2) = pd((b2+cd)b1) = (b1+cd)(b2+cd) = b1b2 which gives cd = 0.

Table 2: Number of d-tuples c1, c2, . . . , cd for which G(t; c1, c2, . . . , cd) is radial Moore.

t n n0 p0
3 1 1 100
5 4 4 44.44
7 2 2 1.6
9 4 4 0.17
10 6 6 0.14
11 124 124 0.21
12 10 10 0.01
13 816 772 0.044
14 132 132 0.0042
15 6 828 6 612 0.011
16 504 504 0.00048
17 86, 144 83, 224 0.0032
18 6 736 6 720 0.00016

In Table 2, by n we denote the number of d-tuples c1, c2, . . . , cd for which G(t; c1, c2, . . . , cd) is
a radial Moore graph, ci ∈ Zt−1. By n0 we denote the number of those d-tuples producing radial
Moore graphs G(t; c1, c2, . . . , cd), for which ci ∈ Zt−1 \ {0} (with the exception of cd in the case
when t is even). Observe that to find n, we have to check (t−1)⌊(t−1)/2⌋ graphs G(t; c1, c2, . . . , cd).
On the other hand, to find n0 we have to check (t−2)⌊(t−1)/2⌋ graphs G(t; c1, c2, . . . , cd). Further,
limt→∞[(t−1)/(t−2)]⌊(t−1)/2⌋ =

√
e

.
= 1.65 and f(t) = [(t−1)/(t−2)]⌊(t−1)/2⌋ is a decreasing func-

tion for odd, as well as for even numbers. Hence, if 0 occurs equally often as the other values of
Zt−1 among c1, c2, . . . , cd if t is odd (among c1, c2, . . . , cd−1 if t is even) in radial Moore graphs
G(t; c1, c2, . . . , cd), then we should have n ≥ n0

√
e, which is not the case; see Table 2.

In Table 2 we also present the proportion p0 (in percents) of the number of sequences c1, c2, . . . , cd
giving radial Moore graphs (and included in n0) to the number of all considered d-tuples c1, c2, . . . , cd.
Since there are no solutions for degrees 4, 6 and 8, we omit these cases. As one can see, our con-
struction is much more prolific for odd degrees than for the even ones, but in both cases a significant
proportion of considered d-tuples c1, c2, . . . , cd give radial Moore graphs.

In Table 3, for every t ∈ {3, 5, 7, 9, 10, . . . , 30} we present one d-tuple c1, c2, . . . , cd such that
G(t; c1, c2, . . . , cd) is a radial Moore graph. Our intention was to choose d-tuples which “look
similarly”. Nevertheless, we cannot spot any regularity there and so we are not able to prove
that for arbitrary t, t ≥ 9, there is a graph G(t; c1, c2, . . . , cd) which is radial Moore. A computer
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representation of the graphs presented in Table 3 is available at http://www.math.sk/knor/moore.

Table 3: Values c1, c2, . . . , cd for which G(t; c1, c2, . . . , cd) is radial Moore.

t M3,t c1, c2, . . . , cd
3 22 1
5 106 1, 3
7 302 1, 3, 1
9 658 1, 3, 6, 4
10 911 1, 7, 6, 4, 0
11 1 222 1, 3, 4, 8, 1
12 1 597 1, 3, 4, 2, 5, 0
13 2 042 1, 3, 7, 10, 11, 6
14 2 563 1, 3, 7, 4, 2, 8, 0
15 3 166 1, 3, 4, 7, 12, 9, 1
16 3 857 1, 3, 6, 7, 5, 13, 4, 0
17 4 642 1, 3, 7, 2, 12, 10, 11, 8
18 5 527 1, 3, 12, 15, 10, 8, 6, 13, 0
19 6 518 1, 3, 4, 7, 13, 8, 12, 10, 1
20 7 621 1, 7, 8, 2, 6, 3, 5, 4, 10, 0
21 8 842 1, 3, 7, 2, 14, 15, 8, 6, 11, 10
22 10, 187 1, 7, 8, 2, 6, 9, 5, 10, 4, 3, 0
23 11, 662 1, 3, 4, 7, 14, 5, 3, 1, 12, 16, 20
24 13, 273 1, 7, 8, 2, 6, 9, 11, 10, 3, 19, 5, 0
25 15, 026 1, 3, 7, 2, 16, 17, 4, 6, 5, 13, 10, 15
26 16, 927 1, 7, 8, 2, 6, 9, 11, 10, 5, 13, 4, 11, 0
27 18, 982 1, 3, 4, 7, 15, 5, 8, 13, 10, 6, 17, 15, 1
28 21, 197 1, 7, 8, 2, 6, 9, 11, 10, 5, 13, 15, 3, 3, 0
29 23, 578 1, 3, 7, 2, 16, 17, 4, 6, 5, 13, 19, 8, 14, 18
30 26, 131 1, 7, 8, 2, 6, 9, 11, 10, 5, 13, 5, 3, 15, 12, 0

Finally, let us consider a generalization of our construction. Denote by G′(t; e1, e2, . . . , ed) a
graph of radius 3 and degree t on M3,t vertices with vertex set V and edge set E1 ∪ E2, in
which pi(b1b2) = b2b1 ⊕ ei, where b2b1 is considered as two-digit (t−1)-ary number, ei ∈ Z(t−1)2

and ⊕ is addition in Z(t−1)2 . Observe that for every ei ∈ Z(t−1)2 , b1 ∈ Zt−1 and 1 ≤ i ≤ d,
we have S(b1, i) = Zt−1. Moreover, the graph G′(t; (t−1)c1, (t−1)c2, . . . , (t−1)cd) is isomor-
phic with G(t; c1, c2, . . . , cd), ci ∈ Zt−1. The problem is that Proposition 2.4 is not valid for
G′(t; e1, e2, . . . , ed) as ρ is not an automorphism of this graph. Although there are no radial Moore
graphs G(4; c1, 0), G(6; c1, c2, 0) and G(8; c1, c2, c3, 0), there are radial Moore graphs G′(6; c1, c2, 0)
and G′(8; c1, c2, c3, 0). For instance, G′(6; 5, 19, 0) and G′(8; 1, 31, 20, 0) are radial Moore graphs.
There is no radial Moore graph G′(4; c1, 0). Nevertheless, having in mind the results of [8], we
can summarize that for every degree t, 3 ≤ t ≤ 30, there is a radial Moore graph of degree t with
radius 3 which, together with the results of [5], gives Theorem 1.1.

Acknowledgements. The author acknowledges partial support by Slovak research grants VEGA
1/0280/10, VEGA 1/0871/11 and APVV-0223-10.

References

[1] E. Banai, T. Ito, On finite Moore graphs, J. Fac. Sci. Tokyo Univ. 20 (1973), 191–208.
[2] W.G. Bridge, S. Toueg, On the impossibility of directed Moore graphs, J. Combin. Theory B-29 (1980),

339–341.



8 M. KNOR
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