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1 Introduction

As we explain below, the number of nonisomorphic minimum genus (either
orientable or nonorientable) embeddings of the complete graph Kn cannot

exceed nn2( 1
3
−o(1)) as n → ∞. Until recently, the best known lower bound on

this number was 2n2(a−o(1)) for a certain infinite set of values n and positive
constant a [2]. Also, for all sufficiently large n, V. P. Korzhik and H.-J. Voss
have established a lower bound of the form 2an [13, 14, 15, 16]. Then in [5]
it was shown that for a certain positive constant a and for an infinite set of
values n, the number of nonisomorphic minimum genus embeddings of the
complete graph Kn is at least nan2

. However all the embeddings of Kn in
[5] were in a nonorientable surface. In the current paper we establish an
analogous result for embeddings of Kn in an orientable surface. The method
used is similar to that of [5] where the first step was to construct a special face
2-colourable triangular embedding of the complete regular tripartite graph
Kn,n,n for certain even values of n. Here the first step is to do a similar job
for certain odd values of n.

For general background material on topological embeddings, we refer the
reader to [10] and [17]. Our embeddings will always be in closed connected
2-manifolds without a boundary. A graph embedding is face 2-colourable if
the faces may be coloured in such a way that any two faces with a common
boundary receive different colours. We will always take the colours to be
black and white. A graph embedding is called triangular if all the faces are
triangles. It was shown in [6] that a triangular embedding of Kn,n,n is face 2-
colourable if and only if the supporting surface is orientable, and the surface
is therefore a sphere with an appropriate number of handles.

A triangular embedding of Kn determines a twofold triple system, TTS(n);
this comprises a pair (V,B) where V is an n-element set (the points) and B
is a collection (that is, a multiset) of 3-element subsets (the blocks or triples)
of V such that each pair of elements from V is contained in precisely two
blocks. It is well known that an TTS(n) exists if and only if n ≡ 0 or 1
(mod 3) [3]. The vertices of the embedded graph Kn form the points of the
design and the faces form the triples. As has been remarked elsewhere, for
example in [4], an upper bound on the number of triangular embeddings of
Kn is easily provided by an upper bound on the number of TTS(n)s. In brief,
this bound may be established as follows. Take any TTS(n) = (V,B0) where
V = {1, 2, . . . , n}. Let B1 be the block {1, 2, a1}, where a1 is the minimal
value such that {1, 2, a1} ∈ B0, and then put B1 = B0 \ {B1}. We iterate
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this process: at stage k let {i, j} be the lowest pair that appears in Bk−1,
let ak be the minimal point for which Bk = {i, j, ak} ∈ Bk−1, and then put
Bk = Bk−1 \ {Bk}. Stop when Bk is empty. The ordered list a1, a2, ..., ab,
where b = n(n− 1)/3 is the number of triples in B0, determines the TTS(n).
There are at most (n−2)n(n−1)/3 such lists, so there is at most this number of
triangular embeddings of Kn. For minimum genus embeddings which are not
triangular, there is a small number of non-triangular faces but the number
and size of these faces is bounded by a (small) constant. These faces can be
listed separately and add at most a small constant to the exponent, yield-
ing an upper bound nn2( 1

3
−o(1)) for the number of distinct minimum genus

embeddings of Kn with vertex set {1, 2, . . . , n}. The maximum size of an
isomorphism class of such embeddings is n!, but this has smaller order of
magnitude than nn2( 1

3
−o(1)), so we may also take the latter expression as an

upper bound for the number of nonisomorphic minimum genus embeddings
of Kn.

When a triangular embedding of Kn is face 2-colourable, the associated
TTS(n) partitions into two Steiner triple systems, STS(n), one for each colour
class. An STS(n) comprises a pair (V,B) where V is an n-element set (the
points) and B is a set of 3-element subsets (the blocks or triples) of V such
that each pair of elements from V is contained in precisely one block. It is
well known that an STS(n) exists if and only if n ≡ 1 or 3 (mod 6) [12].
We say that two STS(n)s are biembeddable in a surface if there is a face
2-colourable triangular embedding of Kn in which the face sets forming the
two colour classes give isomorphic copies of the two systems. Apart from the
small cases v = 3 and v = 7, there are no known examples of a pair of Steiner
triple systems which cannot be biembedded in a nonorientable surface. A
necessary condition for the existence of an orientable biembedding of two
STS(n)s is that n ≡ 3 or 7 (mod 12). However, it was shown in [8] that
many pairs of STS(15)s admit no orientable biembeddings.

A face 2-colourable triangular embedding of Kn,n,n determines two trans-
versal designs, TD(3, n), one for each colour class. Such a design comprises
a triple (V,G,B), where V is a 3n-element set (the points), G is a partition
of V into three disjoint sets (the groups) each of cardinality n, and B is a set
of 3-element subsets of V (the triples), such that each pair of elements from
V is either contained in precisely one triple or one group, but not both. The
vertices of the embedded graph Kn,n,n form the points of each design, the
tripartition determines the groups, and the faces in each colour class form
the triples of each design.
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A TD(3, n) determines a Latin square of order n by assigning the three
groups of the design as labels for the rows, columns and entries (in any one
of six possible orders) of the Latin square. Conversely any Latin square of
order n determines a TD(3, n). Two Latin squares are said to be in the
same main class or paratopic if the corresponding TD(3, n)s are isomorphic.
Thus a face 2-colourable triangular embedding of Kn,n,n may be considered
as a biembedding of two TD(3, n)s or, equivalently, two Latin squares. To
be precise, we say that two Latin squares of order n are biembeddable in
a surface if there is a face 2-colourable triangular embedding of Kn,n,n in
which the face sets forming the two colour classes give paratopic copies of
the two squares. By considering bounds on the number of Latin squares of
order n, it is easy to see that the number of nonisomorphic biembeddings
of such squares cannot exceed n2n2(1−o(1)). A necessary condition for two
Latin squares of order n to be biembeddable was established in [11] and, as
a consequence, it is clear that infinitely many pairs of Latin squares admit
no biembeddings.

A parallel class of triples in a TD(3, n) is a set of triples in which each
point of the design appears precisely once. Such a parallel class is equivalent
to a transversal in a corresponding Latin square. In combinatorial design
terminology, a Pasch configuration is a set of four triples on six points having
the form {{a, b, c}, {a, d, e}, {b, d, f}, {c, e, f}}. In a Latin square, such a
configuration corresponds to a subsquare of order 2, which we will call a
2-subsquare.

2 Complete tripartite graphs

We start by recalling, in a slightly modified form, a definition from [5].

Definition 2.1 Suppose that A = (ai,j) is an n × n array with rows and
columns indexed by a set M = {m1, m2, . . . , mn}. If, for each i ∈ {1, 2, . . . , n},
the permutation

(

ami,m1 ami,m2 · · · ami,mn

ami+1,m1 ami+1,m2 · · · ami+1,mn

)

is a single cycle of length n, including the case i = n when i + 1 is taken as
1, then we will say that A is consecutively row Hamiltonian, cr-Hamiltonian
for short.
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The following result was proved in [5].

Lemma 2.1 Suppose that A = (ai,j) is a cr-Hamiltonian Latin square of
order n. Then A has a biembedding with a copy of itself.

Our key lemma may now be stated.

Lemma 2.2 For each m = 22t+1 − 1 with t ≥ 1 there is a cr-Hamiltonian
Latin square of order 3m that has 9m(m − 1)(m − 3)/4 2-subsquares and a
transversal.

Proof. Since 22t+1 ≡ 2 (mod 3), m is not divisible by 3. Now let x be a
primitive element of the Galois field GF(22t+1). Then x, and hence x3, both
have order m. Consider the Latin square L formed by the Cayley table of
the Steiner quasigroup corresponding to the projective STS(m). This may
have its rows and columns indexed by {1, x, x2, . . . , xm−1}. The entry in row
xi and column xj is xi + xj when i 6= j, and xi when i = j. So we have

L =

1 x x2 x3 . . . xm−1

1 1 1 + x 1 + x2 1 + x3 . . . 1 + xm−1

x 1 + x x x + x2 x + x3 . . . x + xm−1

x2 1 + x2 x + x2 x2 x2 + x3 . . . x2 + xm−1

x3 1 + x3 x + x3 x2 + x3 x3 . . . x3 + xm−1

...
...

xm−1 1 + xm−1 x + xm−1 x2 + xm−1 x3 + xm−1 . . . xm−1

Note that L has a transversal on the leading diagonal. We need to determine
the number of 2-subsquares in L. To do this, choose any row r1 and any
column c1, where c1 6= r1. The number of such choices is m(m− 1). Suppose
that the entry in row r1, column c1 is e1, so that r1 + c1 = e1. Then choose
any column c2 6= r1, c1, e1. There are m − 3 such choices for c2. Suppose
that the entry in row r1, column c2 is e2 so that r1 + c2 = e2. Now locate
the entry e2 in column c1; suppose this occurs in row r2. Then r2 6= r1 and
r2 + c1 = e2. It follows from the three equations that r2 + c2 = e1. Thus
there is a 2-subsquare on the positions (r1, c1), (r1, c2), (r2, c1), (r2, c2). Since
every such 2-subsquare will be counted four times in this enumeration, it
follows that L contains at least m(m− 1)(m− 3)/4 2-subsquares. However,
any other 2-subsquare would have to contain a cell from the leading diagonal
and it is easy to see that this is impossible. Hence L contains precisely
m(m − 1)(m − 3)/4 2-subsquares.
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By defining αi = 1 + xi for i = 1, 2, . . . , m − 1 and α0 = 1, we may write
the first row of entries in L as a0 = (α0, α1, . . . , αm−1). Then if ai is defined
for i = 1, 2, . . .m − 1 by ai = (αm−i, αm−i+1, . . . , αm−i−1), with subscript
arithmetic modulo m, the xi row of L is just xiai. Now take the 3m × 3m
array A with entries αi, α

′

i, α
′′

i for i = 0, 1, . . . , m − 1 and given by

A =















































a0 (a0)
′ (a0)

′′

(a0)
′ (a1)

′′ a1

(a1)
′′ a1 (a1)

′

xa1 (xa1)
′ (xa1)

′′

(xa1)
′ (xa2)

′′ xa2

(xa2)
′′ xa2 (xa2)

′

x2a2 (x2a2)
′ (x2a2)

′′

(x2a2)
′ (x2a3)

′′ x2a3

(x2a3)
′′ x2a3 (x2a3)

′

...
...

...
xm−1am−1 (xm−1am−1)

′ (xm−1am−1)
′′

(xm−1am−1)
′ (xm−1a0)

′′ xm−1a0

(xm−1a0)
′′ xm−1a0 (xm−1a0)

′















































.

Here, for example, (xa1)
′ denotes the vector (x′α′

m−1, x
′α′

0, x
′α′

1, . . . , x
′α′

m−2)
= ((1 + x)′, x′, (x + x2)′ . . . , (x + xm−1)′). We show that A has the desired
properties.

First we prove that A is a cr-Hamiltonian array. To do this, number the
rows from 0 to 3m − 1 and denote by πj the permutation formed from rows
j and j + 1. Then for i = 0, 1, . . . , m − 1,

π3i =

(

xiai (xiai)
′ (xiai)

′′

(xiai)
′ (xiai+1)

′′ xiai+1

)

= (xiαm−i, (x
iαm−i)

′, (xiαm−i−1)
′′, xiαm−i−2, . . . , (x

iαm−i+1)
′′),

which is a cycle of length 3m because m is odd. Similarly

π3i+1 = ((xiαm−i)
′, (xiαm−i−1)

′′, xiαm−i−1, (x
iαm−i−1)

′, . . . , xiαm−i)

is a cycle of length 3m and

π3i+2 = ((xiαm−i−1)
′′, xi+1αm−i−1, (x

i+2αm−i−1)
′, (xi+3αm−i−1)

′′,
. . . , (xi−1αm−i−1)

′)
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is also a cycle of length 3m because x3 has order m. Hence A is cr-Hamiltonian.
To establish the remaining properties we permute the rows of A in an

obvious fashion to obtain the following array:

A∗ =

























































a0 (a0)
′ (a0)

′′

xa1 (xa1)
′ (xa1)

′′

x2a2 (x2a2)
′ (x2a2)

′′

...
...

...
xm−1am−1 (xm−1am−1)

′ (xm−1am−1)
′′

(a0)
′ (a1)

′′ a1

(xa1)
′ (xa2)

′′ xa2

(x2a2)
′ (x2a3)

′′ x2a3
...

...
...

(xm−1am−1)
′ (xm−1a0)

′′ xm−1a0

(a1)
′′ a1 (a1)

′

(xa2)
′′ xa2 (xa2)

′

(x2a3)
′′ x2a3 (x2a3)

′

...
...

...
(xm−1a0)

′′ xm−1a0 (xm−1a0)
′

























































=





L L′ L′′

L′ M ′′ M
M ′′ M M ′



 .

Here L is just the original Latin square formed by the Cayley table of the
Steiner quasigroup corresponding to the projective STS(m), and L′, L′′ are
copies of L. The square M is obtained from L by multiplying all entries by
xm−1 and permuting the rows, and M ′, M ′′ are copies of M . It follows that
A∗ is a Latin square and that it has 9 times the number of 2-subsquares that
L has. Also, since L has a transversal, so also does M , and consequently
so does A∗. Hence A itself is a Latin square that has 9m(m − 1)(m − 3)/4
2-subsquares and a transversal.

Applying the result of Lemma 2.1 to the square A of order 3m = 3(22t+1−
1) constructed in Lemma 2.2 gives a biembedding of that Latin square.
The biembedding is actually a face 2-colourable triangular embedding of
K3m,3m,3m in an orientable surface. In this embedding, each 2-subsquare in
each colour class is realized as a Pasch configuration comprising four triangles
(a, b, c), (a, d, e), (f, b, e), (f, d, c), where a, f are row labels, b, d are column
labels and e, c are entries. There will be 9m(m− 1)(m− 3)/4 Pasch configu-
rations in each colour class. The transversal in A will be realized as a parallel
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class of 3m triangles in each of the two colour classes. We now apply a recur-
sive construction for biembeddings of Latin squares with this biembedding
as one of the ingredients. The result is a large number of nonisomorphic
biembeddings. Our basic construction is a generalization of one given in [9]
which is described in more detail in [5]. We now give a brief description of
that construction.

Take a face 2-colourable triangular embedding P of Kp,p,p and another Q
of Kq,q,q, and assume that the latter has a parallel class of triangular faces in
one of the two colour classes, say black. Now take q copies of P , say Pi for
i = 1, 2, . . . , q. For each oriented white triangular face W = (a, b, c) of P , we
“bridge” the corresponding white triangles Wi = (ai, bi, ci) of the embeddings
Pi. To do this we first cut out the white triangular face Wi from each Pi.
Then we take a copy of Q and label the vertex parts with {ai}, {bi}, {ci}
in such a way that the parallel class has oriented black triangles labelled
(ai, ci, bi). Next we cut out each of the black triangular faces (ai, ci, bi) from
Q. Then for each i we glue the boundaries of the white triangle (ai, bi, ci) of Pi

to the boundaries of the black triangle (ai, ci, bi) of Q so that corresponding
vertices and edges are identified. Repeating this process for every white
triangle of P results in a face 2-colourable triangular embedding of Kpq,pq,pq

in an orientable surface.
In this construction, the bridging operation provides all the “missing”

adjacencies between the q copies Pi. The bridge across the q triangles Wi =
(ai, bi, ci) yields the adjacencies aibj , aicj, bicj for i, j = 1, 2, . . . , q, i 6= j.
Now suppose that P contains a Pasch configuration (a, b, c), (a, d, e), (f, b, e),
(f, d, c). The four corresponding bridges provide the missing adjacencies
aibj , aicj , bicj , aidj, aiej , diej , fibj , fiej , biej , fidj, ficj, dicj for i 6= j. It is, how-
ever, possible to provide these adjacencies by an alternative arrangement of
bridges that singles out one embedding, say P1, for special treatment. For 2 ≤
i ≤ q we bridge (a1, d1, e1) to (ai, bi, ci), (a1, b1, c1) to (ai, di, ei), (f1, d1, c1) to
(fi, bi, ei), and (f1, b1, e1) to (fi, di, ci) by suitable renaming of the vertices of
the four bridges involved. For example, one of the four copies of Q originally
had its parallel class of black triangles labelled (ai, ci, bi) for 1 ≤ i ≤ q but now
we relabel (a1, c1, b1) as (a1, e1, d1), and we do a similar relabelling of the other
three copies of Q. For i, j ≥ 2 and i 6= j this leaves all the adjacencies gener-
ated by the original bridges between Pi and Pj unaltered. However, for i ≥ 2,
the first bridge then provides the adjacencies a1bi, a1ci, d1ai, d1ci, e1ai, e1bi,
the second provides a1di, a1ei, b1ai, b1ei, c1ai, c1di, the third provides f1bi, f1ei,
d1fi, d1ei, c1fi, c1bi, and the fourth provides f1di, f1ci, b1fi, b1ci, e1fi, e1di. For
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each i ≥ 2, these 24 adjacencies are the same as the 24 adjacencies arising
for the original bridging arrangement across the Pasch configuration between
P1 and Pi.

We will call the original arrangement of bridges standard and an ar-
rangement of the type just described non-standard. This is a slightly tighter
definition of the term than was used in [5] but it will suffice for our purposes
here. We next recall another definition from [5].

Definition 2.2 Given a Latin square A, a collection C of 2-subsquares will be
called an independent collection of 2-subsquares if no two of the 2-subsquares
have a common (row, column, entry) triple.

Since 2-subsquares in a Latin square A correspond to Pasch configurations
in any biembedding of A, we will also use the term independent collection of
Pasch configurations.

Lemma 2.3 The Latin square A of order p = 3(22t+1−1) defined in Lemma

2.2 has at least (4p−33
3

)(p(p−3)
16

−1) independent collections of 2-subsquares.

Proof. Put m = (22t+1 − 1) and s = 9m(m− 1)(m− 3)/4, the number of 2-
subsquares in A. Denote by Ik the number of distinct independent collections
of 2-subsquares in A that contain precisely k 2-subsquares. Each off-diagonal
(row, column, entry) triple of L can lie in at most (m−3) 2-subsquares of L.
Hence each triple of A that lies in a 2-subsquare of A can lie in at most (m−3)
2-subsquares of A. Since there are four triples to each 2-subsquare, it follows
that each 2-subsquare of A can intersect at most 4(m − 3) 2-subsquares of
A in a common triple. So, for k − 1 < s

4(m−3)
we have

Ik ≥ s(s − 4(m − 3))(s − 8(m − 3)) · · · (s − 4(k − 1)(m − 3))/k!

≥ (4(m − 3))kN(N − 1)(N − 2) · · · (N − (k − 1))/k!

where N = ⌊ s
4(m−3)

⌋. Then, summing over k = 0, 1, . . . , N gives the number
of distinct independent collections of 2-subsquares as at least

(1 + 4(m − 3))N ≥ (4m − 11)( s
4(m−3)

−1) =

(

4p − 33

3

)(
p(p−3)

16
−1)

.

The following lemma was also established in [5]. The proof is simplified
slightly by our tighter definition of “non-standard”.
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Lemma 2.4 Suppose that M is a face 2-colourable triangular embedding of
Kp,p,p and that C(1) and C(2) are two different independent collections of Pasch
configurations in the same colour class, say white. For i = 1, 2, let M (i) be
the embedding that results when we apply standard Kq,q,q bridges to each
white face not in C(i) and non-standard bridge arrangements to each Pasch
configuration in C(i). Then the embeddings M (1) and M (2) will be differently
labelled.

Proof. If the Pasch configurations in C(1) and C(2) do not cover the same
triples, then there is a Pasch configuration {(a, b, c), (a, d, e), (f, b, e),
(f, d, c)} in C(1), and without loss of generality we may assume that (a, b, c)
does not lie in any Pasch configuration in C(2). Then M (1) has a white trian-
gle (a1, b1, ei) for some i 6= 1. However, in M (2) the edge a1b1 lies in the white
triangle (a1, b1, ci). So in this case M (1) and M (2) are differently labelled.

Now suppose that C(1) and C(2) cover the same triples and that M (1)

and M (2) are identically labelled. We derive a contradiction as follows. If
C(1) contains the Pasch configuration R = {(a, b, c), (a, d, e), (f, b, e), (f, d, c)}
then we may suppose without loss of generality that the contributing blocks
do not lie in the same Pasch configuration in C(2) and that the non-standard
bridging arrangement for C(1) contains a white triangle (a1, b1, ei) with i 6= 1.
Since the same triangle arises in the non-standard bridging arrangement for
C(2), the triple (a, b, c) and either (a, d, e) or (f, b, e) must lie together in
a Pasch configuration in C(2). So, ignoring for a moment the tripartition
which orders entries in the triples, C(2) contains either the Pasch configuration
S = {{a, b, c}, {a, d, e}, {g, b, d}, {g, c, e}} or T = {{a, b, c}, {f, b, e}, {h, a, f},
{h, c, e}} for some suitable g or h ∈ V (Kp,p,p). However, there is no edge ce
in the tripartite graph Kp,p,p, and so neither S nor T can exist. It follows
that M (1) and M (2) must be differently labelled.

As previously remarked, an independent collection of Pasch configura-
tions in a colour class corresponds exactly to an independent collection of
2-subsquares in the associated Latin square. Furthermore, a Kq,q,q bridge is
simply a face 2-colourable triangular embedding of the graph having a paral-
lel class of faces in one of the two colour classes. The embeddings M (1) and
M (2) which result are face 2-colourable triangular embeddings of Kpq,pq,pq. In
addition, if the black faces of M have a parallel class then the black faces
of the q copies M , all of which are unaltered by bridging the white trian-
gles, have a common parallel class in both the embeddings M (1) and M (2).
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Consequently, we may state the following theorem.

Theorem 2.1 Let p = 3(22t+1 − 1) where t ≥ 1 and suppose there is a face
2-colourable triangular embedding of Kq,q,q having a parallel class in one of
the colour classes, say black. Then there are at least

(

4p − 33

3

)(p(p−3)
16

−1)

differently labelled face 2-colourable triangular embeddings of Kpq,pq,pq all of
which have a common parallel class of black triangular faces. Furthermore,
there are at least

(

4p−33
3

)(
p(p−3)

16
−1)

6((pq)!)3

nonisomorphic face 2-colourable triangular embeddings of Kpq,pq,pq.

Proof. The first part follows from the preceding discussion. The second
part follows because the maximum possible size of an isomorphism class of
such an embedding is 6((pq)!)3.

Note that for odd q > 1, there is a face 2-colourable triangular embedding
of Kq,q,q given by the Latin squares with entries C(i, j) = i + j (mod q) and
D(i, j) = i + j + 1 (mod q), and that each of these squares has a transversal.
Using this with q = 3, we have the following corollary.

Corollary 2.1.1 For n = 9(22t+1−1) as t → ∞, there are at least n
n2

144
(1−o(1))

nonisomorphic face 2-colourable triangular embeddings of Kn,n,n, each of
which has a parallel class in one colour.

Proof. In Theorem 2.1 take q = 3 and replace p by n/3. The number of
isomorphism classes of the resulting Kn,n,n embeddings is then at least

(

4n−99
9

)(n(n−9)
144

−1)

6(n!)3
= n

n2

144
(1−o(1))

Re-phrasing the corollary in the language of Latin squares, it follows that

for n = 9(22t+1 − 1) as t → ∞, there are at least n
n2

144
(1−o(1)) nonisomorphic

biembeddings of Latin squares of order n, each of which has a parallel class
in one colour. Note that these biembeddings are necessarily in an orientable
surface.
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3 Complete graphs

A recursive construction given in [9] forms the basis for the results of this
section and we start by describing it informally.

The construction takes a face 2-colourable triangular embedding M of
Km, a face 2-colourable triangular embedding R of Kr,r,r having a parallel
class of black triangular faces, and a face 2-colourable triangular embedding
S of K2r+1. The embeddings M and S are biembeddings of Steiner triple
systems, and the embedding R is a biembedding of Latin squares. Choose
any single vertex ∞ of the embedding M and delete the cap at this point;
that is to say, remove all the triangular faces incident with ∞ from M to
leave a triangular embedding M̄ of Km−1 in a bordered surface. Next take
r copies of M̄ , say M̄i for i = 1, 2, . . . , r. For each white triangular face
W = (a, b, c) of M̄ , bridge the corresponding white triangles Wi = (ai, bi, ci)
of the embeddings M̄i in the manner described in the previous section, using
a copy of the embedding R. When this operation is complete, the resulting
embedding is “close” to that of Kr(m−1) but with a small number of missing
adjacencies corresponding to the deleted triangles, and the supporting surface
has r disjoint boundaries. If (m − 1)/2 is odd, these boundaries can then
be capped by means of an auxiliary embedding A, which provides one extra
vertex and all missing adjacencies, to give a face 2-colourable triangular
embedding of Kr(m−1)+1. The embedding A itself is constructed using copies
of the embedding S and an appropriate voltage graph. Full details are given
in [9]. If the embeddings M and S are in orientable surfaces, then the
resulting embedding of Kr(m−1)+1 is also orientable. As observed in [9], it
is possible to use differently labelled embeddings R to bridge different white
triangular faces W of M̄ . The result below was established in [9].

Theorem 3.1 Suppose that m ≡ 3 or 7 (mod 12) and that r ≡ 1 or 3
(mod 6). Suppose also that there are k differently labelled face 2-colourable
triangular embeddings of Kr,r,r, all of which have a common parallel class
of black triangular faces. Then we may construct k(m−1)(m−3)/6 differently
labelled face 2-colourable triangular embeddings of Kr(m−1)+1, all of which
are orientable.

The following result follows directly from this and Theorem 2.1.
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Corollary 3.1.1 Suppose that m ≡ 3 or 7 (mod 12), that r = pq where
p = 3(22t+1 − 1), t ≥ 1 and q is odd. Then there are at least

(

4p − 33

3

)

(

p(p−3)
16

− 1
)(

(m−1)(m−3)
6

)

differently labelled face 2-colourable triangular embeddings of Kr(m−1)+1, each
of which is orientable.

Corollary 3.1.1 enables us to state the following result.

Corollary 3.1.2 Suppose that n = 3q(22t+1 − 1)(m− 1) + 1, where q > 1 is

odd, t ≥ 1, and m ≡ 3 or 7 (mod 12) with m ≥ 7. Put a =
m − 3

96q2(m − 1)
.

Then, as t → ∞, there are at least nn2(a−o(1)) nonisomorphic face 2-colourable
triangular embeddings of Kn in an orientable surface.

Proof. In the estimate given by Corollary 3.1.1, write r = n−1
m−1

. This
gives the lower bound for the number of differently labelled face 2-colourable
triangular embeddings of Kn as

[

4(n − 1)

3q(m − 1)
− 11

]

(

a(n−1)2
(

1 − 3q(m−1)
n−1

))

Dividing this expression by n! (the maximum possible size of an isomorphism
class), and making the usual estimates, gives the result.

4 Concluding remarks

If, for example, we take m = 7 and q = 3 in Corollary 3.1.2, then we can
deduce that for n of the form 54(22t+1 − 1) + 1, as t → ∞, there are at least

nn2( 1
1296

−o(1)) nonisomorphic face 2-colourable triangular embeddings of Kn in
an orientable surface. By taking m large and q to have its minimum value 3 in
Corollary 3.1.2, our value for the constant a approaches 1

864
, but the resulting

bound applies to a heavily restricted range of values of n. We conjecture that
there exists a positive constant a such that for all n ≡ 3 or 7 (mod 12) the
number of nonisomorphic face 2-colourable triangular embeddings of Kn in
an orientable surface is at least nn2(a−o(1)) as n → ∞.
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Our proof could be simplified and the final results improved if we had, in
place of Lemma 2.2, for each integer m = 2s − 1 a biembedding of the Latin
square L formed by the Cayley table of the Steiner quasigroup corresponding
to the projective STS(m). A further improvement would be obtained if
for each n we had a biembedding of Latin squares of order n which had
O(n3) 2-subsquares and a transversal. And yet another simplification and
improvement could be made if, for each n satisfying the necessary conditions,
we had a biembedding of STS(n)s which had O(n3) 2-subsquares.

We note that the bound obtained in [5] for the number of nonorientable
face 2-colourable triangular embeddings of Kn can be improved for certain
values of n to give essentially the same bound as in Corollary 3.1.2, since
a slight generalization of Theorem 3.1 facilitates nonorientable embeddings.
In fact, embeddings obtained in [7], as remarked at the end of that paper,
already give this improved bound.

Computational results, such as [1] and [8] suggest that there are many
more nonorientable face 2-colourable triangular embeddings of Kn than ori-
entable ones. It may therefore seem surprising that we have essentially the
same bound for orientable as for nonorientable triangular embeddings of Kn

(though for a sparser class of values n). The explanation may well lie in the
o(1) error term.
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