The use of fuzzy logic in Location problems

Darko Drakulić¹, Miroslav Marić², Aleksandar Takači³

¹University of East Sarajevo, Faculty of Philosophy, Bosnia and Herzegovina ²University of Belgrade, Faculty of Mathematics, Serbia ³University of Novi Sad, Faculty of Technology, Serbia

FSTA 2014, Liptovsky Jan, Slovakia

 Objective: find the best locations for various facilities in the given space

 Objective: find the best locations for various facilities in the given space

Example

Find locations for emergency services or landfills in some area.

 Objective: find the best locations for various facilities in the given space

Example

Find locations for emergency services or landfills in some area.

• Three types:

 Objective: find the best locations for various facilities in the given space

Example

Find locations for emergency services or landfills in some area.

- Three types:
 - Maximal covering location problem (MCLP),
 - Minimal covering location problem (MinCLP)and
 - Location set covering problem (LSCP).

- MCLP is introduced by Church and ReVelle in 1974.
 - locations (with distance between them), number of facilities and coverage radius

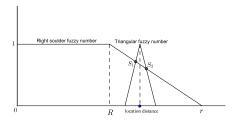
- MCLP is introduced by Church and ReVelle in 1974.
 - locations (with distance between them), number of facilities and coverage radius
- MinCLP
 - condition minimal distances between facilities

- MCLP is introduced by Church and ReVelle in 1974.
 - locations (with distance between them), number of facilities and coverage radius
- MinCLP
 - condition minimal distances between facilities
- Problem: Real problems contain some degree of uncertainty:
 - eg. Covering radius is about 5 kilometers or distance is between 8 and 10 kilometers.

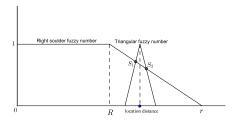
- MCLP is introduced by Church and ReVelle in 1974.
 - locations (with distance between them), number of facilities and coverage radius
- MinCLP
 - condition minimal distances between facilities
- Problem: Real problems contain some degree of uncertainty:
 - eg. Covering radius is about 5 kilometers or distance is between 8 and 10 kilometers.
- Solution: Fuzzy sets
 - Fuzzy number for radius of coverage.

 Simultaneous fuzzyfication of two CLP key conditions covering radius and distances between locations.

- Simultaneous fuzzyfication of two CLP key conditions covering radius and distances between locations.
 - Radius of coverage $R + f_R$
 - Distance $d \pm f_d$



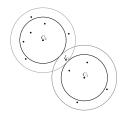
- Simultaneous fuzzyfication of two CLP key conditions covering radius and distances between locations.
 - Radius of coverage $R + f_R$
 - Distance $d \pm f_d$



• Degree of coverage = arithmetic mean of fuzzy values S_1 and S_2 .

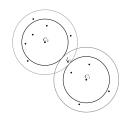
Intersection of fuzzy radii

 What is degree of location covered with several fuzzy radii?



Intersection of fuzzy radii

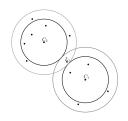
 What is degree of location covered with several fuzzy radii?



- Conorms:
 - Limited sum
 - it is allowed to sum coverage degrees

Intersection of fuzzy radii

 What is degree of location covered with several fuzzy radii?



- Conorms:
 - Limited sum
 - it is allowed to sum coverage degrees
 - Maximal fuzzy value
 - it is NOT allowed to sum coverage degrees

Example

Limited sum

Figure 1: Optimal solution for MinCLP with limited sum conorm, Result = 2.9

Example

Maximal fuzzy value

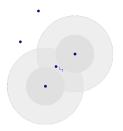


Figure 2: Optimal solution for MinCLP with maximal fuzzy value, Result = 2.8

Mathematical model of M(ax)CLP

Notation:

- P number of facilities [integer]
- D_{ij} distance matrix (d_{ij}) is distance between i and j nodes [real]
- f_d fuzzy distance value [real]
- $R + f_r$ coverage radius [right shoulder fuzzy number].
- A_{ij} coverage matrix (a_{ij}) is degree of coverage node j by facility on node i (intersection of fuzzy numbers) [real]
- y_i degree of coverage of location $i \ x_i \in [0, 1]$,
- x_i indicator if a facility is established in the node i, $y_i \in \{0, 1\}$,

Mathematical model of M(ax)CLP - Limited sum conorm

Maximize

$$\sum_{i} y_{i} \tag{1}$$

with conditions:

$$\sum_{j} (x_j \cdot A_{ij}) \ge y_i, \forall i$$
 (2)

$$x_i \cdot D_{i,j} > m, \forall j \tag{3}$$

$$\sum_{i} x_{i} = P \tag{4}$$

$$x_i \in \{0, 1\} \tag{5}$$

$$y_i \in [0,1] \tag{6}$$

Mathematical model of M(ax)CLP - Maximal fuzzy number conorm

Maximize

$$\sum_{i} y_{i} \tag{7}$$

with conditions:

$$\max_{i}(x_{j}\cdot A_{ij})\geq y_{i}, \forall i \tag{8}$$

$$x_i \cdot D_{i,j} > m, \forall j$$
 (9)

$$\sum_{i} x_{i} = P \tag{10}$$

$$x_i \in \{0, 1\} \tag{11}$$

$$y_i \in [0,1] \tag{12}$$

Solving MinCLP

- IBM CPLEX solver
 - Limited sum conorm: up to 1000 nodes, very slow for larger dimension,
 - Maximal fuzzy value conorm: up to 90 nodes

Solving MinCLP

- IBM CPI FX solver
 - Limited sum conorm: up to 1000 nodes, very slow for larger dimension,
 - Maximal fuzzy value conorm: up to 90 nodes
- Own-developed algorithm:
 - Based on Particle swarm optimization (PSO) metaheuristic

Particle swarm optimization (PSO) metaheuristic

- Nature-based metaheuristic method, introduced by Kennedy and Eberhart in 1995.
- Inspired by social behaviour of particles in swarms, like birds in flocks
- Instances (particles) are moving through solution space with some given intelligence: each particle knows its best position so far and the best position of its neighbourhood, and updates it own position using this information

Tests

- Generated instances: locations are randomly set in 30x30 grid
- Swarms contain 10 particles
- Dimensions up to 900 locations
- Numbers of facilities P = 50,80
- Fuzzy radius of coverage $R + f_R = 2 + 0.5$
- Fuzzy distance value $f_d = 0.1$

Computational results

					CPLEX		PSD	
n	р	r	Fr	Fd	Р	v	Р	V
50	10	5	0.5	0.1	45.83	10587	45.83	470
80	10	0.5	0.1	45.83	N/A	10 ⁸	76.81	1825

Thank you for your attention