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Abstract

Let G be a graph. Denote by Li(G) its i-iterated line graph and denote
by W (G) its Wiener index. In [14] we show that there is an infinite class
T of trees T satisfying W (L3(T )) = W (T ), which disproves a conjecture of
Dobrynin and Entringer. In this paper we prove that except of the trees of
T , there is no non-trivial tree T satisfying W (L3(T )) = W (T ). Consequently,
for a tree T and i ≥ 3, the equation W (Li(T )) = W (T ) holds if and only if
T ∈ T and i = 3.
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1 Introduction

Let G be a graph. We denote its vertex set and edge set by V (G) and E(G),
respectively. For any two vertices u, v let d(u, v) be the distance from u to v. The
Wiener index of G, W (G), is defined as

W (G) =
∑

u 6=v

d(u, v),

where the sum is taken over unordered pairs of vertices of G. The Wiener index was
introduced by Wiener in [22]. Since it is related to several properties of chemical
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molecules (see [13]), it is widely studied by chemists. The interest of mathemati-
cians was attracted in 1970’s, when it was reintroduced as the transmission and the
distance of a graph; see [21] and [9], respectively. Recently, several special issues of
journals were devoted to (mathematical properties) of the Wiener index (see [11]
and [12]). For surveys and some up-to-date papers related to the Wiener index of
trees and line graphs see [5, 6], [8, 19, 20, 24] and [2, 3, 7, 10, 23], respectively.

By the definition, if G has a unique vertex, then W (G) = 0. In this case, we say
that the graph G is trivial. We set W (G) = 0 also when the set of vertices of G is
empty.

The line graph of G, L(G), has vertex set identical with the set of edges of G and
two vertices of L(G) are adjacent if and only if the corresponding edges are adjacent
in G. Iterated line graphs are defined inductively as follows:

Li(G) =

{

G if i = 0,
L(Li−1(G)) if i > 0.

The Wiener index of the line graph of a tree T can easily be computed from
W (T ) by using the following result from [1]:

Theorem 1.1 Let T be a tree on n vertices. Then W (L(T )) = W (T )−
(

n

2

)

.

Since
(

n

2

)

> 0 if n ≥ 2, there is no nontrivial tree for which W (L(T )) = W (T ).
However, there are trees T satisfying W (L2(T )) = W (T ), see e.g. [4]. In [5], the
following problem was posed:

Problem 1.2 Is there any tree T satisfying equality W (Li(T )) = W (T ) for some
i ≥ 3?

As observed above, if T is a trivial tree, then W (Li(T )) = W (T ) for every i ≥ 1,
although here the graph Li(T ) is empty. The real question is, if there is a nontrivial
tree T and i ≥ 3 such that W (Li(T )) = W (T ).

In papers [15, 16, 17, 18] (see [18, Corollary 1.4]) we solved Problem 1.2 for i ≥ 4:

Theorem 1.3 Let T be a tree and i ≥ 4. Then we have

W (Li(T )) = W (T ) if T is trivial,
W (Li(T )) < W (T ) if T is a nontrivial path or the claw K1,3,
W (Li(T )) > W (T ) otherwise.

In this paper we consider Problem 1.2 for the remaining case i = 3. Let H0 be
the tree on six vertices, out of which two have degree 3 and four have degree 1. In
[16, Corollary 1.6], we proved:

Theorem 1.4 Let T be a tree which is not homeomorphic to a path, claw K1,3 or
H0, and let i ≥ 3. Then W (Li(T )) > W (T ).
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(Recall that two graphs G1 and G2 are homeomorphic if and only if there is a
third graph H , such that both G1 and G2 can be obtained from H by means of edge
subdivision.)

By Theorem 1.4, to solve Problem 1.2 for i = 3, it suffices to consider paths and
trees homeomorphic to the claw K1,3 and H0.

First, let us concentrate to paths. Denote by Pn a path on n vertices. If n ≥ 2,
then W (Pn) > W (Pn−1), since Pn−1 is a subgraph embedded isometrically in Pn.
Since L(Pn) = Pn−1 if n ≥ 2, while L(P1) is an empty graph, we have W (Li(Pn)) 6=
W (Pn) for every i ≥ 1 if Pn is a nontrivial path.

Similarly, there is no solution of Problem 1.2 among trees homeomorphic to the
claw K1,3; namely, in Section 3 we prove the following:

Theorem 1.5 Let T be a tree homeomorphic to K1,3. Then W (L3(T )) 6= W (T ).

However, there is a non-trivial solution of Problem 1.2 among trees homeomor-
phic to H0. Denote by Ha,b,c,d,e a specific tree homeomorphic H0, defined as follows:
In Ha,b,c,d,e, the two vertices of degree 3 are joined by a path of length e+1, e ≥ 0.
Hence, this path has e vertices of degree 2. Further, at one vertex of degree 3 there
start two pendant paths of lengths a and b, where a, b ≥ 1, and at the other vertex
of degree 3 there start another two pendant paths of lengths c and d, where c, d ≥ 1.
Thus Ha,b,c,d,e has a + b + c + d + e + 2 vertices (see Figure 1 for H3,3,4,2,2). By
symmetry, we may assume that a ≥ b, c ≥ d and b ≥ d. That is, we assume that
the shortest pendant path in Ha,b,c,d,e has length d.

Figure 1: The graph Ha,b,c,d,e.

In Section 3, we prove the following:

Theorem 1.6 The equation W (L3(Ha,b,c,d,e)) = W (Ha,b,c,d,e) holds if and only if
d = e = 1 and there are i, j ∈ Z, i ≥ j, such that

a = 128 + 3i2 + 3j2 − 3ij + i

b = 128 + 3i2 + 3j2 − 3ij + j (1)

c = 128 + 3i2 + 3j2 − 3ij + i+ j.
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We remark that the “if” part of Theorem 1.6 was already proved in [14]. The
smallest tree satisfying (1) is H128,128,128,1,1 on 388 vertices obtained when i = j = 0.

We can summarize our results regarding Problem 1.2 in the following theorem:

Theorem 1.7 Let T be a tree and i ≥ 3. Then we have

(i) W (Li(T )) = W (T ) if T is trivial or i = 3 and T is Ha,b,c,1,1, where a, b, c
satisfy (1);

(ii) W (Li(T )) 6= W (T ) if i = 3 and T is homeomorphic to K1,3 or H0 with the
exception of trees mentioned in (i);

(iii) W (Li(T )) < W (T ) if T is a nontrivial path or the claw K1,3;

(iv) W (Li(T )) > W (T ) otherwise.

It is obvious that trees mentioned in (ii) either satisfy W (L3(T )) < W (T ) or
W (L3(T )) > W (T ). If T 6= K1,3, in some cases we prove W (L3(T )) > W (T ), but
in the others using congruences we can only show W (L3(T )) 6= W (T ), see below.

In the next section we present a lemma, with the help of which we prove Theo-
rems 1.5 and 1.6 in Sections 3 and 4, respectively.

2 Preliminaries

A degree of a vertex, say v, is denoted by deg(v), or when convenient, by dv. Analo-
gously as a vertex of L(G) corresponds to an edge ofG, a vertex of L2(G) corresponds
to a path of length two in G. For x ∈ V (L2(G)) we denote the corresponding path
by B2(x). For two subgraphs S1 and S2 of G, the shortest distance in G between a
vertex of S1 and a vertex of S2 is denoted by d(S1, S2). If S1 and S2 share an edge,
then we set d(S1, S2) = −1.

Let x and y be two vertices of L2(G), such that u is the center of B2(x), the
vertex v is the center of B2(y) and u 6= v. Then

dL2(G)(x, y) = d(B2(x), B2(y)) + 2.

Let u, v ∈ V (G), u 6= v. Let βi(u, v) denote the number of pairs x, y ∈
V (L2(G)), with u being the center of B2(x) and v being the center of B2(y), such
that d(B2(x), B2(y)) = d(u, v)−2+ i. Since d(u, v)−2 ≤ d(B2(x), B2(y)) ≤ d(u, v),
we have βi(u, v) = 0 for all i /∈ {0, 1, 2}. Moreover,

∑2
i=0 βi(u, v) =

(

du
2

)(

dv
2

)

.
Let

h(u, v) =

((

du

2

)(

dv

2

)

− 1

)

d(u, v) + β1(u, v) + 2β2(u, v). (2)

In [14, Lemma 2.2] we have the following statement:
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Lemma 2.1 Let G be a connected graph. Then

W (L2(G))−W (G) =
∑

u 6=v

h(u, v) +
∑

u

[

3

(

du

3

)

+ 6

(

du

4

)]

,

where the first sum is taken over unordered pairs of vertices u, v ∈ V (G), such that
either du 6= 2 or dv 6= 2, and the second one is taken over u ∈ V (G).

Observe that W (Pn) =
(

(n−1)+ . . .+1
)

+
(

(n−2)+ . . .+1
)

+ . . .+1 =
(

n+1
3

)

.

Using this fact, one can show that W (Ha,b,c,d,e) is a polynomial of third degree in
a, b, c, d and e, and so is also W (L3(Ha,b,c,d,e)) (the situation with the claw being
similar). However, if we calculate W (L3(Ha,b,c,d,e)) −W (Ha,b,c,d,e) with the help of
Lemma 2.1, we obtain a polynomial the degree of which is at most 2, since the pairs
of vertices u, v with du = dv = 2 do not contribute to W (L3(Ha,b,c,d,e))−W (Ha,b,c,d,e)
(for detailed calculation see the proofs below).

3 Proof of Theorem 1.5

Proof of Theorem 1.5. Let Ca,b,c be a tree homeomorphic to the claw K1,3 in
which the paths connecting the vertices of degree 1 with the vertex of degree 3 have
lengths a, b and c, where a ≥ b ≥ c ≥ 1. The tree Ca,b,c has exactly a + b + c + 1
vertices, see Figure 2 for C4,3,2.

We prove Theorem 1.5 by counting the distances in L(Ca,b,c) instead of in Ca,b,c

and L3(Ca,b,c). In L(Ca,b,c) we distinguish 6 vertices x1, x2, x3, y1, y2 and y3. The
vertices x1, x2 and x3 correspond to the pendant edges of Ca,b,c, while the vertices
y1, y2 and y3 correspond to the edges incident with the vertex of degree 3 in Ca,b,c,
see Figure 2 for L(C4,3,2). Observe that if c = 1 (b = 1 or a = 1), then x3 = y3
(x2 = y2 or x1 = y1), and in such a case, deg(x3) = 2 (deg(x2) = 2 or deg(x1) = 2,
respectively).

In what follows, the graph L(Ca,b,c) is denoted by LC. Further, for i ∈ {1, 2, 3},
let Vi be the set of vertices of V (LC) of degree i. For x ∈ V1 and y ∈ V3, define

S1(x) =
∑

u

h(u, x) where u ∈ V (LC) \ V1,

M1 =
∑

u 6=v

h(u, v) where u, v ∈ V1,

S3(y) =
∑

u

h(u, y) where u ∈ V2,

M3 =
∑

u 6=v

h(u, v) where u, v ∈ V3,

D =
∑

u

[

3
(

u

3

)

+ 6
(

u

4

)

]

where u ∈ V3.

Observe that
∑

x∈V1
S1(x)+M1+

∑

y∈V3
S3(y)+M3 sums h(u, v) for all pairs {u, v}

of vertices such that either deg(u) 6= 2 or deg(v) 6= 2.
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Denote P = W (L3(Ca,b,c)) − W (Ca,b,c). Since Ca,b,c has a + b + c + 1 vertices,
we have W (Ca,b,c) = W (LC)+

(

a+b+c+1
2

)

, by Theorem 1.1. Thus, by Lemma 2.1, we
have

P = W (L2(LC))−W (LC)−
(

a+b+c+1
2

)

=
∑

x∈V1

S1(x) +M1 +
∑

y∈V3

S3(y) +M3 +D −
(

a+b+c+1
2

)

. (3)

This naturally splits the problem into four cases according to the size of V1. In each
of these cases we evaluate S1’s, M1, S3’s, M3 and D, and we solve the equation
P = 0. To avoid fractions, in some cases we solve the equation 2P = 0 instead of
P = 0.

Figure 2: The graphs Ca,b,c and L(Ca,b,c) = LC.

Case 1. a, b, c ≥ 2, that is, |V1| = 3.
We start with evaluating S1(x), where x ∈ V1. Since deg(x) = 1, we have

βj(u, x) = 0, 0 ≤ j ≤ 2. Hence, h(u, x) = −d(u, x), see (2). The sum of distances
from x1 to all interior vertices of x1−x2 path is 1+2+ . . .+(a+b−2) =

(

a+b−1
2

)

(see
Figure 2). The sum of distances from x1 to all interior vertices of x1 − x3 path, not
included in the previous calculation, is a + (a+1) + . . .+ (a+c−2) =

(

a+c−1
2

)

−
(

a

2

)

.
In this way we get S1(x1) and analogously we calculate S1(x2) and S1(x3):

S1(x1) = −
(

a+b−1
2

)

−
(

a+c−1
2

)

+
(

a

2

)

,

S1(x2) = −
(

a+b−1
2

)

−
(

b+c−1
2

)

+
(

b

2

)

,

S1(x3) = −
(

a+c−1
2

)

−
(

b+c−1
2

)

+
(

c

2

)

.

Now h(x1, x2) = −(a+b−1). Using the symmetry we obtain

M1 = −(a+b−1)− (a+c−1)− (b+c−1).

In S3(y) we sum h(u, y), where deg(u) = 2 and deg(y) = 3. Hence,
(

du
2

)(

dy
2

)

−1 =
2. Since β0(u, y) = 2, β1(u, y) = 1 and β2(u, y) = 0, we have h(u, y) = 2d(u, y) + 1.
Thus, the sum of h(u, y1)’s for interior vertices u of y1 − x1 path is 2(1 + 2 + . . .+
(a−2)) + (a−2) = 2

(

a−1
2

)

+ (a−2) (see Figure 2). Analogously, the sum of h(u, y1)’s
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for interior vertices of y2−x2 path is 2(2+3+. . .+(b−1))+(b−2) = 2
(

b

2

)

−2+(b−2) =

2
(

b

2

)

+ (b−4). In this way we get

S3(y1) = 2
(

a−1
2

)

+ (a−2) + 2
(

b

2

)

+ (b−4) + 2
(

c

2

)

+ (c−4),

S3(y2) = 2
(

a

2

)

+ (a−4) + 2
(

b−1
2

)

+ (b−2) + 2
(

c

2

)

+ (c−4),

S3(y3) = 2
(

a

2

)

+ (a−4) + 2
(

b

2

)

+ (b−4) + 2
(

c−1
2

)

+ (c−2).

Consider h(y1, y2). Here
(

dy1
2

)(

dy2
2

)

− 1 = 8, β0(y1, y2) = 4, β1(y1, y2) = 5 and
β2(y1, y2) = 0 (see Figure 2). This means that h(y1, y2) = 8+5 = 13, and analogously
also h(y1, y3) = 13 and h(y2, y3) = 13. Hence

M3 = 13 + 13 + 13.

Finally, since LC has exactly three vertices of degree 3 and no vertex of higher
degree, we have

D =
∑

u

[

3
(

du
3

)

+ 6
(

du
4

)

]

= 3
[

3
(

3
3

)

]

= 9.

By (3), expanding the terms (using a computer package, for instance), we get

P = (a2+b2+c2)− 3(ab+ac+bc) + (a+b+c) + 21

= (a+b+c)2 − 5(ab+ac+bc) + (a+b+c) + 21.

Now substitute x = (a+b+c) and consider the equation P = 0 over Z5. We get

x2 + x+ 1 = 0,

which has no solution in Z5. Consequently, P = 0 has no integer solution and
W (L3(Ca,b,c))−W (Ca,b,c) 6= 0 in this case.

Case 2. a, b ≥ 2, c = 1, that is, |V1| = 2.
In this case the vertex x3 = y3 has degree 2, so we do not need to find S1(x3) and

S3(y3), see (3), but we must include the distances to x3 in S1(x1), S
1(x2), S

3(y1)
and S3(y2). Analogously as in the previous case we have

S1(x1) = −
(

a+b−1
2

)

− a,

S1(x2) = −
(

a+b−1
2

)

− b,

M1 = −(a+b−1),

S3(y1) = 2
(

a−1
2

)

+ (a−2) + 2
(

b

2

)

+ (b−4) + 2 + 1,

S3(y2) = 2
(

a

2

)

+ (a−4) + 2
(

b−1
2

)

+ (b−2) + 2 + 1,

M3 = 13,

D = 2 · 3
(

3
3

)

= 6.
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By (3), expanding the terms we get

2P = (a2+b2)− 6ab− 5(a+b) + 30

= (a+b)2 − 8ab− 5(a+b) + 30. (4)

Now consider the equation 2P = 0 over Z5. We get (a′+b′)2 + 2a′b′ = 0. It is a
matter of routine to check that the only solution in Z5 is a′ = b′ = 0. Hence, in
(4) we have 25 | (a+b)2, 25 | 8ab and 25 | 5(a+b). Since 25 ∤ 30, (4) has no integer
solution. Thus, P = 0 has no solution also in this case.

Case 3. a ≥ 2, b = c = 1, that is, |V1| = 1.
The vertices x2 = y2 and x3 = y3 have degree 2, so we do not need to find S1(x2),

S1(x3), S
3(y2) and S3(y3). We have

S1(x1) = −
(

a

2

)

− a− a,

M1 = 0,

S3(y1) = 2
(

a−1
2

)

+ (a−2) + 2 + 1 + 2 + 1,

M3 = 0,

D = 3
(

3
3

)

= 3.

By (3), expanding the terms we get

P = −6a + 6 < 0

as a ≥ 2. Thus, P = 0 has no solution in this case.

Case 4. a = b = c = 1, that is, |V1| = 0.
In this case Ca,b,c = K1,3 and Li(K1,3) is a cycle of length 3 for every i ≥

1. Since W (G) = 3 if G is a cycle of length 3, while W (K1,3) = 9, we have
W (L3(C1,1,1))−W (C1,1,1) 6= 0 also in this case.

4 Proof of Theorem 1.6

Proof of Theorem 1.6. We proceed analogously as in the proof of Theorem 1.5.
That is, we prove Theorem 1.6 by counting the distances in L(Ha,b,c,d,e) instead
of those in Ha,b,c,d,e and L3(Ha,b,c,d,e). In L(Ha,b,c,d,e) we distinguish 10 vertices
x1, x2, . . . , x4 and y1, y2, . . . , y6. The vertices x1, . . . , x4 correspond to pendant edges
of Ha,b,c,d,e, while the vertices y1, . . . , y6 correspond to edges incident with vertices
of degree 3 in Ha,b,c,d,e (see Figure 3). Observe that if e = 0, then y5 = y6 and
deg(y5) = 4. If d = 1 (c = 1, b = 1 or a = 1), then x4 = y4 (x3 = y3, x2 = y2 or
x1 = y1), and in such a case deg(x4) = 2 (deg(x3) = 2, deg(x2) = 2 or deg(x1) = 2,
respectively).
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In what follows, the graph L(Ha,b,c,d,e) is denoted by LH . Further, for i ∈
{1, 2, 3, 4}, let Vi be the set of vertices of V (LH) of degree i. For x ∈ V1 and
y ∈ V3 ∪ V4, define

S1(x) =
∑

u

h(u, x) where u ∈ V (LH) \ V1,

M1 =
∑

u 6=v

h(u, v) where u, v ∈ V1,

S3(y) =
∑

u

h(u, y) where u ∈ V2,

M3 =
∑

u 6=v

h(u, v) where u, v ∈ V3 ∪ V4,

D =
∑

u

[

3
(

u

3

)

+ 6
(

u

4

)

]

where u ∈ V3 ∪ V4.

Observe that once again,
∑

x∈V1
S1(x)+M1+

∑

y∈V3∪V4
S3(y)+M3 sums h(u, v) for

all pairs {u, v} of vertices such that either deg(u) 6= 2 or deg(v) 6= 2.
Denote P = W (L3(Ha,b,c,d,e))−W (Ha,b,c,d,e). Since Ha,b,c,d,e has a+b+c+d+e+2

vertices, we have W (Ha,b,c,d,e) = W (LH) +
(

a+b+c+d+e+2
2

)

, by Theorem 1.1. Thus,
by Lemma 2.1, we have

P = W (L2(LH))−W (LH)−
(

a+b+c+d+e+2
2

)

=
∑

x∈V1

S1(x) +M1 +
∑

y∈V3∪V4

S3(y) +M3 +D −
(

a+b+c++d+e+2
2

)

. (5)

If e = 0, then we have one vertex of degree 4 in LH , while if e ≥ 1, then the
greatest degree of a vertex in LH is 3. By symmetry, we distinguish eleven cases.
In the first five cases we have e ≥ 1 and in the next five we have e = 0. In each
of these first ten cases (the last case will be solved in a different way) we evaluate
S1’s, M1, S3’s, M3 and D and we solve the equation P = 0. To avoid fractions, in
some cases we solve the equation 2P = 0.

Figure 3: The graph LH = L(Ha,b,c,d,e) for e ≥ 1 and e = 0.

Case 1. a, b, c, d ≥ 2, e ≥ 1.
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We start with evaluating S1(x), where x ∈ V1. Since deg(x) = 1, we have
βj(u, x) = 0, 0 ≤ j ≤ 2. Hence, h(u, x) = −d(u, x). The sum of distances from x1 to
all interior vertices of x1−x2 path is 1+2+ . . .+(a+b−2) =

(

a+b−1
2

)

(see Figure 3).
The sum of distances from x1 to all interior vertices of x1 − x3 path, not included
in the previous calculation, is

(

a+e+c

2

)

−
(

a

2

)

. Finally, the sum of distances from x1

to all interior vertices of x1 − x4 path, not included previously, is
(

a+e+d

2

)

−
(

a+e+1
2

)

.
In this way we get S1(x1) and analogously we calculate S1(x2), S

1(x3) and S1(x4):

S1(x1) = −
(

a+b−1
2

)

−
(

a+e+c

2

)

+
(

a

2

)

−
(

a+e+d

2

)

+
(

a+e+1
2

)

,

S1(x2) = −
(

a+b−1
2

)

−
(

b+e+c

2

)

+
(

b

2

)

−
(

b+e+d

2

)

+
(

b+e+1
2

)

,

S1(x3) = −
(

a+e+c

2

)

−
(

b+e+c

2

)

+
(

e+c+1
2

)

−
(

c+d−1
2

)

+
(

c

2

)

,

S1(x4) = −
(

a+e+d

2

)

−
(

b+e+d

2

)

+
(

e+d+1
2

)

−
(

c+d−1
2

)

+
(

d

2

)

.

Now h(x1, x2) = −(a+b−1) and h(x1, x3) = −(a+e+c). Using the symmetry we
obtain

M1 = −(a+b−1)− (a+e+c)− (a+e+d)− (b+e+c)− (b+e+d)− (c+d−1).

In S3(y) we sum h(u, y), where deg(u) = 2 and deg(y) = 3. Hence,
(

du
2

)(

dy
2

)

−1 =
2. Since β0(u, y) = 2, β1(u, y) = 1 and β2(u, y) = 0, we have h(u, y) = 2d(u, y) + 1.
Thus, the sum of h(u, y1) for interior vertices u of y1 − x1 path is 2(1 + 2 + . . . +
(a−2)) + (a−2) = 2

(

a−1
2

)

+ (a−2) (see Figure 3). Analogously, the sum of h(u, y1)

for interior vertices of y2− x2 path is 2(2+ 3+ . . .+(b−1))+ (b−2) = 2
(

b

2

)

+ (b−4);
the sum of h(u, y1) for interior vertices of y5− y6 path is 2(2+3+ . . .+ e)+ (e−1) =
2
(

e+1
2

)

+ (e−3); and the sum of h(u, y1) for interior vertices of y3 − x3 path is

2((e+3)+ (e+4)+ . . .+ (e+c))+ (c−2) = 2
(

e+c+1
2

)

− 2
(

e+3
2

)

+ (c−2). In this way we
get

S3(y1) = 2
(

a−1
2

)

+ (a−2) + 2
(

b

2

)

+ (b−4) + 2
(

e+1
2

)

+ (e−3)

+ 2
(

e+c+1
2

)

− 2
(

e+3
2

)

+ (c−2) + 2
(

e+d+1
2

)

− 2
(

e+3
2

)

+ (d−2),

S3(y2) = 2
(

a

2

)

+ (a−4) + 2
(

b−1
2

)

+ (b−2) + 2
(

e+1
2

)

+ (e−3)

+ 2
(

e+c+1
2

)

− 2
(

e+3
2

)

+ (c−2) + 2
(

e+d+1
2

)

− 2
(

e+3
2

)

+ (d−2),

S3(y3) = 2
(

a+e+1
2

)

− 2
(

e+3
2

)

+ (a−2) + 2
(

b+e+1
2

)

− 2
(

e+3
2

)

+ (b−2)

+ 2
(

e+1
2

)

+ (e−3) + 2
(

c−1
2

)

+ (c−2) + 2
(

d

2

)

+ (d−4),

S3(y4) = 2
(

a+e+1
2

)

− 2
(

e+3
2

)

+ (a−2) + 2
(

b+e+1
2

)

− 2
(

e+3
2

)

+ (b−2)

+ 2
(

e+1
2

)

+ (e−3) + 2
(

c

2

)

+ (c−4) + 2
(

d−1
2

)

+ (d−2),

S3(y5) = 2
(

a

2

)

+ (a−4) + 2
(

b

2

)

+ (b−4) + 2
(

e

2

)

+ (e−1)

+ 2
(

e+c

2

)

− 2
(

e+2
2

)

+ (c−2) + 2
(

e+d

2

)

− 2
(

e+2
2

)

+ (d−2),

S3(y6) = 2
(

a+e

2

)

− 2
(

e+2
2

)

+ (a−2) + 2
(

b+e

2

)

− 2
(

e+2
2

)

+ (b−2)

+ 2
(

e

2

)

+ (e−1) + 2
(

c

2

)

+ (c−4) + 2
(

d

2

)

+ (d−4).
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Consider h(yi, yj), where 1 ≤ i < j ≤ 6. Here
(

dyi
2

)(dyj
2

)

−1 = 8 and β0(yi, yj) = 4.
If yi and yj lie in a common triangle, then β1(yi, yj) = 5 and β2(yi, yj) = 0, while if yi
and yj do not lie in a common triangle, then β1(yi, yj) = 4 and β2(yi, yj) = 1. This
means that h(y1, y2) = 13, h(y1, y3) = 8(e+2)+6 = 8e+22, h(y1, y6) = 8(e+1)+6 =
8e+ 14 and h(y5, y6) = 8e+ 6. Hence

M3 =
(

13 + (8e+22) + (8e+22) + 13 + (8e+14)
)

+
(

(8e+22) + (8e+22)

+ 13 + (8e+14)
)

+
(

13 + (8e+14) + 13
)

+
(

(8e+14) + 13
)

+
(

(8e+6)
)

.

Finally,

D =
∑

u

[

3
(

du
3

)

+ 6
(

du
4

)

]

= 6
[

3
(

3
3

)

]

= 18.

By (5), expanding the terms (using a computer package, for instance), we get

2P = 7(a2+b2+c2+d2+e2)− 6(ab+ac+ad+bc+bd+cd) + 4(ae+be+ce+de)

+ 5(a+b+c+d) + 65e+ 234

= 7(a+b+c+d+e)2 − 20(ab+ac+ad+bc+bd+cd)− 10(ae+be+ce+de)

+ 5(a+b+c+d) + 65e+ 234.

Now substitute x = (a+b+c+d+e) and consider the equation 2P = 0 over Z5. We
get

2x2 + 4 = 0,

which has no solution in Z5. Consequently, P = 0 has no integer solution and
W (L3(Ha,b,c,d,e))−W (Ha,b,c,d,e) 6= 0 in this case.

Case 2. a, b, c ≥ 2, d = 1, e ≥ 1.
In this case the vertex x4 = y4 has degree 2, so we do not need to find S1(x4) and

S3(y4), but we must include the distances to x4 in S1(x1), S
1(x2), S

1(x3), S
3(y1),

S3(y2), S
3(y3), S

3(y5) and S3(y6). Analogously as in the previous case we have

S1(x1) = −
(

a+b−1
2

)

−
(

a+e+c

2

)

+
(

a

2

)

− (a+e+1),

S1(x2) = −
(

a+b−1
2

)

−
(

b+e+c

2

)

+
(

b

2

)

− (b+e+1),

S1(x3) = −
(

a+e+c

2

)

−
(

b+e+c

2

)

+
(

e+c+1
2

)

− c,

M1 = −(a+b−1)− (a+e+c)− (b+e+c),

S3(y1) = 2
(

a−1
2

)

+ (a−2) + 2
(

b

2

)

+ (b−4) + 2
(

e+1
2

)

+ (e−3)

+ 2
(

e+c+1
2

)

− 2
(

e+3
2

)

+ (c−2) + 2(e+2) + 1,

S3(y2) = 2
(

a

2

)

+ (a−4) + 2
(

b−1
2

)

+ (b−2) + 2
(

e+1
2

)

+ (e−3)

+ 2
(

e+c+1
2

)

− 2
(

e+3
2

)

+ (c−2) + 2(e+2) + 1,
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S3(y3) = 2
(

a+e+1
2

)

− 2
(

e+3
2

)

+ (a−2) + 2
(

b+e+1
2

)

− 2
(

e+3
2

)

+ (b−2)

+ 2
(

e+1
2

)

+ (e−3) + 2
(

c−1
2

)

+ (c−2) + 2 + 1,

S3(y5) = 2
(

a

2

)

+ (a−4) + 2
(

b

2

)

+ (b−4) + 2
(

e

2

)

+ (e−1)

+ 2
(

e+c

2

)

− 2
(

e+2
2

)

+ (c−2) + 2(e+1) + 1,

S3(y6) = 2
(

a+e

2

)

− 2
(

e+2
2

)

+ (a−2) + 2
(

b+e

2

)

− 2
(

e+2
2

)

+ (b−2)

+ 2
(

e

2

)

+ (e−1) + 2
(

c

2

)

+ (c−4) + 2 + 1,

M3 =
(

13 + (8e+22) + 13 + (8e+14)
)

+
(

(8e+22) + 13 + (8e+14)
)

+
(

(8e+14) + 13
)

+
(

(8e+6)
)

,

D = 5 · 3
(

3
3

)

= 15.

By (5), expanding the terms we get

P = 3(a2+b2+c2+e2)− 3(ab+ac+bc) + (ae+be) + 2ce− 2(a+ b)− c+ 28e+ 97.

Since (a−b)2 + (b−c)2 + (c−a)2 = 2(a2+b2+c2) − 2(ab+ac+bc) ≥ 0, we have
3(a2+b2+c2)− 3(ab+ac+bc) ≥ 0. Hence, if e ≥ 2, then

P ≥ 3e2 + (e− 2)(a+b) + c(2e− 1) + 28e+ 97 > 0.

This means that if P = 0 then e = 1. For e = 1 we obtain

P = 3(a2+b2+c2)− 3(ab+ac+bc)− a− b+ c+ 128.

Substituting a = 128 + x, b = 128 + y and c = 128 + z we get

P = 3(x2+y2+z2)− 3(xy+xz+yz)− x− y + z.

Now we solve the equation P = 0. This gives

3(x2+y2+z2)− 3(xy+xz+yz) = x+ y − z = 3t

or equivalently

3
2

(

(x−y)2 + (y−z)2 + (z−x)2
)

= x+ y − z = 3t,

where t is nonnegative integer. Since x, y and z were defined using a, b and c, the
differences (z−y) and (z−x) are integer numbers. Set i = (z−y) and j = (z−x).
Then (x−y) = (z−y)− (z−x) = i− j, so that

2t = (x−y)2 + (y−z)2 + (z−x)2 = (i−j)2 + (−i)2 + j2 = 2i2 + 2j2 − 2ij
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and consequently 3t = 3i2 + 3j2 − 3ij = x+ y − z. This gives

x = 3t+ (z−y) = 3i2 + 3j2 − 3ij + i,

y = 3t+ (z−x) = 3i2 + 3j2 − 3ij + j,

z = x+ y − 3t = 3i2 + 3j2 − 3ij + i+ j,

which is equivalent to (1).
In [14] we proved that for every triple a, b, c satisfying (1) and e = 1 it holds

P = 0 (that is, W (L3(Ha,b,c,1,1)) = W (Ha,b,c,1,1)). Thus, P = 0 in this case if and
only if e = 1 and a, b, c satisfy (1).

Case 3. a, c ≥ 2, b = d = 1, e ≥ 1.
The vertices x2 = y2 and x4 = y4 have degree 2, so we do not need to find S1(x2),

S1(x4), S
3(y2) and S3(y4). We have

S1(x1) = −a−
(

a+e+c

2

)

− (a+e+1),

S1(x3) = −
(

a+e+c

2

)

− (e+c+1)− c,

M1 = −(a+e+c),

S3(y1) = 2
(

a−1
2

)

+ (a−2) + 2 + 1 + 2
(

e+1
2

)

+ (e−3)

+ 2
(

e+c+1
2

)

− 2
(

e+3
2

)

+ (c−2) + 2(e+2) + 1,

S3(y3) = 2
(

a+e+1
2

)

− 2
(

e+3
2

)

+ (a−2) + 2(e+2) + 1

+ 2
(

e+1
2

)

+ (e−3) + 2
(

c−1
2

)

+ (c−2) + 2 + 1,

S3(y5) = 2
(

a

2

)

+ (a−4) + 2 + 1 + 2
(

e

2

)

+ (e−1)

+ 2
(

e+c

2

)

− 2
(

e+2
2

)

+ (c−2) + 2(e+1) + 1,

S3(y6) = 2
(

a+e

2

)

− 2
(

e+2
2

)

+ (a−2) + 2(e+1) + 1

+ 2
(

e

2

)

+ (e−1) + 2
(

c

2

)

+ (c−4) + 2 + 1,

M3 =
(

(8e+22) + 13 + (8e+14)
)

+
(

(8e+14) + 13
)

+
(

(8e+6)
)

,

D = 4 · 3
(

3
3

)

= 12.

By (5), expanding the terms we get

2P = 5(a2+c2+e2)− 6ac + 2(ae+ce)− 11(a+ c) + 45e+ 148.

Since 4(a−c)2 = 4a2+4c2−8ac ≥ 0 and (a+c−6)2 = a2+c2+2ac−12(a+c)+36 ≥ 0,
we get

2P ≥ a2 + c2 + 5e2 + 2ac+ 2(ae+ce)− 11(a+ c) + 45e+ 148

≥ 5e2 + 2(ae+ce) + (a+ c) + 45e+ 112 > 0.

Thus, the equation P = 0 has no solution in this case.
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Case 4. a, b ≥ 2, c = d = 1, e ≥ 1.
The vertices x3 = y3 and x4 = y4 have degree 2, so we do not need to find S1(x3),

S1(x4), S
3(y3) and S3(y4). We have

S1(x1) = −
(

a+b−1
2

)

−
(

a+e+2
2

)

+
(

a

2

)

− (a+e+1),

S1(x2) = −
(

a+b−1
2

)

−
(

b+e+2
2

)

+
(

b

2

)

− (b+e+1),

M1 = −(a+b−1),

S3(y1) = 2
(

a−1
2

)

+ (a−2) + 2
(

b

2

)

+ (b−4) + 2
(

e+1
2

)

+ (e−3)

+ 2(e+2) + 1 + 2(e+2) + 1,

S3(y2) = 2
(

a

2

)

+ (a−4) + 2
(

b−1
2

)

+ (b−2) + 2
(

e+1
2

)

+ (e−3)

+ 2(e+2) + 1 + 2(e+2) + 1,

S3(y5) = 2
(

a

2

)

+ (a−4) + 2
(

b

2

)

+ (b−4) + 2
(

e

2

)

+ (e−1)

+ 2(e+1) + 1 + 2(e+1) + 1,

S3(y6) = 2
(

a+e

2

)

− 2
(

e+2
2

)

+ (a−2) + 2
(

b+e

2

)

− 2
(

e+2
2

)

+ (b−2)

+ 2
(

e

2

)

+ (e−1) + 2 + 1 + 2 + 1,

M3 =
(

13 + 13 + (8e+14)
)

+
(

13 + (8e+14)
)

+
(

(8e+6)
)

,

D = 4 · 3
(

3
3

)

= 12.

By (5), expanding the terms we get

2P = 5(a2+b2+e2)− 6ab− 13(a+b) + 47e+ 148.

Since 4(a−b)2 = 4a2+4b2−8ab ≥ 0 and (a+b−7)2 = a2+b2+2ab−14(a+b)+49 ≥ 0,
we get

2P ≥ a2 + b2 + 5e2 + 2ab− 13(a+ b) + 47e+ 148

≥ 5e2 + (a + b) + 47e+ 99 > 0.

Thus, the equation P = 0 has no solution in this case.

Case 5. a ≥ 2, b = c = d = 1, e ≥ 1.
The vertices x2 = y2, x3 = y3 and x4 = y4 have degree 2, so we have

S1(x1) = −a−
(

a+e+2
2

)

− (a+e+1),

M1 = 0,

S3(y1) = 2
(

a−1
2

)

+ (a−2) + 2 + 1 + 2
(

e+1
2

)

+ (e−3) + 2(e+2) + 1 + 2(e+2) + 1,

S3(y5) = 2
(

a

2

)

+ (a−4) + 2 + 1 + 2
(

e

2

)

+ (e−1) + 2(e+1) + 1 + 2(e+1) + 1,

S3(y6) = 2
(

a+e

2

)

− 2
(

e+2
2

)

+ (a−2) + 2(e+1) + 1 + 2
(

e

2

)

+ (e−1) + 2 + 1 + 2 + 1,

M3 =
(

13 + (8e+14)
)

+
(

(8e+6)
)

,

D = 3 · 3
(

3
3

)

= 9.
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By (5), expanding the terms we get

P = 2a2 + 2e2 − 10a+ 17e+ 48.

Since (a−5)2 = a2 − 10a+ 25 ≥ 0, we get

P ≥ a2 + 2e2 + 17e+ 23 > 0.

Thus, the equation P = 0 has no solution in this case.

Case 6. a, b, c, d ≥ 2, e = 0.
In this case, and also in the next four, we have y5 = y6 and the degree of y5 is

4 (see Figure 3). This does not affect S1(xi), M
1 and S3(yj), where 1 ≤ i, j ≤ 4.

Hence, analogously as above we get

S1(x1) = −
(

a+b−1
2

)

−
(

a+c

2

)

+
(

a

2

)

−
(

a+d

2

)

+
(

a+1
2

)

,

S1(x2) = −
(

a+b−1
2

)

−
(

b+c

2

)

+
(

b

2

)

−
(

b+d

2

)

+
(

b+1
2

)

,

S1(x3) = −
(

a+c

2

)

−
(

b+c

2

)

+
(

c+1
2

)

−
(

c+d−1
2

)

+
(

c

2

)

,

S1(x4) = −
(

a+d

2

)

−
(

b+d

2

)

+
(

d+1
2

)

−
(

c+d−1
2

)

+
(

d

2

)

,

M1 = −(a+b−1)− (a+c)− (a+d)− (b+c)− (b+d)− (c+d−1),

S3(y1) = 2
(

a−1
2

)

+ (a−2) + 2
(

b

2

)

+ (b−4) + 2
(

c+1
2

)

+ (c−8) + 2
(

d+1
2

)

+ (d−8),

S3(y2) = 2
(

a

2

)

+ (a−4) + 2
(

b−1
2

)

+ (b−2) + 2
(

c+1
2

)

+ (c−8) + 2
(

d+1
2

)

+ (d−8),

S3(y3) = 2
(

a+1
2

)

+ (a−8) + 2
(

b+1
2

)

+ (b−8) + 2
(

c−1
2

)

+ (c−2) + 2
(

d

2

)

+ (d−4),

S3(y4) = 2
(

a+1
2

)

+ (a−8) + 2
(

b+1
2

)

+ (b−8) + 2
(

c

2

)

+ (c−4) + 2
(

d−1
2

)

+ (d−2),

where we simplified expressions as 2
(

a+0+1
2

)

− 2
(

0+3
2

)

+ (a−2) to 2
(

a+1
2

)

+ (a−8).
Now we discuss the terms containing h(u, y5). In S3(y5) we sum h(u, y5), where

deg(u) = 2 and deg(y5) = 4. Hence
(

du
2

)(

dy5
2

)

−1 = 5. Since β0(u, y5) = 3, β1(u, y5) =
3 and β2(u, y5) = 0, we have h(u, y5) = 5d(u, yi) + 3. Thus, the sum of h(u, y5) for
interior vertices u of y1−x1 path is 5(2+3+. . .+(a−1))+3(a−2) = 5

(

a

2

)

−5+3(a−2)
(see Figure 3). In this way we get

S3(y5) = 5
(

a

2

)

− 5 + 3(a−2) + 5
(

b

2

)

− 5 + 3(b−2) + 5
(

c

2

)

− 5 + 3(c−2)

+ 5
(

d

2

)

− 5 + 3(d−2).

Now consider h(yi, y5), 1 ≤ i ≤ 4. Here
(

dyi
2

)(

dy5
2

)

− 1 = 17 and β0(yi, y5) =
2 · 3 = 6. Since yi and y5 allways lie in a common triangle, we have β1(yi, y5) = 11
and β2(yi, y5) = 1 (see Figure 3). Thus, h(yi, y5) = 17 · 1 + 11 + 2 · 1 = 30. As
regards h(yi, yj), where 1 ≤ i < j ≤ 4, analogously as above we get h(y1, y2) = 13
and h(y1, y3) = 8e + 22 = 22. Hence

M3 = (13+22+22+30) + (22+22+30) + (13+30) + 30.
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Finally,

D =
∑

u

[

3
(

du
3

)

+ 6
(

du
4

)

]

= 4
[

3
(

3
3

)

]

+
[

3
(

4
3

)

+ 6
(

4
4

)

]

= 12 + 18.

By (5), expanding the terms we get

P = 4(a2+b2+c2+d2)− 3(ab+ac+ad+bc+bd+cd) + 3(a+b+c+d) + 137

= 4(a+b+c+d)2 − 11(ab+ac+ad+bc+bd+cd) + 3(a+b+c+d) + 137.

Substitute x = (a+b+c+d) and consider the equation P = 0 over Z11. We get

4x2 + 3x+ 5 = 0,

which has no solution in Z11. Consequently, P = 0 has no integer solution and
W (L3(Ha,b,c,d,0))−W (Ha,b,c,d,0) 6= 0 in this case.

Case 7. a, b, c ≥ 2, d = 1, e = 0.
In this case the vertex x4 = y4 has degree 2, so we do not need to find S1(x4)

and S3(y4). Analogously as in the previous case we have

S1(x1) = −
(

a+b−1
2

)

−
(

a+c

2

)

+
(

a

2

)

− (a+1),

S1(x2) = −
(

a+b−1
2

)

−
(

b+c

2

)

+
(

b

2

)

− (b+1),

S1(x3) = −
(

a+c

2

)

−
(

b+c

2

)

+
(

c+1
2

)

− c,

M1 = −(a+b−1)− (a+c)− (b+c),

S3(y1) = 2
(

a−1
2

)

+ (a−2) + 2
(

b

2

)

+ (b−4) + 2
(

c+1
2

)

+ (c−8) + 4 + 1,

S3(y2) = 2
(

a

2

)

+ (a−4) + 2
(

b−1
2

)

+ (b−2) + 2
(

c+1
2

)

+ (c−8) + 4 + 1,

S3(y3) = 2
(

a+1
2

)

+ (a−8) + 2
(

b+1
2

)

+ (b−8) + 2
(

c−1
2

)

+ (c−2) + 2 + 1,

S3(y5) = 5
(

a

2

)

− 5 + 3(a−2) + 5
(

b

2

)

− 5 + 3(b−2) + 5
(

c

2

)

− 5 + 3(c−2) + 5 + 3,

M3 = (13+22+30) + (22+30) + 30,

D = 3
(

3
(

3
3

)

)

+
(

3
(

4
3

)

+ 6
(

4
4

)

)

= 9 + 18.

By (5), expanding the terms we get

2P = 7(a2+b2+c2)− 6(ab+ac+bc)− 3(a+b)− c+ 232.

Since 3(a−b)2 + 3(b−c)2 + 3(c−a)2 = 6(a2+b2+c2) − 6(ab+ac+bc) ≥ 0 and also
(a−2)2 + (b−2)2 + (c−1)2 = (a2+b2+c2)− 4(a+b)− 2c+ 9 ≥ 0, we get

2P ≥ (a2+b2+c2)− 3(a+b)− c+ 232

≥ a+ b+ c+ 223 > 0.
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Thus, the equation P = 0 has no solution in this case.

Case 8. a, c ≥ 2, b = d = 1, e = 0.
The vertices x2 = y2 and x4 = y4 have degree 2, so we have

S1(x1) = −a−
(

a+c

2

)

− (a+1),

S1(x3) = −
(

a+c

2

)

− (c+1)− c,

M1 = −(a+c),

S3(y1) = 2
(

a−1
2

)

+ (a−2) + 2 + 1 + 2
(

c+1
2

)

+ (c−8) + 4 + 1,

S3(y3) = 2
(

a+1
2

)

+ (a−8) + 4 + 1 + 2
(

c−1
2

)

+ (c−2) + 2 + 1,

S3(y5) = 5
(

a

2

)

− 5 + 3(a−2) + 5 + 3 + 5
(

c

2

)

− 5 + 3(c−2) + 5 + 3,

M3 = (22+30) + 30,

D = 2
(

3
(

3
3

)

)

+
(

3
(

4
3

)

+ 6
(

4
4

)

)

= 6 + 18.

By (5), expanding the terms we get

P = 3(a2+c2)− 3ac− 5(a+c) + 92.

Since 2(a−c)2 = 2(a2+c2)−4ac ≥ 0 and (a−3)2+(c−3)2 = (a2+c2)−6(a+c)+18 ≥
0, we get

P ≥ (a2+c2) + ac− 5(a+c) + 92

≥ ac + (a+c) + 74 > 0.

Thus, the equation P = 0 has no solution in this case.

Case 9. a, b ≥ 2, c = d = 1, e = 0.
The vertices x3 = y3 and x4 = y4 have degree 2, so we have

S1(x1) = −
(

a+b−1
2

)

− (a+1)− (a+1)− a,

S1(x2) = −
(

a+b−1
2

)

− (b+1)− (b+1)− b,

M1 = −(a+b−1),

S3(y1) = 2
(

a−1
2

)

+ (a−2) + 2
(

b

2

)

+ (b−4) + 4 + 1 + 4 + 1,

S3(y2) = 2
(

a

2

)

+ (a−4) + 2
(

b−1
2

)

+ (b−2) + 4 + 1 + 4 + 1,

S3(y5) = 5
(

a

2

)

− 5 + 3(a−2) + 5
(

b

2

)

− 5 + 3(b−2) + 5 + 3 + 5 + 3,

M3 = (13+30) + 30,

D = 2
(

3
(

3
3

)

)

+
(

3
(

4
3

)

+ 6
(

4
4

)

)

= 6 + 18.

By (5), expanding the terms we get

P = 3(a2+b2)− 3ab− 6(a+b) + 92.
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Since 2(a−b)2 = 2(a2+b2)−4ab ≥ 0 and (a−3)2+(b−3)2 = (a2+b2)−6(a+b)+18 ≥ 0,
we get

P ≥ (a2+b2) + ab− 6(a+b) + 92

≥ ab+ 74 > 0.

Thus, the equation P = 0 has no solution in this case.

Case 10. a ≥ 2, b = c = d = 1, e = 0.
The vertices x2 = y2, x3 = y3 and x4 = y4 have degree 2, so we have

S1(x1) = −
(

a+1
2

)

− (a+1)− (a+1)− a,

M1 = 0,

S3(y1) = 2
(

a−1
2

)

+ (a−2) + 2 + 1 + 4 + 1 + 4 + 1,

S3(y5) = 5
(

a

2

)

− 5 + 3(a−2) + 5 + 3 + 5 + 3 + 5 + 3,

M3 = 30,

D = 3
(

3
3

)

+
(

3
(

4
3

)

+ 6
(

4
4

)

)

= 3 + 18.

By (5), expanding the terms we get

2P = 5a2 − 19a+ 130.

Since 5(a−2)2 = 5a2 − 20a+ 20, we get

2P ≥ a+ 110.

Thus, the equation P = 0 has no solution in this case.

Case 11. a = b = c = d = 1, e ≥ 0.
In [15, Theorem 1.5] we proved that W (Li(T )) > W (T ) for every i ≥ 3 and for

every tree T which is different from a path and the claw K1,3 and in which no leaf
is adjacent to a vertex of degree 2. By this statement, for H = H1,1,1,1,e we have
W (L3(H)) > W (H), which completes the proof.
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