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1 Background

A biembedding of two Latin squares of order n is equivalent to a face 2-colourable
triangular embedding of a complete regular tripartite graph Kn,n,n in which the
faces of each colour class generate the Latin squares. In this paper we determine
which Latin squares formed from the Cayley tables of Abelian groups appear in
such biembeddings.

In [4] a recursive construction was presented for biembeddings of Latin squares.
This construction was used in that paper to prove that, for i 6= 2, the Cayley table
of the Abelian 2-group Ci

2 appears in a biembedding. It was also conjectured that,
with the single exception of the group C2

2 , the Cayley table of each Abelian group
appears in a biembedding. In the current paper we give a proof of this conjecture.
The difficulty in proving the result is due to the facts that the Cayley table of C2

2

appears in no biembedding, while the unique biembeddings in which the Cayley
tables of C2 and C4 appear are with copies of themselves, and both these squares
lack transversals.

For general background material on topological embeddings, we refer the
reader to [5] and [6]. Our embeddings will always be 2-cell embeddings in closed
connected 2-manifolds without a boundary. A graph embedding is face 2-colourable

if the faces may be coloured in such a way that any two faces with a common
boundary edge receive different colours. It was shown in [2] that a triangular
embedding of Kn,n,n is face 2-colourable if and only if the supporting surface is
orientable, and the surface is therefore a sphere with an appropriate number of
handles.

A face 2-colourable triangular embedding of Kn,n,n determines two transversal

designs, TD(3, n), one for each colour class. Such a design comprises an ordered
triple (V,G,B), where V is a 3n-element set (the points), G is a partition of V into
three disjoint sets (the groups) each of cardinality n, and B is a set of 3-element
subsets of V (the triples), such that every unordered pair of elements from V is
either contained in precisely one triple or one group, but not both. The vertices
of the embedded graph Kn,n,n form the points of each design, the tripartition
determines the groups, and the faces in each colour class form the triples of each
design.

The connection with Latin squares is that a TD(3, n) determines a Latin
square of order n by assigning the three groups of the design as labels for the
rows, columns and entries (in any one of six possible orders) of the Latin square.
Conversely any Latin square of order n determines a TD(3, n). Two Latin squares
are said to be in the same main class or paratopic if the corresponding TD(3, n)s
are isomorphic. Thus a face 2-colourable triangular embedding of Kn,n,n may be
considered as a biembedding of two TD(3, n)s or, equivalently, two Latin squares.
To be precise, we say that two Latin squares of order n are biembeddable in a
surface if there is a face 2-colourable triangular embedding of Kn,n,n in which the
face sets forming the two colour classes give paratopic copies of the two squares.
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Given a Latin square L of order n, we may use the notation k = L(i, j) to
denote that entry k appears in row i column j of L; alternatively we may write
(i, j, k) ∈ L. In this latter form, the triples of any Latin square will always be
specified in (row, column, entry) order. Note however that in a biembedding of two
Latin squares, the vertices of faces forming one colour class will appear clockwise
in the cyclic order (row, column, entry), while those forming the other will appear
anticlockwise if taken in the same cyclic order. A parallel class of triples in a
TD(3, n) is a set of triples in which each point of the design appears precisely
once. Such a parallel class is equivalent to a transversal in a corresponding Latin
square.

For Latin squares A and B of order n with common sets of row labels, of
column labels, and of entries, we will write A ⊲⊳ B (to be read as A biembeds with

B without relabelling), if the particular realizations of A and B form an embedding
in a surface; that is to say that the triangles formed by the (row, column, entry)
triples of A and B may be sewn together along their common edges to form the
surface. As a matter of terminology, we will refer to vertices as row, column or
entry vertices, so that a triple (a, b, c) ∈ A gives a face with row vertex a, column
vertex b and entry vertex c. In order to verify that A ⊲⊳ B, it is necessary to check
that the sewing operation generates a genuine surface and not a pseudosurface.
This can be done by checking that the rotation at each vertex is a single cycle
of length 2n rather than a set of shorter cycles. With a slight abuse of notation
we also use A ⊲⊳ B to denote the actual embedding itself. Furthermore, if B

is known to have a transversal, we will add a + sign and write A ⊲⊳ B+. We
will also identify a group G with its Cayley table, so that we may write G ⊲⊳ H ,
meaning that the Latin square formed by a Cayley table of G biembeds with the
Latin square H .

2 The theorem

Theorem 2.1 Suppose that G is an Abelian group and that G 6= C2
2 . Then

G ⊲⊳ H for some Latin square H. There is no H for which C2
2 ⊲⊳ H.

The proof of this result follows from the construction given in [4], a known
result concerning regular embeddings, and four additional lemmas. We start by
citing the earlier results.
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Theorem 2.2 [4] Suppose that L ⊲⊳ L′, where L and L′ are of order n and have

row, column and entry labels {0, 1, . . . , n− 1}. Suppose also that Q ⊲⊳ Q′+, where

Q and Q′ are of order m and have row, column and entry labels {0, 1, . . . , m−1},
and that the square Q′ has a transversal T . Define squares Q(L) and Q′(L, T , L′)
by

Q(L)(nu + i, nv + j) = nQ(u, v) + L(i, j),

Q′(L, T , L′)(nu + i, nv + j) = nQ′(u, v) + k,

for 0 ≤ u, v ≤ m − 1 and 0 ≤ i, j ≤ n − 1, where

k =

{

L(i, j) if (u, v, w) 6∈ T for any w,

L′(i, j) if there exists w such that (u, v, w) ∈ T ,

Then Q(L) and Q′(L, T , L′) are Latin squares of order mn with row, column and

entry labels {0, 1, . . . , mn − 1}, and Q(L) ⊲⊳ Q′(L, T , L′).

The square Q(L) is partitioned into n×n subsquares which are just relabelled
copies of L. The square Q′(L, T , L′) has a similar structure but the subsquares
corresponding to the transversal T are relabelled copies of L′. Note that if L′ has
a transversal, then among the relabelled copies of L′ one can find a transversal in
Q′(L, T , L′). This feature facilitates re-application of the construction. Note also
that if Q and L are groups then Q(L) is a Cayley table for the group Q × L.

As an application of Theorem 2.2, it was shown in [4] that all Abelian 2-groups,
apart from C2

2 , appear in biembeddings.

Theorem 2.3 [4] For every i ≥ 1, i 6= 2, there is a Latin square Ai such that

Ci
2 ⊲⊳ Ai. Moreover, if i > 2 then the square Ai may be taken to contain a

transversal. There is no A2 such that C2
2 ⊲⊳ A2.

The next result, the present form of which is taken from [2], asserts the ex-
istence of a biembedding of each cyclic group Ct. To explain the terminology
we digress slightly. We will say that an embedding of a graph G is regular or
flag-transitive if for every two flags, i.e. triples (v1, e1, f1) and (v2, e2, f2), where
ei is an edge incident with the vertex vi and the face fi, there exists an auto-
morphism of the embedding which maps v1 to v2, e1 to e2 and f1 to f2. This
definition of regularity requires the admission of automorphisms that reverse the
orientation of an orientable surface, although some authors require global orien-
tation to be preserved. We refer the reader to [1, p.36] for further discussion
of the terminology. When viewed as a face 2-colourable triangular embedding of
Kt,t,t, the biembedding described in Theorem 2.4 is regular and, as shown in [3], is
(up to isomorphism) the unique biembedding of Ct with this regularity property.
Accordingly, we will refer to it as the regular biembedding of Ct.

Theorem 2.4 [2] If the Latin squares Ct and C′

t are defined by Ct(i, j) = i + j

mod t and C′

t(i, j) = i + j + 1 mod t, then Ct ⊲⊳ C′

t. Moreover, if t is odd then

C′

t has a transversal T = {(i, i, 2i + 1) : i ∈ Zt}.
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We next state and prove the four lemmas that will enable us to complete the
proof of Theorem 2.1.

Lemma 2.1 If i ≥ 3 then C2i ⊲⊳ Hi+ for some Hi having a transversal.

Proof. We deal first with the case i = 3. It is easy to check that the square C8

biembeds with

H3 =

0 1 2 3 4 5 6 7
0 7 2 3 0 1 4 5 6
1 3 4 5 1 6 7 0 2
2 1 5 6 4 7 0 2 3
3 6 3 7 5 0 2 4 1
4 5 7 0 6 2 3 1 4
5 2 0 4 7 3 1 6 5
6 0 6 1 2 4 5 3 7
7 4 1 2 3 5 6 7 0

Note that H3 has a transversal (shown highlighted) on the leading diagonal.
For i > 3, put n = 2i. To form Hi, start with C′

n as defined above but alter
16 entries to give the following triples:

(0, 0, n
2

+ 1), (0, n
4
, 3n

4
+ 1), (0, n

2
, 1), (0, 3n

4
, n

4
+ 1),

(n
4
, 0, 3n

4
+ 1), (n

4
, n

4
, 1), (n

4
, n

2
, n

4
+ 1), (n

4
, 3n

4
, n

2
+ 1),

(n
2
, 0, 1), (n

2
, n

4
, n

4
+ 1), (n

2
, n

2
, n

2
+ 1), (n

2
, 3n

4
, 3n

4
+ 1),

(3n
4

, 0, n
4

+ 1), (3n
4

, n
4
, n

2
+ 1), (3n

4
, n

2
, 3n

4
+ 1), (3n

4
, 3n

4
, 1).

Since Cn ⊲⊳ C′

n, it follows that in the embedding of Cn with Hi the rotations
at row vertices, other than those corresponding to rows 0, n

4
, n

2
and 3n

4
, will be

cycles of length 2n. The same goes for column vertices, while for entry vertices
the only possible exceptions are for the entries 1, n

4
+ 1, n

2
+ 1 and 3n

4
+ 1. The

rotation at a row vertex alternates column and entry vertices, so to prove that
the rotation at the row vertex 0 is also a single cycle of length 2n, it suffices to
list these entry vertices in the order in which they appear and to verify that they
form a single cycle of length n. The sequence(s) of entry vertices around this row
vertex is (are) determined by the following permutation given in two-line form,
where the top line is row 0 of Cn and the bottom line is row 0 of Hi.

(

0 1 2 . . . n

4
− 1 n

4

n

4
+ 1 . . . n

2
− 1 n

2

n

2
+ 1 . . .

n

2
+ 1 2 3 . . . n

4

3n

4
+ 1 n

4
+ 2 . . . n

2
1 n

2
+ 2 . . .

. . . 3n

4
− 1 3n

4

3n

4
+ 1 . . . n − 1

. . . 3n

4

n

4
+ 1 3n

4
+ 2 . . . 0

)

.

This gives
(1, 2, 3, . . . , n

4
− 1, n

4
, 3n

4
+ 1, 3n

4
+ 2, . . . , n − 1, 0, n

2
+ 1, n

2
+ 2, . . .

. . . , 3n
4
− 1, 3n

4
, n

4
+ 1, n

4
+ 2, . . . , n

2
− 1, n

2
)
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which is a single cycle of length n. The same cycle will be obtained for rows n
4
, n

2

and 3n
4

because these rows of Cn and Hi are just cyclic shifts of row 0 by n
4
, n

2

and 3n
4

respectively. Furthermore, the squares are symmetric, so the same cycle
will be obtained for the columns labelled 0, n

4
, n

2
and 3n

4
.

Finally we consider the rotations at the four exceptional entry vertices. Each
such rotation alternates row and column vertices, and if the row vertices form
a cycle of length n then the rotation will form a single cycle of length 2n. We
start by considering entry 1, and constructing a permutation representing the
sequence(s) of row vertices around this entry vertex. In two-line format this is
given by taking the top line to be the list, in column order, of the row labels
corresponding to the entry 1 in Cn, and the bottom line is formed similarly from
Hi. It may help the reader for us to note that, with arithmetic modulo n, column
j gives rise to a pair of the form 1−j

x
in the permutation. The permutation is as

follows.

(

1 0 n − 1 . . . 3n

4
+ 2 3n

4
+ 1 3n

4
. . . n

2
+ 2 n

2
+ 1 n

2
. . .

n

2
n − 1 n − 2 . . . 3n

4
+ 1 n

4

3n

4
− 1 . . . n

2
+ 1 0 n

2
− 1 . . .

. . . n

4
+ 2 n

4
+ 1 n

4
. . . 2

. . . n

4
+ 1 3n

4

n

4
− 1 . . . 1

)

.

This gives
(0, n− 1, n− 2, . . . , 3n

4
+ 2, 3n

4
+ 1, n

4
, n

4
− 1, . . . , 2, 1, n

2
, n

2
− 1, . . .

. . . , n
4

+2, n
4

+ 1, 3n
4

, 3n
4
− 1, . . . , n

2
+ 2, n

2
+ 1)

which is a single cycle of length n (in fact the inverse of the row and column
cycle). By the same argument as for the rows, the same cycle will be obtained
for the entries n

4
+ 1, n

2
+ 1 and 3n

4
+ 1. It therefore follows that Cn ⊲⊳ Hi.

All that remains is to identify a transversal in Hi. Noting the assumption that
n ≥ 16, this is given by the triples

(x, x + 2, 2x + 3) for x = 0, 1, . . . , n
2
− 3, except for x = n

4
− 1,

(x, x − 1, 2x) for x = n
2

+ 2, n
2

+ 3, . . . , n − 1, except for x = 3n
4

,

(n
4
− 1, 3n

4
− 1, n − 1), (n

2
− 2, 1, n

2
), (n

2
− 1, n

2
, 0), (n

2
, 0, 1),

(n
2

+ 1, n− 1, n
2

+ 1), (3n
4

, n
4

+ 1, 2).

Lemma 2.2 If i ≥ 2 then Ci
4 ⊲⊳ Hi+ for some Hi having a transversal.

Proof. We show that C2
4 ⊲⊳ H2+ and C3

4 ⊲⊳ H3+ for some H2 and H3, each having
a transversal. The result will then follow by use of Theorem 2.2 since, for i ≥ 4,
we have Ci

4 = C2
4 × C2

4 × · · · × C2
4 × C

j
4 , where j = 2 or 3. We may take
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H2 =

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

0 7 4 5 14 0 1 2 3 15 12 13 6 8 9 10 11

1 6 7 12 5 1 2 3 0 14 15 4 13 9 10 11 8

2 5 6 7 4 10 3 0 1 13 14 15 12 2 11 8 9

3 4 5 6 7 3 8 1 2 12 13 14 15 11 0 9 10

4 2 11 0 1 5 6 7 4 10 3 8 9 13 14 15 12

5 0 1 2 3 7 4 13 6 8 9 10 11 15 12 5 14

6 3 0 1 2 4 5 6 15 11 8 9 10 12 13 14 7

7 9 2 3 0 6 7 4 5 1 10 11 8 14 15 12 13

8 15 12 13 6 8 9 10 11 7 4 5 14 0 1 2 3

9 14 15 4 13 9 10 11 8 6 7 12 5 1 2 3 0

10 13 14 15 12 2 11 8 9 5 6 7 4 10 3 0 1

11 12 13 14 15 11 0 9 10 4 5 6 7 3 8 1 2

12 10 3 8 9 13 14 15 12 2 11 0 1 5 6 7 4

13 8 9 10 11 15 12 5 14 0 1 2 3 7 4 13 6

14 11 8 9 10 12 13 14 7 3 0 1 2 4 5 6 15

15 1 10 11 8 14 15 12 13 9 2 3 0 6 7 4 5

To verify that C2
4 biembeds with H2 the reader should check the rotations

at each of the row, column and entry vertices. The square H2 has two dis-
joint transversals, one highlighted, T2, and one boxed, T ′

2 . The former is given
by T2 = {(0, 3, 14), (1, 2, 12), (2, 4, 10), (3, 5, 8), (4, 1, 11), (5, 6, 13), (6, 7, 15),
(7, 0, 9), (8, 14, 2), (9, 9, 7), (10, 15, 1), (11, 8, 4), (12, 10, 0), (13, 11, 3), (14, 13, 5),
(15, 12, 6)}. It follows from Theorem 2.2 that C3

4 = C2
4 (C4) biembeds with

H3 = H2(C4, T2, C
′

4). These squares are both of order 64, and consequently,
too large to display here. Nevertheless, the structure of H3 should be clear and it
has a transversal, T3, obtained from T2 and T ′

2 and given by the 64 triples shown
in Table 1. This completes the proof of the lemma.

(0, 12, 57), (1, 13, 59), (2, 46, 24), (3, 47, 26),
(4, 8, 49), (5, 9, 51), (6, 42, 16), (7, 43, 18),
(8, 16, 41), (9, 17, 43), (10, 50, 8), (11, 51, 10),
(12, 20, 33), (13, 21, 35), (14, 54, 0), (15, 55, 2),
(16, 4, 45), (17, 5, 47), (18, 38, 12), (19, 39, 14),
(20, 24, 53), (21, 25, 55), (22, 58, 20), (23, 59, 22),
(24, 28, 61), (25, 29, 63), (26, 62, 28), (27, 63, 30),
(28, 0, 37), (29, 1, 39), (30, 34, 4), (31, 35, 6),
(32, 56, 9), (33, 57, 11), (34, 26, 40), (35, 27, 42),
(36, 36, 29), (37, 37, 31), (38, 6, 60), (39, 7, 62),
(40, 60, 5), (41, 61, 7), (42, 30, 36), (43, 31, 38),
(44, 32, 17), (45, 33, 19), (46, 2, 48), (47, 3, 50),
(48, 40, 1), (49, 41, 3), (50, 10, 32), (51, 11, 34),
(52, 44, 13), (53, 45, 15), (54, 14, 44), (55, 15, 46),
(56, 52, 21), (57, 53, 23), (58, 22, 52), (59, 23, 54),
(60, 48, 25), (61, 49, 27), (62, 18, 56), (63, 19, 58).

Table 1. The transversal T3 in H3.
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Lemma 2.3 If i ≥ 2 and n = 2i, then (C2 × Cn) ⊲⊳ Hn+ for some Hn having a

transversal.

Proof. The proof is by direct construction. The square Hn is a copy of the Cayley
table of the dihedral group Dn. We give standard forms for the Cayley tables of
C2×Cn and Dn, and then give three permutations that are applied respectively to
the entries, column labels and row labels of Dn in order to form Hn. In the next
paragraph it is shown that Dn, and hence Hn, has a transversal. Rather more
tedious is the proof that the squares C2 ×Cn and Hn form a biembedding; we do
this by examining the rotation at each vertex. In our squares of order 2n, the row
labels, column labels and entries will be taken as 0, 1, . . . , n − 1, 0′, 1′, . . . , n − 1′,
where n − 1′ is written for (n − 1)′ to save on excessive use of brackets; a similar
gloss will be applied to other compound terms. All arithmetic encountered is to
be taken in Zn. Our standard form for Dn is shown in Figure 1.

0 1 2 . . . n − 1 0′ 1′ 2′ . . . n − 1′

0 0 1 2 . . . n − 1 0′ 1′ 2′ . . . n − 1′

1 1 2 3 . . . 0 1′ 2′ 3′ . . . 0′

2 2 3 4 . . . 1 2′ 3′ 4′ . . . 1′

...
...

...
n − 1 n − 1 0 1 . . . n − 2 n − 1′ 0′ 1′ . . . n − 2′

0′ 0′ n − 1′ n − 2′ . . . 1′ 0 n − 1 n − 2 . . . 1
1′ 1′ 0′ n − 1′ . . . 2′ 1 0 n − 1 . . . 2
2′ 2′ 1′ 0′ . . . 3′ 2 1 0 . . . 3
...

...
...

n − 1′ n − 1′ n − 2′ n − 3′ . . . 0′ n − 1 n − 2 n − 3 . . . 0

Figure 1. The dihedral group Dn.

A transversal in Dn is given by the triples

(0, 0, 0), (1, 1, 2), . . . , (n
2
− 1, n

2
− 1, n − 2),

(n
2
, n

2

′, 0′), (n
2

+ 1, n
2

+ 1′, 2′), . . . , (n − 1, n− 1′, n − 2′),

(0′, n − 1, 1′), (1′, n − 2, 3′), . . . , (n
2
− 1′, n

2
, n − 1′),

(n
2

′, n
2
− 1′, 1), (n

2
+ 1′, n

2
− 2′, 3), . . . , (n − 1′, 0′, n − 1).

We next apply the following permutations to Dn to form Hn.

Entries:

(

0 1 2 . . . n − 2 n − 1 0′ 1′ 2′ . . . n − 1′

n − 2 n − 3 n − 4 . . . 0 n − 1 0′ 1′ 2′ . . . n − 1′

)

,

columns:

(

0 1 2 . . . n − 2 n − 1 0′ 1′ 2′ . . . n − 1′

n − 1 n − 2 n − 3 . . . 1 0 0′ 1′ 2′ . . . n − 1′

)

,
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rows:

(

0 1 2 . . . n

2
− 2 n

2
− 1 n

2
. . .

n − 2′ n − 3′ n − 4′ . . . n

2

′ n

2
− 2′ n

2
− 3′ . . .

. . . n − 3 n − 2 n − 1 0′ 1′ 2′ . . . n − 1′

. . . 0′ n − 1′ n

2
− 1′ n − 2 n − 3 n − 4 . . . n − 1

)

.

This gives Hn as shown in Figure 2.

0 1 2 . . . n − 1 0′ 1′ 2′ . . . n − 1′

0 n − 1′ 0′ 1′ . . . n − 2′ 0 1 2 . . . n − 1
1 n − 2′ n − 1′ 0′ . . . n − 3′ 1 2 3 . . . 0
2 n − 3′ n − 2′ n − 1′ . . . n − 4′ 2 3 4 . . . 1
...

...
...

n − 1 0′ 1′ 2′ . . . n − 1′ n − 1 0 1 . . . n − 2
0′ 2 3 4 . . . 1 n − 3′ n − 2′ n − 1′ . . . n − 4′

1′ 3 4 5 . . . 2 n − 4′ n − 3′ n − 2′ . . . n − 5′

2′ 4 5 6 . . . 3 n − 5′ n − 4′ n − 3′ . . . n − 6′

...
...

...
n

2
− 2′ n

2

n

2
+ 1 n

2
+ 2 . . . n

2
− 1 n

2
− 1′ n

2

′ n

2
+ 1′ . . . n

2
− 2′

n

2
− 1′ 0 1 2 . . . n − 1 n − 1′ 0′ 1′ . . . n − 2′

n

2

′ n

2
+ 1 n

2
+ 2 n

2
+ 3 . . . n

2

n

2
− 2′ n

2
− 1′ n

2

′ . . . n

2
− 3′

n

2
+ 1′ n

2
+ 2 n

2
+ 3 n

2
+ 4 . . . n

2
+ 1 n

2
− 3′ n

2
− 2′ n

2
− 1′ . . . n

2
− 4′

n

2
+ 2′ n

2
+ 3 n

2
+ 4 n

2
+ 5 . . . n

2
+ 2 n

2
− 4′ n

2
− 3′ n

2
− 2′ . . . n

2
− 5′

...
...

...
n − 2′ n − 1 0 1 . . . n − 2 0′ 1′ 2′ . . . n − 1′

n − 1′ 1 2 3 . . . 0 n − 2′ n − 1′ 0′ . . . n − 3′

Figure 2. The Latin square Hn.

Our standard form for C2 × Cn is shown in Figure 3.

0 1 2 . . . n − 1 0′ 1′ 2′ . . . n − 1′

0 0 1 2 . . . n − 1 0′ 1′ 2′ . . . n − 1′

1 1 2 3 . . . 0 1′ 2′ 3′ . . . 0′

2 2 3 4 . . . 1 2′ 3′ 4′ . . . 1′

...
...

...
n − 1 n − 1 0 1 . . . n − 2 n − 1′ 0′ 1′ . . . n − 2′

0′ 0′ 1′ 2′ . . . n − 1′ 0 1 2 . . . n − 1
1′ 1′ 2′ 3′ . . . 0′ 1 2 3 . . . 0
2′ 2′ 3′ 4′ . . . 1′ 2 3 4 . . . 1
...

...
...

n − 1′ n − 1′ 0′ 1′ . . . n − 2′ n − 1 0 1 . . . n − 2

Figure 3. The group C2 × Cn.

10



Using Figures 2 and 3, we can construct the rotations at each vertex of the
embedding. The rotation at a row vertex alternates column and entry vertices, so
to prove that it is a single cycle of length 4n, it suffices to list the entry vertices
and to verify that these form a single cycle of length 2n. So, consider first the
rotation at the row vertex i where 0 ≤ i ≤ n−1. The sequence(s) of entry vertices
around this row vertex is (are) determined by the following permutation given in
two-line form, where the top line is the ith row of C2 ×Cn and the bottom line is
the ith row of Hn.

(

i i + 1 . . . j . . . i − 1 i′ i + 1
′ . . . i − 1

′

n − i − 1
′ n − i′ . . . n − 2i − 1 + j′ . . . n − i − 2

′ i i + 1 . . . i − 1

)

.

This gives (i,−i − 1′,−i − 1,−3i − 2′,−3i − 2, . . . ,−(2r − 1)i − r, . . .). To see
that this is a cycle of length 2n, consider the general undashed or unprimed term
(i.e. term without ′) which is −(2r − 1)i − r. This reduces to i modulo n if and
only if (2i + 1)r = 0 in Zn, and this requires that r ≡ 0 (mod n). Hence the
undashed terms form a cycle of length n and the entire permutation is a single
cycle of length 2n.

Next consider the rotation at a row vertex i′ where 0 ≤ i ≤ n
2
− 2. The

corresponding sequence(s) of entry vertices around this row vertex is (are) given
by

(

i′ i + 1
′ . . . i − 1

′ i i + 1 . . . j . . . i − 1

i + 2 i + 3 . . . i + 1 n − i − 3
′ n − i − 2

′ . . . n − 2i − 3 + j′ . . . n − i − 4
′

)

.

This gives (i,−i−3′,−i−1,−3i−4′,−3i−2, . . . ,−(2r−1)i− r, . . .), which again
forms a single cycle of length 2n. The same argument applies to a row vertex i′

where n
2
≤ i ≤ n−2. It remains to consider rows n

2
−1′ and n−1′. Corresponding

to the former is the permutation
(

n

2
− 1

′ n

2

′ . . . n

2
− 2

′ n

2
− 1 n

2
. . . n

2
− 2

0 1 . . . n − 1 n − 1
′

0
′ . . . n − 2

′

)

.

This reduces to the single cycle (0, n
2

′, 1, n
2

+1′, 2, . . .). For row n−1′ we have the
permutation

(

n − 1
′

0
′ . . . n − 2

′ n − 1 0 . . . n − 2

1 2 . . . 0 n − 2
′ n − 1

′ . . . n − 3
′

)

.

This reduces to the single cycle (0,−1′, 1, 0′, 2, . . .). Thus the rotation at each row
vertex is a single cycle of length 4n.

Next we consider the rotations at the column vertices. Note first that the
columns of both C2 ×Cn and Hn have a cyclic pattern of order n. To be precise,
for 1 ≤ i ≤ n−1, column i (i′) of both C2×Cn and Hn may be obtained by adding
i to the entries in column 0 (0′). It therefore suffices to show that the rotations at
column vertices 0 and 0′ are single cycles. Again we give the sequence(s) of entry
vertices around column vertices 0 and 0′ by means of permutations in two-line
form. For column vertex 0 this permutation is
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(

0 1 . . . n − 1 0
′

1
′ . . . n

2
− 2

′ n

2
− 1

′ n

2

′ . . . n − 2
′ n − 1

′

n − 1
′ n − 2

′ . . . 0
′

2 3 . . . n

2
0 n

2
+ 1 . . . n − 1 1

)

.

For n = 4 the reader can easily check that this is a single cycle. In general, it
gives

(0,−1′, 1,−2′,−1, 0′, 2,−3′,−2, 1′, 3,−4′,−3, 2′, 4, . . . , n

2
−1, n

2

′, n

2
+1, n

2
−2′, n

2
, n

2
−1′),

where sufficient terms are listed for the pattern to be apparent, and this is a cycle
of length 2n. For column 0′, the permutation is

(

0
′

1
′ . . . n − 1

′
0 1 . . . n

2
− 2 n

2
− 1 n

2
. . . n − 2 n − 1

0 1 . . . n − 1 n − 3
′ n − 4

′ . . . n

2
− 1

′ n − 1
′ n

2
− 2

′ . . . 0
′ n − 2

′

)

.

The case n = 4 is easily checked and the general pattern is given by

(0,−3′,−3, 1′, 1,−4′,−4, 2′, . . . , n

2
, n

2
− 2′, n

2
− 2, n

2
− 1′, n

2
− 1,−1′,−1,−2′,−2, 0′),

which is again a cycle of length 2n. Thus the rotation at each column vertex is a
single cycle of length 4n.

Finally we consider the rotations at the entry vertices. Each such rotation
alternates row and column vertices, and if the row vertices form a cycle of length
2n then the rotation will form a single cycle of length 4n. We start by considering
entry vertex 0 and constructing a permutation representing the sequence(s) of
row vertices around this entry vertex. In two-line format this is given by taking
the top line to be the list, in column order, of the row labels corresponding to
the entry 0 in C2 × Cn, and the bottom line is formed similarly from Hn. The
permutation is as follows.

(

0 n − 1 n − 2 . . . n

2
+ 1 n

2

n

2
− 1 . . .

n

2
− 1

′ n − 2
′ n − 3

′ . . . n

2

′ n

2
− 2

′ n

2
− 3

′ . . .

. . . 2 1 0
′ n − 1

′ n − 2
′ . . . 1

′

. . . 0
′ n − 1

′
0 n − 1 n − 2 . . . 1

)

.

Again n = 4 is easily checked, and in general this reduces to

(0, n

2
− 1′, n

2
− 1, n

2
− 3′, n

2
− 3, . . . , 3′, 3, 1′, 1,−1′,−1,−2′,−2,−3′, . . .

. . . , n

2
+ 1, n

2

′, n

2
, n

2
− 2′, n

2
− 2, . . . , 2′, 2, 0′),

which is a cycle of length 2n. Noting the cyclic pattern of the columns of the two
Latin squares and to which we have already referred, it follows that exactly the
same permutation will be found for each entry i with 0 ≤ i ≤ n − 1. Turning
attention to the entry vertex 0′ in a similar fashion, the case n = 4 is easily
checked, and for n ≥ 8 we obtain the permutation

(

0
′ n − 1

′ n − 2
′ . . . 1

′
0 n − 1 n − 2 n − 3 n − 4 . . .

n − 1 0 1 . . . n − 2 n − 2
′ n

2
− 1

′ n − 1
′

0
′

1
′ . . .

. . . n

2
+ 1 n

2

n

2
− 1 n

2
− 2 . . . 2 1

. . . n

2
− 4

′ n

2
− 3

′ n

2
− 2

′ n

2

′ . . . n − 4
′ n − 3

′

)

.

This reduces to
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(0,−2′, 1,−3′, 2, . . . , n

2
− 2, n

2

′, n

2
− 1, n

2
− 2′, n

2
+ 1, n

2
− 4′, n

2
+ 3, . . .

. . . ,−3, 0′,−1, n

2
− 1′, n

2
, n

2
− 3′, n

2
+ 2, n

2
− 5′, n

2
+ 4, . . . ,−2,−1′),

which is a cycle of length 2n. The same permutation will be found for each entry
i′ with 0 ≤ i ≤ n − 1. Thus the rotation at each entry vertex is a single cycle of
length 4n.

We remark that for n = 2i (i ≥ 2), Lemma 2.3 also provides a biembedding
of the dihedral group Dn with a copy of C2 × Cn, and it is easily seen that this
latter square also has a transversal.

Lemma 2.4 If t ≥ 3 is odd then C2t ⊲⊳ Ht+ for some Ht having a transversal.

Proof. Note that, as groups, C2t = C2 × Ct. The regular biembedding of Ct is
Ct ⊲⊳ C′

t, where Ct and C′

t are as given in Theorem 2.4. Since t is odd, C′

t has
a transversal T = {(i, i, 2i + 1) : i ∈ Zt}. Now apply Theorem 2.2 to form the
embedding Ct(C2) ⊲⊳ C′

t(C2, T , C′

2). But Ct(C2) is just a Cayley table for C2t,
and so the result will follow once it is shown that C′

t(C2, T , C′

2) has a transversal.
This Latin square has the general form shown in Figure 4. It has a transversal
{(2i, 2i + 1, 4i + 2), (2i + 1, 2i + 2, 4i + 5) : i ∈ Zt} which is shown highlighted in
the Figure.

0 1 2 3 4 5 . . . 2t − 2 2t − 1

0 3 2 4 5 6 7 . . . 0 1
1 2 3 5 4 7 6 . . . 1 0
2 4 5 7 6 8 9 . . . 2 3
3 5 4 6 7 9 8 . . . 3 2
4 6 7 8 9 11 10 . . . 4 5
5 7 6 9 8 10 11 . . . 5 4
...

...
2t − 2 0 1 2 3 4 5 . . . 2t − 1 2t − 2
2t − 1 1 0 3 2 5 4 . . . 2t − 2 2t − 1

Figure 4. The Latin square C′

t(C2, T , C′

2).

Proof of Theorem 2.1. Suppose that G is an Abelian group. In general, we may
write G as a direct product of cyclic groups in the form

G = C
j1
2i1

× C
j2
2i2

× · · · × C
jm

2im
× Cl1

k1
× Cl2

k2
× · · · × Cln

kn
,

where each is, js and ls is a positive integer, and each ks is an odd positive
integer. Without loss of generality we may assume that i1 < i2 < . . . < im and
k1 < k2 < . . . < kn. If G has no factor C2i , that is if m = 0, then starting with
the regular biembedding of each Cks

and applying Theorem 2.2 repeatedly, we
have G ⊲⊳ H+ for some H . In view of Lemma 2.1, the same is true if G has
factors C2i for i ≥ 3 but no factors C2 or C4. It remains to deal with the cases
when G has factors C2 and/or C4.
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Consider first the case when G has no factors apart from C2 and C4, that is
G = C

j1
2 ×C

j2
4 . If (j1, j2) = (0, 0) there is nothing to prove. Other cases are dealt

with in Table 2, where R denotes use of a regular biembedding (Theorem 2.4), L
a lemma, and T a theorem.

j1 j2 G G ⊲⊳ H (?)
0 1 C4 R.

≥ 2 C
j2
4 L2.2.

1 0 C2 R.
1 C2 × C4 L2.3.
2 C4 × (C2 × C4) R, L2.3, T2.2.

≥ 3 C
j2−1

4 × (C2 × C4) L2.2, L2.3, T2.2.
2 0 C2

2 No biembedding (T2.3).
1 C2 × (C2 × C4) L2.3, T2.2.
2 (C2 × C4) × (C2 × C4) L2.3, T2.2.
3 C4 × (C2 × C4) × (C2 × C4) R, L2.3, T2.2.

≥ 4 C
j2−2

4 × (C2 × C4) × (C2 × C4) L2.2, L2.3, T2.2.

≥ 3 0 C
j1
2 T2.3.

1 C4 × C
j1
2 R, T2.3, T2.2.

≥ 2 C
j2
4 × C

j1
2 L2.2, T2.3, T2.2.

Table 2. G = C
j1
2 × C

j2
4 .

Next consider the case when G = C
j1
2 × C

j2
4 × G∗ where G∗ is non-trivial

but has no factors C2 or C4. We already have G∗ ⊲⊳ H∗+ for some H∗, so if
(j1, j2) 6= (2, 0), by using Theorem 2.2 and the appropriate case from Table 2, we
have G ⊲⊳ H for some H . All that remains to consider is the case C2

2 ×G∗. Since
G∗ is non-trivial, it has a factor Ct where t ≥ 3 is either odd or a power of 2, not
2 or 4, so that G∗ = Ct × Ḡ, where Ḡ may or may not be trivial. Since Ḡ has no
factor C2 or C4, if Ḡ is non-trivial then Ḡ ⊲⊳ H̄+ for some H̄ . In any case, we
may write G = C2 × (C2 × Ct) × Ḡ. If t = 2i with i ≥ 3, then apply Lemma 2.3
and Theorem 2.2. If t is odd, apply Lemma 2.4 and Theorem 2.2. This completes
the proof of Theorem 2.1.
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