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E-mail: NIEPEL@MATH-1.sci.kuniv.edu.kw.Abstrat. We prove that for every graph H with the minimum degree δ ≥ 5, the

third iterated line graph L3(H) of H contains K
δ⌊

√
δ−1⌋ as a minor. Using this fact

we prove that if G is a connected graph distinct from a path, then there is a number
kG such that for every i ≥ kG the i-iterated line graph of G is 1

2
δ(Li(G))-linked.

Since the degree of Li(G) is even, the result is best possible.

This is a preprint of an article accepted for publication in Discrete
Mathematics c©2006 (copyright owner as specified in the journal).

1. Introduction and results

Let G be a graph. Its line graph L(G) is defined as the graph whose vertices are
the edges of G, with two vertices adjacent if and only if the corresponding edges
are adjacent in G. Although the line graph operator is one of the most natural
ones, only in recent years there is recorded a larger interest in studying iterated
line graphs. Iterated line graphs are defined inductively as follows:

Li(G) =

{

G if i = 0,

L(Li−1(G)) if i > 0.
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The diameter and radius of iterated line graphs are examined in [10], and [7] is
devoted to the centers of these graphs. In [3] and [2], Hartke and Higgins study the
growth of the minimum and the maximum degree of iterated line graphs, respec-
tively. The connectivity of iterated line graphs is discussed in [6], and in [13] Xiong
and Liu characterize the graphs whose i-iterated line graphs are Hamiltonian.
Note that the i-iterated line graph of a path on n vertices is a path on n−i

vertices for i < n and an empty graph if i ≥ n. The iterated line graph of a cycle
is isomorphic to the original cycle, and each iterated line graph of a claw K1,3 is
isomorphic to a triangle. Hence, it suffices to study connected graphs distinct from
paths, cycles and the claw K1,3. Such graphs are called prolific, since every two
members of the sequence {Li(G)}∞i=0 are non-isomorphic.
Let δ(H) denote the minimum degree of H. In [3] we have:

Theorem A. Let G be a prolific graph. Then there is iG such that for every i,

i ≥ iG, it holds that

δ(Li+1(G)) = 2 · δ(Li(G))− 2.

Obviously, δ(LiG(G)) ≥ 3 in the above theorem. As a consequence, by the results
of [6], we obtain:

Proposition B. Let G be a prolific graph. Then for every i, i ≥ iG + 5, the
connectivity of Li(G) equals the minimum degree of Li(G).

Here iG is the constant appearing in Theorem A.
In this paper we study the linkability of iterated line graphs. A graph with at

least 2k vertices is said to be k-linked if for every 2k distinct vertices s1, s2, . . . , sk, t1,

t2, . . . , tk it contains k vertex-disjoint paths P1, P2, . . . , Pk, such that Pi connects
si to ti, 1 ≤ i ≤ k.
Obviously, if a graph is k-linked, then it is k-connected. The converse is far

from being true. Jung [4] and, independently, Larman and Mani [8] proved that
every 2k-connected graph that contains a subgraph isomorphic to a subdivision of
K3k is k-linked. This together with a result of Mader [9] implies that for every k

there is an f(k) such that every f(k)-connected graph is k-linked. Robertson and
Seymour [11] extended the result of Jung, Larman and Mani. As a consequence of
Theorem (5.4) of [11] we have:

Proposition C. Every 2k-connected graph that has a K3k-minor is k-linked.

In [1] Bollobás and Thomason proved that every 2k-connected graph G with
at least 11k|V (G)| edges is k-linked. This implies that every 22k-connected graph
is k-linked. Recently, Thomas and Wollan [12] improved the lower bound on the
number of edges in the Bollobás and Thomason result to 8k|V (G)|. This was further
improved by Kawarabayashi, Kostochka and Yu [5]. They showed that every 2k-
connected graph with average degree at least 12k is k-linked. Consequently, every
12k-connected graph is k-linked.
Our main result is the following theorem:

Theorem 1. Let G be a prolific graph. Then there is kG such that for every i ≥ kG

the graph Li(G) is 12δ(L
i(G))-linked.

Observe that a graph with minimum degree δ cannot be more than 12δ-linked if
δ is even. (Consider {s1, . . . , sk, t1, . . . , tk} where sk is a vertex of minimum degree
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δ = 2k − 2, and s1, . . . , sk−1, t1, . . . , tk−1 are all of the neighbours of sk.) Since the
minimum degree of iterated line graph Li(G) is even if i is “big enough”, the result
of Theorem 1 is best possible.
We mention that it is an open problem to find to find “good” bounds in terms of

G on the numbers iG and kG in Theorem A and Theorem 1, respectively. However,
if the graph G is regular of degree δ, then from the proof of Theorem 1 it can be
deduced that kG ≤ 11.
In the proof of Theorem 1, which is trivially true for cycles and the claw K1,3,

we use the following statement:

Theorem 2. Let H be a graph with a minimum degree δ ≥ 5. Then L3(H) has
Kt as a minor, t = δ · ⌊

√
δ−1⌋.

We remark that the best lower bound for the size of a complete graph in L3(H)
is 4δ − 6. Theorem 2 shows that there exists a much larger complete graph as a
minor.

2. Proofs

Let G be a graph and let v be a vertex of Lk(G), k ≥ 1. Then v corresponds to
an edge of Lk−1(G), and this edge will be called 1-history of v. For i ≥ 2 we define
i-histories recursively. The i-history of v is a subgraph of Lk−i(G), edges of which
are induced by the vertices of Lk−i+1(G) which are in (i−1)-history of v.
Observe that 1-history is always an edge and 2-history is a path of length 2. The

situation is more complicated for i-histories when i ≥ 3. The only fact we can say
is that i-history is a connected graph with at most i edges, distinct from any path
with less than i edges, see [10]. Therefore we do not visualize the vertices of L3(H)
in H using their 3-histories in the proof of Theorem 2. First we use 2-histories of
vertices of L2(H) and subsequently 1-histories of vertices of L3(H). In such a way,
vertices of L3(H) correspond to pairs of “adjacent” 2-histories in H.
We prove Theorem 2 in a slightly stronger form. We prove that for an arbitrary

vertex v of H there is a subgraph K of L3(H), such that Kt is a minor of K and
the 3-history of every vertex of K contains v.

Proof of Theorem 2. Denote by v1, v2, . . . , vδ, . . . the neighbours of v in H.
Consider 2-histories of the vertices of L2(H) in H. Denote by ci,i′ the vertex of

L2(H) with 2-history (vi, v, vi′), and denote by C the set of these vertices. Then

|C| ≥
(

δ
2

)

. Denote by Ai those vertices of L2(H), whose 2-history have vi as a
central vertex and v as an endvertex. Observe that |Ai| ≥ δ−1, the vertices of
Ai induce a complete graph in L2(H), and they are adjacent to all ci,i′ , i′ 6= i.
Moreover, the sets A1, A2, . . . , Aδ are mutually disjoint.
Let s = ⌊

√
δ−1⌋. Equitably partition every Ai into s parts Ai,1, Ai,2, . . . , Ai,s,

so that −1 ≤ |Ai,j| − |Ai,j′ | ≤ 1 for every j 6= j′. Then each Ai,j contains at
least s vertices, and as δ ≥ 5, we have s ≥ 2. Denote the vertices of Ai,j by
ai,j,1, ai,j,2, . . . , ai,j,s, . . .

Now denote by Xi,j the set of those vertices of L
3(H), whose 1-histories in L2(H)

contain only the vertices of Ai,j. In the following we show that there are internally
vertex-disjoint paths in L3(H) connecting the sets Xi,j . Let Xi,j and Xi′,j′ be two
such sets, (i, j) 6= (i′, j′). There are two cases to distinguish:
Case 1: i = i′. We join the vertex of Xi,j with 1-history (ai,j,1, ai,j,2) with the vertex

of Xi,j′ with 1-history (ai,j′,1, ai,j′,2) by a path of length two. Its interior
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vertex has 1-history (ai,j,1, ai,j′,1).
Case 2: i 6= i′. We join the vertex of Xi,j with 1-history (ai,j,1, ai,j,j′) with a vertex

of Xi′,j′ with 1-history (ai′,j′,1, ai′,j′,j) by a path of length three. Its interior
vertices have 1-histories (ai,j,j′ , ci,i′) and (ci,i′ , ai′,j′,j).

Obviously, the paths just constructed in L3(H) are disjoint. If we contract the
vertices of Xi,j into a single vertex xi,j, 1 ≤ i ≤ δ and 1 ≤ j ≤ s, then the vertices
xi,j together with the constructed paths form a subdivision of Kδ·s. Now the result
is a consequence of the fact that all the vertices in Xi,j and in the paths have v in
their 3-history. �

We remark that if |Ai,j| = s in the previous proof, then the paths from Ai,j to
Ai′,j′ , where i 6= i′ and j′ = 1, 2, . . . , s, exhaust all the vertices with 1-histories

(ai,j,., ci,i′). This means that the choice s = ⌊
√

δ−1⌋ is optimal if we restrict
ourselves to the types of paths described in Cases 1 and 2.
Notice that the proof of Theorem 2 implies that, if T is a tree with a central

vertex v, such that v and its neighbours have degree δ and all the remaining vertices
are pendant, then L3(T ) has Kt as a minor, t = δ · ⌊

√
δ−1⌋.

Proof of Theorem 1. Choose kG such that

kG ≥ iG + 5 and
⌊

√

δ(LkG−3(G))− 1
⌋

≥ 12,

where iG is the constant from Theorem A. Then for every i ≥ kG, it follows from
Proposition B that Li(G) is δ(Li(G))-connected. Further, by Theorem A we have
δ(Li(G)) = 8δ(Li−3(G))− 14. Finally, by Theorem 2 Li(G) has a Kt-minor with

t = δ(Li−3(G))
⌊

√

δ(Li−3(G))− 1
⌋

≥ 1
8

(

δ(Li(G)) + 14
)

· 12 > 3
2δ(L

i(G)).

By Proposition C this implies that Li(G) is δ(Li(G))
2 -linked. �
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