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Abstract

We enumerate nonisomorphic minimum genus orientable embeddings of
the complete bipartite graph Km,n for 2 ≤ m, n ≤ 7 except for (m,n) =
(7, 7).
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1 Introduction

It was shown by Ringel [2] that a minimum genus orientable embedding of the
complete bipartite graph Km,n (m, n ≥ 2) has genus g given by the formula

g =

⌈

(m − 2)(n − 2)

4

⌉

.

The number of faces f in such an embedding is given by Euler’s formula as
f = mn + 2 − (m + n) − 2g. If fi denotes the number of faces of length i then
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f =
∑

j≥2
f2j, and by counting their edges we also have 2mn =

∑

j≥2
2jf2j.

From these equations we deduce that, in a minimum genus orientable embedding
of Km,n,

f6 + 2f8 + 3f10 + . . . = 4g − (m − 2)(n − 2).

If we put h = h(m, n) = 4g− (m− 2)(n− 2) then h = 0, 1, 2 or 3; we will refer to
h as the excess. When h = 0, all faces are 4-gons, that is to say the embedding
is quadrangular. When h = 1, there is one 6-gon and all remaining faces are
4-gons. When h = 2 there are two possibilities, namely one 8-gon or two 6-gons,
with all remaining faces being 4-gons in both cases. When h = 3 there are three
possibilities, namely one 10-gon, or one 8-gon and one 6-gon, or three 6-gons,
with all remaining faces being 4-gons in each case. Table 1 shows the values of
(g, h) for 2 ≤ m ≤ n ≤ 7.

m�n 2 3 4 5 6 7
2 (0, 0) (0, 0) (0, 0) (0, 0) (0, 0) (0, 0)
3 (1, 3) (1, 2) (1, 1) (1, 0) (2, 3)
4 (1, 0) (2, 2) (2, 0) (3, 2)
5 (3, 3) (3, 0) (4, 1)
6 (4, 0) (5, 0)
7 (7, 3)

Table 1. Genus and excess (g, h).

With the exception of the case (m, n) = (7, 7) we enumerate all nonisomorphic
minimum genus orientable embeddings of Km,n for 2 ≤ m, n ≤ 7. Somewhat to
our surprise, no such enumeration seems to have been previously undertaken.
Without loss of generality, it can be assumed that m ≤ n. We will always take
the bipartition {A, B} where A = {a1, a2, . . . , am} and B = {b1, b2, . . . , bn}.
We assume that the reader is familiar with the representation of embeddings by
means of rotation schemes where the notation ai : b1, b2, . . . , bn means that at the
point ai the neighbouring points in cyclic order are b1, b2, . . . , bn. For background
material on topological graph theory, we refer the reader to [1].

In determining possible isomorphisms between orientable embeddings
when m 6= n, there are m possible images for a1 and taking one of these, say a′

i,
the rotations at a1 and a′

i give n possible images for b1 with either the orientation
preserved or reversed (in the representation of embeddings by rotation schemes,
reversal is only meaningful if n > 2). The rest of the potential isomorphism is
then determined uniquely. Thus for m 6= n (and n > 2), to determine if two
rotation schemes represent isomorphic embeddings, there are just 2mn possible
mappings to consider. When m = n > 2, there is the additional possibility of
exchanging the vertex parts, and the number of mappings requiring examination
rises to 4n2. A similar argument applies to the determination of automorphisms.
An orientable embedding of Kn,n is said to be regular if the order of the full
automorphism group is as large as possible, namely 4n2.
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2 Enumeration

We start by examining some particularly simple cases, namely when m = 2 and
when (m, n) = (3, 3) or (3, 4). We then move on to the more general cases.

When m = 2, all faces are 4-gons and the embedding is planar. Figure 1 makes
it clear that, up to isomorphism, there is just one minimum genus embedding of
K2,n for each n.

a1

a2

b1 b2 b3 bn

Figure 1: Quadrangular embedding of K2,n.

In the case (m, n) = (3, 3), we have f = 3 and we may assume that the
rotation scheme has the outline form

a1 : b1 b2 b3 b1 : a1 a2 a3

a2 : b1 ∗ ∗ b2 : a1 ∗ ∗
a3 : b1 ∗ ∗ b3 : a1 ∗ ∗

There are potentially 16 ways to complete this outline form, but this number is
reduced to ten by taking account of the symmetry between A and B. It is easy
to check by hand that exactly seven of these ten completions give a minimum
genus embedding (the others give non-minimum genus embeddings). The seven
solutions fall into two isomorphism classes, representatives of which are

a1 : b1 b2 b3 b1 : a1 a2 a3

a2 : b1 b2 b3 b2 : a1 a2 a3

a3 : b1 b2 b3 b3 : a1 a2 a3

and
a1 : b1 b2 b3 b1 : a1 a2 a3

a2 : b1 b2 b3 b2 : a1 a2 a3

a3 : b1 b3 b2 b3 : a1 a3 a2

The former corresponds to three 6-gon faces with the embedding having an au-
tomorphism group of order 36, where 9 automorphisms preserve the bipartition
and orientation, 9 preserve the bipartition and reverse the orientation, 9 exchange
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the bipartition and preserve the orientation, and 9 exchange the bipartition and
reverse the orientation. The latter corresponds to one 10-gon and two 4-gons
with the embedding having an automorphism group of order 4, where there is
one automorphism of each of the four types.

In the case (m, n) = (3, 4), we have f = 5 and so at least one face is a 4-gon.
Without loss of generality therefore, we may assume that the embedding contains
the geometric configuration shown in Figure 2 where a1b1a2b4 is one of the faces.

a1b3

b2

b4

a3

b1

a2

Figure 2: Configuration in an embedding of K3,4.

Figure 2 gives the outline rotation scheme

a1 : b1 b2 b3 b4 b1 : a1 a2 a3

a2 : b1 b4 ∗ ∗ b2 : a1 ∗ ∗
a3 : b1 ∗ ∗ ∗ b3 : a1 ∗ ∗

b4 : a1 a3 a2

This gives rise to eight minimum genus embeddings in just three isomorphism
classes. A representative of each class is given below. The face type is described
by (f ; f4, f6, f8, f10) and |Aut| gives the order of the automorphism group. In
each case, half of the automorphisms preserve the orientation and the other half
reverse it.
Class 1, face type (5; 3, 2, 0, 0), |Aut| = 6.
A-rotations: a1 : b1b2b3b4, a2 : b1b4b2b3, a3 : b1b2b4b3.
B-rotations: b1 : a1a2a3, b2 : a1a2a3, b3 : a1a2a3, b4 : a1a3a2.
Class 2, face type (5; 4, 0, 1, 0), |Aut| = 4.
A-rotations: a1 : b1b2b3b4, a2 : b1b4b2b3, a3 : b1b3b2b4.
B-rotations: b1 : a1a2a3, b2 : a1a2a3, b3 : a1a3a2, b4 : a1a3a2.
Class 3, face type (5; 4, 0, 1, 0), |Aut| = 8.
A-rotations: a1 : b1b2b3b4, a2 : b1b4b3b2, a3 : b1b2b3b4.
B-rotations: b1 : a1a2a3, b2 : a1a3a2, b3 : a1a2a3, b4 : a1a3a2.

In all other cases under consideration, mn > 6f6 + 8f8 + 10f10 and conse-
quently there is an edge which lies in two 4-gons. Then, without loss of generality,
we may assume that the embedding contains the geometric configuration shown
in Figure 3 where a1b1a2bn and amb1a1b2 are adjacent faces.
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a1

b2

bn

am

b1

a2

b3 am−1

bn−1 a3

Figure 3: Configuration in an embedding of Km,n

(3 ≤ m ≤ n, (m, n) 6= (3, 3), (3, 4)).

Figure 3 gives the outline rotation scheme

a1 : b1 b2 . . . bn b1 : a1 a2 . . . am

a2 : b1 bn ∗ ∗ ∗ ∗ b2 : a1 am ∗ ∗ ∗ ∗
a3 : b1 ∗ ∗ ∗ ∗ ∗ b3 : a1 ∗ ∗ ∗ ∗ ∗

...
...

am : b1 ∗ ∗ ∗ ∗ b2 bn : a1 ∗ ∗ ∗ ∗ a2

The number of possible completions of the A-rotations is
((n−2)!)2((n−1)!)m−3 and the number of possible completions of the B-rotations
is ((m−2)!)2((m−1)!)n−3. Potentially it seems necessary to examine each pair of
these A- and B-rotations to see if a minimum genus embedding results. However,
some simplifications are possible. Firstly, if m = n we may exploit the symmetry
between A and B.

Secondly, if there is an A-point and a B-point that only appear in 4-gons
then we may take these points to be a1 and b1, and so if the rotation at ai is
ai : b1 . . . bj, then the rotation at ai+1 is ai+1 : b1bj . . .. A similar argument
applies to the B-rotations. This considerably reduces the number of possible A-
and B-rotations, and is particularly useful in the cases (m, n) = (5, 7) and (6, 7).

Thirdly, let p(i, j) be the number of times that bi immediately precedes bj

in the cyclic order of the A-rotations. If h(m, n) = 0 (that is, the embedding is
quadrangular) then we must have p(i, j) = p(j, i) because each 4-gon containing
both bi and bj will have one vertex ak with rotation ak : . . . bibj . . . and another
vertex al with rotation al : . . . bjbi . . .. Hence, if h(m, n) = 0 we require S =
∑

1≤i<j≤n |p(i, j) − p(j, i)| = 0. When h(m, n) > 0 some degree of imbalance is
possible. If h(m, n) = 1, at most three consecutive pairs bibj can be unbalanced
and so, with S as defined previously, we require S ≤ 3. Similarly, if h(m, n) = 2,
we require S ≤ 6 and if h(m, n) = 3, we require S ≤ 9. In all cases this reduces
to S ≤ 3h(m, n). The same procedure may be applied to the B-rotations.

For m ≤ n ≤ 7, apart from (m, n) = (7, 7), these simplifications enable us
to compute all possible minimum genus orientable embeddings of Km,n. As an
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example, consider the case (m, n) = (6, 7). The formulas above give the potential
numbers of A- and B-rotations as 5 374 771 200 000 and 119439 360 000 respec-
tively. Applying the two simplifications reduces these numbers to 239 310 and
44 191 respectively. Of the 239 310 × 44 191 potential rotation schemes that re-
sult, only 35 882 actually generate minimum genus orientable embeddings. With
this relatively modest number of candidates, it is then easy to determine that
there are 584 isomorphism classes and to determine their automorphisms.

Table 2 summarizes the results. In each case we give the face types and
number of isomorphism classes of each face type. All the results have been
obtained by two independently written computer programs.

(m, n) Face type Number of isomorphism classes
(3, 3) (3; 2, 0, 0, 1) 1

(3; 0, 3, 0, 0) 1
(3, 4) (5; 4, 0, 1, 0) 2

(5; 3, 2, 0, 0) 1
(3, 5) (7; 6, 1, 0, 0) 1
(3, 6) (9; 9, 0, 0, 0) 1
(3, 7) (9; 8, 0, 0, 1) 5

(9; 7, 1, 1, 0) 12
(9; 6, 3, 0, 0) 8

(4, 4) (8; 8, 0, 0, 0) 2
(4, 5) (9; 8, 0, 1, 0) 9

(9; 7, 2, 0, 0) 6
(4, 6) (12; 12, 0, 0, 0) 5
(4, 7) (13; 12, 0, 1, 0) 71

(13; 11, 2, 0, 0) 102
(5, 5) (11; 10, 0, 0, 1) 15

(11; 9, 1, 1, 0) 89
(11; 8, 3, 0, 0) 63

(5, 6) (15; 15, 0, 0, 0) 6
(5, 7) (17; 16, 1, 0, 0) 204
(6, 6) (18; 18, 0, 0, 0) 53
(6, 7) (21; 21, 0, 0, 0) 584

Table 2. Summary of results.

It is not feasible to list further details of all the embeddings here but they
are available from the authors with a representative rotation scheme for each iso-
morphism class and the automorphism group type. The overwhelming majority
of the embeddings have small automorphism groups. Only eight of the embed-
dings in Table 2 have an automorphism group of order mn or greater. These
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are given in Table 3 with their automorphism group types (t; t1, t2, t3, t4) where
t is the total number of automorphisms, t1 the number that preserve the bipar-
tition and orientation, t2 the number that preserve the bipartition and reverse
the orientation, t3 the number that exchange the bipartition and preserve the
orientation, and t4 the number that exchange the bipartition and reverse the
orientation. The rotations in Table 3 are in a compact form where, for example,
the entry for (m, n) = (3, 6) that reads A : . . . , 163254, . . . denotes the rotation
a2 : b1b6b3b2b5b4. Regular embeddings, those where m = n and |Aut| = 4n2, are
noted.

(m, n) Rotation scheme Face type Group type
(3, 3) A : 123, 123, 123. (3; 0, 3, 0, 0) (36; 9, 9, 9, 9)

B : 123, 123, 123. regular
(3, 6) A : 123456, 163254, 143652. (9; 9, 0, 0, 0) (36; 18, 18, 0, 0)

B : 123, 132, 123, 132, 123, 132.

(4, 4) A : 1234, 1423, 1324, 1432. (8; 8, 0, 0, 0) (32; 8, 8, 8, 8)
B : 1234, 1423, 1324, 1432.

(4, 4) A : 1234, 1432, 1234, 1432. (8; 8, 0, 0, 0) (64; 16, 16, 16, 16)
B : 1234, 1432, 1234, 1432. regular

(4, 6) A : 123456, 163254, 145236, (12; 12, 0, 0, 0) (24; 12, 12, 0, 0)
165432.

B : 1234, 1432, 1234, 1432,

1234, 1432.

(4, 6) A : 123456, 165432, 123456, (12; 12, 0, 0, 0) (48; 24, 24, 0, 0)
165432.

B : 1234, 1432, 1234, 1432,

1234, 1432.

(6, 6) A : 123456, 163254, 143652, (18; 18, 0, 0, 0) (72; 36, 36, 0, 0)
123456, 163254, 143652.

B : 123456, 165432, 123456,
165432, 123456, 165432.

(6, 6) A : 123456, 165432, 123456, (18; 18, 0, 0, 0) (144; 36, 36, 36, 36)
165432, 123456, 165432. regular

B : 123456, 165432, 123456,
165432, 123456, 165432.

Table 3. Minimum genus orientable embeddings with |Aut| ≥ mn.

Consideration was given to enumerating minimum genus orientable embed-
dings for K7,7. There are three possible face types, namely (23; 22, 0, 0, 1),
(23; 21, 1, 1, 0) and (23; 20, 3, 0, 0). In the last two of these cases it is conceiv-
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able that no A- or B-points appear only in 4-gons and so one of the simplifying
assumptions to which we referred above does not apply in these cases. To obtain
all solutions for (m, n) = (7, 7) by the current method would be likely to take
several weeks of computer time with our current processing speed and require
larger amounts of computer memory than we have available.
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