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Compositions of binary (fuzzy) relations
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Compositions? Why? What for?

Motivation:

R :

We know RC X xY,and SCY x Z.
But we do not know (and we would like to know) the relationship between
elements from X and Z.

\R@
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Compositions? Why? What for?

Formally:

R
S
RQS

NN 1N

X x Y
Y x Z
X X Z.

Composed relation RQS is already a binary relation between elements
from X and Z.

\R@
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Compositions? Why? What for?

We follow the work of W. Bandler and L.J. Kohout from 70’s including the medical diagnosis

example but feel free to abstract from the example anytime during the talk.
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Compositions? Why? What for?

We follow the work of W. Bandler and L.J. Kohout from 70’s including the medical diagnosis

example but feel free to abstract from the example anytime during the talk.

m X - set of patients
m Y — set of symptoms
m 7 — set of diseases
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Compositions? Why? What for?

We follow the work of W. Bandler and L.J. Kohout from 70's including the medical diagnosis

example but feel free to abstract from the example anytime during the talk.

m X - set of patients
m Y — set of symptoms

m Z - set of diseases

x,y) € R — patient = has symptom y
(y,2) € S — symptom y belongs to disease z

(z,z) € RQS — patient = has some relationship (suspicion, diagnosis) to
disease z (result of the composition)

\R@
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Compositions of binary (fuzzy) relations

1. Basic composition o

Relation Ro S C X x Z is given as follows
RoS={(z,2) e XxZ|3JyeY:(z,y) e R& (y,z) € S}
which may be expressed with help of its characteristic function:

XROS(:Ea Z) = \/ (XR(I7 y) N XS('T7 y))
yey

The meaning of (z,2) € Ro S (or XRros(z,2) =1)

Patient x has at least one symptom of the disease z and therefore, there
exists a suspicion of having this disease.
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Compositions of binary (fuzzy) relations

1. Basic composition o

lllustration of the meaning of xpros(x,2) =1

X Y Z

\RQ
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2. Bandler-Kohout subproduct <

Relation R <1S C X x Z is given as follows

RaS={(z,2) e XxZ|VyeY:(x,y) € R = (y,2) € S}

which may be expressed with help of its characteristic function:

Xras(@,2) = /\ (xr(z,y) = xs(z,y))
yey

The meaning of xprqs(z,2) =1

All symptoms of patient 2 belong to the disease z which strengthens the

suspicion.
AN
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Compositions of binary (fuzzy) relations

2. Bandler-Kohout subproduct <

lllustration of the meaning of xrqs(z,2) =1
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3. Bandler-Kohout superproduct >

Relation R> S C X x Z is given as follows

R>S={(z,2) e XxZ|VyeY:(z,y) € R <« (y,2) € S}

which may be expressed with help of its characteristic function:

Xres(@,2) = \ (xr(z,y) < xs(x,y))
yey

The meaning of xpps(z,2) =1

Patient x has all symptoms belonging to the disease z which strengthens

the suspicion.
N
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Compositions of binary (fuzzy) relations

3. Bandler-Kohout superproduct >

lllustration of the meaning of xpsg(z,2) =1
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4. Bandler-Kohout square product O

Relation ROS C X x Z is given as follows
RoS={(z,2) e X xZ|VyeY: :(z,y) €R & (y,2) € S}
which may be expressed with help of its characteristic function:

xros(@,2) = \ (xr(z,y) © xs(z,y))
yey

The meaning of xrogs(z,z) =1

Patient x has all symptoms belonging to the disease z and all patient's
symptoms belong to disease z strengthens the suspicion — prototypical

example from literature.
\RAFM\
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Compositions of binary (fuzzy) relations

4. Bandler-Kohout square product O

lllustration of the meaning of xgros(z,2) =1
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Compositions of binary (fuzzy) relations

Compositions of classical relations

RCXXxY, SCYxZ, RASC X x Z

X(ROS)(-T; z) = \/ (Xr(z,y) A Xxs(y:2)),
yey

X(R<15’)(x>z) = /\ (XR(~'E,Z/) = xs(Y; Z))?
yeyY

X(re9)(1:2) = N\ (Xr(z,y) < xs(y,2)) ,
yey

X(ros)(,2) = N\ (xa(z,y) € xs(y,2)).
yey

\R@
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Compositions of binary (fuzzy) relations

Compositions of fuzzy relations

RCX xY, SCY x Z, RASCX x Z

X(ROS)(II:J z) = \/ (Xr(z,y) A Xxs(y:2)),
yey

X(R<15’)(x>z) = /\ (XR(~'E,Z/) = xs(Y; Z))?
yeyY

X(re9)(1:2) = N\ (Xr(z,9) < xs(y,2)) ,
yey

X(ros)(,2) = N\ (xa(z,y) € xs(,2)).
yey

\R@
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Compositions of binary (fuzzy) relations

Compositions of fuzzy relations

RCXxY,SCYxZ RASC X x Z

(RoS)(@,2) = \/ (B(z,y) AS(y.2)),

yey

(R<S)(z,2) = N (Rlz,y) = S(y,2)),
yey

(R>S)(z,2) = \ (R(z,y) < S(y, ),
yey

(ROS)(x,2) = N\ (R(z,y) & S(y,2)).
yey

\RQ
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Compositions of binary (fuzzy) relations

Compositions of fuzzy relations

RCXxY,SCYxZ RASC X x Z

(Ro.8)(z,2) = \/ (R(,)+S(y, 2)).

yey

(Ra.8)(x,2) = J\ (R(z,y)—.S(y,2)).
yeyY

(R.S)(w,2) = [\ (R(z,y)—.S(y.2)),

yey

(Ro.S)(z,2) = [\ (R(z,y)=.5(y,2)).
yey

\R@

M. Stépnicka and M. Holcapek (IRAFM) Fuzzy relational compositions



Compositions of binary (fuzzy) relations

Compositions of fuzzy relations

If we fix the underlying residual structure
([0,1], AV, %,—,0,1)

we can omit “*" from the notation and simply write:

(RoS)(w,2) = \/ (R(z,)+S(y, 2)).

yey
(RaS)(w,2) = J\ (R(z,y)—5(y,2)),

yey

(Re-S)(z,2) = N (R(z,9)—S(y.2)),
yey

(RoS)(z,2) = J\ (R(z,)—5(y,2)).
yey

\R@
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Compositions of binary (fuzzy) relations

Further developments

m Deep analysis of properties (W Bandler & L.J. Kohout, E. Kerre et al.)

m Images of fuzzy sets under fuzzy relations (derived from compositions
o, 1) were used as fuzzy inference mechanisms (L.A. Zadeh, W. Pedrycz,
B. Jayaram)

m Solvability of fuzzy relational equations (B. De Baets, A. Di Nola, S.
Gottwald, B. Jayaram, F. Klawonn, L. Noskova, W. Pedrycz, K. Peeva, |. Perfilieva, E.
Sanchez, S. Sessa)

= Original BK compositions were modified by assumption of existence
of some connections (B. De Baets, E. Kerre)

m Complete analysis in higher-order fuzzy logic (Fuzzy Class Theory)
(L. Béhounek, M. Daﬁkové)
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Quantifiers?

(RoS)(w,2) = \/ (Rlz,y) * S(y,2)),

yey

(R<a8)(z.2) = )\ (Rlz,y) — S(y,2)),
yey

(R S)(@,2) = /\ (Blz,y) — S(y.2)),

yey

(ROS)(x,2) = /\ (R(z,y) = S(y,2)).

yey

\RQ
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Quantifiers?

(RoS)(w,2) = \/ (Rlz,y) * S(y,2)),

yey

(R<a8)(z.2) = )\ (Rlz,y) — S(y,2)),
yey

(R S)(@,2) = /\ (Blz,y) — S(y.2)),

yey

(ROS)(x,2) = /\ (R(z,y) = S(y,2)).

yey

m But there is a big gap between 3 and V

\R@
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Compositions of binary (fuzzy) relations

Gap between quantifiers? Example:

([0,1], A, V,®,—,0,1) be the tukasiewicz MV-algebra

Symptoms:
y1 - tiredness; yo - cough; ys3 - fever; y4 - blurred vision

Diseases:
z1 - pulmonary hypertension; zs - sleeping sickness;
23 - malaria; z4 - hangover; z5 - influenza

Riyi |y | y3s | m S|z | 2| 23| 24| 25
z1 109 1 (08| 0 Y1 1 1 101,09 0
zo| 0 109(08]|0.1 y2 1 0910209 1
z5| 0 [08]00] 0 sl 0 111011
zq4 | O 0 1 |09 ys | 1 0 |07]01]009

\RQ
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Compositions of binary (fuzzy) relations

Gap between quantifiers? Example:

Ry | v2 | ys | ya S|z | 22 | 23| 24| 25
1 |09 1 08| 0 Y1 1 1 101,109 0
x| 0 |09]08 0.1 y2 1 0910209 1
25| 0 |08]00] 0 ps 011011
x4 | O 0 1 109 ys | 1 0 [07]0.1]09

(Ro8)(z1,21) = (09®1)V(1®0.9) V(0.820)V(0x1)
=09v09vOoVv0=0.9

(Ro S)(21,24) = (0.9®09)V(1I®0)V(1I®0)V(0®0.1)
=((094+09-1)v0O)vOVvOVvV0=0.8

\R@
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Compositions of binary (fuzzy) relations

Gap between quantifiers? Example:

Ry | y2 | ys | va S|z | 22| 23| 24| 2
z1 /09| 1 |08 0 y1 | 1 1 1]01/09] 0
zo| 0 |09]08|0.1 y2 109102109 1
23| 0 | 08|09 0 ] 0 11011
g | O 0 1 109 ya | 1 0 [07]0.1]09

RoS Z1 z9 z3 Z4 z5
11091090908 1
z2 | 08 108|08]|08 |09
z3 | 07109|07|09 09
z4 |09 1 |06 1 1

\R@
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Compositions of binary (fuzzy) relations

Gap between quantifiers? Example:

Ry | v2 | ys | ya S|z | 22 | 23| 24| 25
1 |09 1 08| 0 Y1 1 1 101,109 0
x| 0 |09]08 0.1 y2 1 0910209 1
25| 0 |08]00] 0 ps 011011
x4 | O 0 1 109 ys | 1 0 [07]0.1]09

(R<18)(x1,21) = (0.9 = 1) A (1 = 0.9) A (0.8 = 0) A (0 — 1)
—1A09A((1—08+0)A1)A1=0.2

(R<8)(z1,24) = (0.9 — 0.9) A (1L = 0) A (1 = 0) A (0 — 0.1)
—1A0AOAL=0

\R@
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Compositions of binary (fuzzy) relations

Gap between quantifiers? Example:

Ry | v2 | ys | ya S|z | 22 | 23| 24| 25
1 |09 1 08| 0 Y1 1 1 101,109 0
x| 0 |09]08 0.1 y2 1 0910209 1
25| 0 |08]00] 0 ps 011011
x4 | O 0 1 109 ys | 1 0 [07]0.1]09

(R>8)(z1,21) = (0.9 — 1) A (1 — 0.9) A (0.8 = 0) A (0 1)
=09AN1IA1IA0=0

(R> S)(x1,24) = (0.9 — 0.9) A (1 = 0) A (1 0) A (0« 0.1)
=1AIAIA((1=01+0)A1)=0.9

\R@
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Compositions of binary (fuzzy) relations

Gap between quantifiers? Example:

Ry |y |y | wma S|z | 2| 23| 24| 25
z1 109 1 08| 0 Y1 1 1 101,109 0
zo| 0 |09(08]|0.1 2109102109 0 1
251 0 10809 0 Vs 1] 0] 11
z4 | O 0 1 |09 ya | 1 0 |07]01]009

(ROS) = (R<1S) A (R S)

ROS | 21 | 2o z3 Z4 z5
z1 ] 010202 0 |01
zo | O 0 |02]01]0.2
z3 | 0| 0 |01|01|01
x4 | 0] O 0 |[01] O

\R@
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Compositions of binary (fuzzy) relations

Gap between quantifiers? Example:

RoS Z1 Z9 z3 Z4 zZ5
11091090908 1
x2 | 0808 |08]|08]0.9
x3 | 07109 07]|09]0.9
x4 {09 1 |06 1 1

Every patient is suspicious of having any disease. If we try to strengthen
the suspicion, we get no suspicion anymore:

ROS | 21 | 29 z3 Z4 z5
z1 | 010202 0 |01
zo | O 0 |02]01]0.2
z3 | 0 0 |01]|01]01
x4 | 0] O 0 |01] O

\R@
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Generalized intermediate quantifiers
Outline

Generalized intermediate quantifiers
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Generalized intermediate quantifiers

Generalized quantifiers

Quantifiers such as Most, Many or A Few

They denote a quantity thus, their construction based on fuzzy measure is
very natural

m U ={uy,...,u,} — non-empty finite universe
m u:P(U) — [0,1] - normalized fuzzy measure, i.e., u(0) = 0 and
uU) =1

w is a fuzzy measure invariant w.r.t. cardinality if

VA,B e P(U):|A| = [B| = u(A) = u(B)

We follow A. Dvorak, M. Holcapek, (FSS 2009):"L-fuzzy quantifiers of type (1) determined by

fuzzy measures”. RARM
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Generalized intermediate quantifiers

Generalized quantifiers

Example: Relative cardinality

_ Ml
Ul

is a fuzzy measure invariant w.r.t cardinality.

prc(A)

Example: Modified relative cardinality

Let f:[0,1] — [0, 1] be a non-decreasing mapping with f(0) = 0 and
f(1) =1. Then u(A) = f(urc(A)) is also a fuzzy measure invariant
w.r.t cardinality.

Remark: All fuzzy sets used to model evaluative linguistic expressions of
the type Big fulfill the assumptions on f.
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Generalized intermediate quantifiers

Generalized quantifiers

# U= {ui,...,u,} — non-empty finite universe
®  — fuzzy measure invariant w.r.t. cardinality

m * — left-continuous t-norm

Mapping @ : F(U) — [0, 1] defined by:

Qoy=\/ ((/\ C(u)>*u(D))

DeP(U)\D ueD

is a fuzzy quantifier determined by fuzzy measure u
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Generalized intermediate quantifiers

Classical quantifiers as special cases

Let us assume that the fuzzy measures p defined as follows

;ﬁ(D):{l D=U MB(D):{O D=0 W

0 otherwise, 1 otherwise.

Then the derived quantifiers Q" and Q7 are exactly the classical universal
and existential quantifiers, respectively.

\RQ

M. Stépnicka and M. Holcapek (IRAFM) Fuzzy relational compositions



Generalized intermediate quantifiers

Generalized quantifiers — computation

The definition is very inappropriate for computations (calculating over the
whole potential set of U).

Theorem

n

Q(D) = \/ D(uw(z)) k3 :u({ula s 7u2})

i=1

where 7 is a permutation on U such that

D(uﬂ'(l)) > D(UW(Q)) > 2 D(uﬂ’(n))
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Generalized intermediate quantifiers

Generalized quantifiers — computation

The definition is very inappropriate for computations (calculating over the
whole potential set of U).

Theorem

n

Q(D) = \/ D(uw(z)) k3 :u({ula s 7u2})

i=1

where 7 is a permutation on U such that

D(uﬂ'(l)) > D(UW(Q)) > 2 D(uﬂ’(n))

Example: Take Most, i.e. take pu(A) = VeBi(urc(A4))

QD) = \/ D(uy(s)) * f(i/n) = \/ D(un(;)) = VeBi(i/n)
=l

=1
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Compositions based on generalized quantifiers
Outline

Compositions based on generalized quantifiers
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Compositions based on generalized quantifiers

Compositions based on generalized quantifiers

The idea is to replace the standard quantifiers in the definitions of
compositions, e.g. the universal quantifier in

RaS={(z,z) e XxZ|VyeY:(z,y) €eR = (y,2) € S}
by a generalized quantifier Q defined on Y, in order to obtain the

following composition:

RS ={(z,2) eXxZ|QyeY:(x,y) €R = (y,2) € S}

\RQ
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Compositions based on generalized quantifiers

Compositions based on generalized quantifiers

 Definition |

(Ro9S)(z,2) = \/ N R(z,y) * S(y, Z)) *H(D)) :

DeP(U)\D yeD

(R<®8)(z,2) = \/ /\ R(z,y) = S(y,2) | *u(D) |,
DeP(U)\0 yeD

(R>98)(z,2) = \/ N R(z,y) « S(y,2) | *u(D) |,
DeP(U)~D yeD

(RRS)(z,2) =\ N\ R(z,y) < S(y,2) | *u(D)
DeP(U)\D yeD AN
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Compositions based on generalized quantifiers

Computation with such compositions

Corollary

|
e

N
Il
—

(Ro9 5)(z,2) ((R(2, Yr(i)) * S(Yn(i), 2)) * f(i/n)) ,

(R <]Q S) (‘T? Z) ((R(.’E yw(z)) . S(yﬂ'(z )) (7’/”))

-~
I
—

I
<

(R [>Q S) (:Ea Z) ((R(LL’ yﬂ(z)) = S(yw(z )) (Z/?’L))

I
<

i=1
(R DQ S)(x7z) = \/ ((R(l‘ yrr(z)) A S(yﬂ'(’L )) (z/n))
i=1
where 7 is a permutation such that (putting ® € {*, —, «—, < }: AN
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Compositions based on generalized quantifiers

Equivalence to standard compositions

One may check that Ro S = Ro7 S and that

R<S=R<"S, R>S=R>"S, RuS=RO'S.
Indeed, f¥(i/n) = 0 for all i <n and fY(1) = 1 and thus

(R <" 8)(,2) = (R(®, Yn(n) = S(Un(n)> 2)) * f(n/n)

which due to the fact that
R(l‘, yw(n)) - S(yﬂ(n)v Z) = /\(R(l‘, ?Jz) - S(yla Z))

confirms R<1S=R<" S

\R@
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Compositions based on generalized quantifiers

Does it help? Consider the previous example.

Use Roughly Big to construct quantifier Majority.
(RoBi(1/4) = 0, RoBi(2/4) = 0, RoBi(3/4) = 0.95, RoBi(1) = 1)

Symptoms:
y1 - tiredness; yo - cough; ys3 - fever; y4 - blurred vision

Diseases:
z1 - pulmonary hypertension; z5 - sleeping sickness;
23 - malaria; z4 - hangover; z5 - influenza

\RQ
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Compositions based on generalized quantifiers

Does it help? Consider the previous example.

Use Roughly Big to construct quantifier Majority.
(RoBi(1/4) = 0, RoBi(2/4) = 0, RoBi(3/4) = 0.95, RoBi(1) = 1)

Symptoms:
y1 - tiredness; yo - cough; ys3 - fever; y4 - blurred vision

Diseases:
z1 - pulmonary hypertension; z5 - sleeping sickness;
23 - malaria; z4 - hangover; z5 - influenza

RO9S 21 29 z3 Z4 z5
z; 10151075 ] 02 |0.75] 0.1
z9 | 0.05] 025|035 | 0.1 | 0.75
T3 0 0.35 | 0.25 | 0.15 | 0.75
T4 0 0.05 | 0.05 | 0.15 | 0.95
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Compositions based on generalized quantifiers

Does it help? Consider the previous example.

Use Roughly Big to construct quantifier Majority.
(RoBi(1/4) = 0, RoBi(2/4) = 0, RoBi(3/4) = 0.95, RoBi(1) = 1)

Symptoms:
y1 - tiredness; yo - cough; ys3 - fever; y4 - blurred vision

Diseases:
z1 - pulmonary hypertension; z5 - sleeping sickness;
23 - malaria; z4 - hangover; z5 - influenza

RO9S 21 29 z3 zZ4 z5
z; 0151075 ] 02 |0.75] 0.1
z9 | 0.05] 025|035 | 0.1 | 0.75
T3 0 0.35 1 0.25 | 0.15 | 0.75
T4 0 0.05 | 0.05 | 0.15 | 0.95

\RQ
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Compositions based on generalized quantifiers

Does it help? Consider the previous example.

Use Roughly Big to construct quantifier Majority.
(RoBi(1/4) = 0, RoBi(2/4) = 0, RoBi(3/4) = 0.95, RoBi(1) = 1)

Symptoms:
y1 - tiredness; yo - cough; ys3 - fever; y4 - blurred vision

Diseases:
z1 - pulmonary hypertension; z5 - sleeping sickness;
23 - malaria; z4 - hangover; z5 - influenza

RO9S 21 29 z3 zZ4 z5
z; 0151075 ] 02 |0.75] 0.1
z9 | 0.05] 025|035 | 0.1 | 0.75
T3 0 0.35 1 0.25 | 0.15 | 0.75
T4 0 0.05 | 0.05 | 0.15 | 0.95

\RQ
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Compositions based on generalized quantifiers

Does it help? Consider the previous example.

Use Roughly Big to construct quantifier Majority.
(RoBi(1/4) = 0, RoBi(2/4) = 0, RoBi(3/4) = 0.95, RoBi(1) = 1)

Symptoms:
y1 - tiredness; yo - cough; ys3 - fever; y4 - blurred vision

Diseases:
z1 - pulmonary hypertension; z5 - sleeping sickness;
23 - malaria; z4 - hangover; z5 - influenza

RO9S 21 29 z3 zZ4 z5
z; 0151075 ] 02 |0.75] 0.1
z92 | 0.05] 025|035 | 0.1 | 0.75
T3 0 0.35 1 0.25 | 0.15 | 0.75
T4 0 0.05 | 0.05 | 0.15 | 0.95

\RQ
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Compositions based on generalized quantifiers

Does it help? Consider the previous example.

Use Roughly Big to construct quantifier Majority.
(RoBi(1/4) = 0, RoBi(2/4) = 0, RoBi(3/4) = 0.95, RoBi(1) = 1)

Symptoms:
y1 - tiredness; yo - cough; ys3 - fever; y4 - blurred vision

Diseases:
z1 - pulmonary hypertension; z5 - sleeping sickness;
z3 - malaria; 24 - hangover; z5 - influenza

RO9S 21 29 z3 zZ4 z5
z; 10151075 ] 02 |0.75] 0.1
z9 | 0.05] 025|035 | 0.1 | 0.75
T3 0 0.35 1 0.25 | 0.15 | 0.75
T4 0 0.05 | 0.05 | 0.15 | 0.95

\RQ
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Compositions based on generalized quantifiers

Recall properties of standard compositions o, <1, >, 0

Ro(SoT)=(RoS)oT
ROS=(R<S)N(R>S)

B Ri <Ry, = (RloS) (RQOS) and
S1 <S8y = (RoS1) C(RoSy)

Ri <Ry = (R1<S)2 (RQQS) and
(R1[>S) (R2[>S)

RiURy)o (RloS)U(RQOS)
B (RiNR)<S=(R1A5)U((R2<9)
RiUR)D>S=(Ri>S)U(Re>S)

Ri1URy =(R1<S)N(R2< )
R1N Ry =(Ri>S)N(R2>9) /\

( )o

( )

( )
(RlﬂRg)OSC(Rlos) (Ry0 )
( )
m ( )

VA
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Compositions based on generalized quantifiers

Are the properties preserved for 0@, <9, ¢ o@7?

Ro(SoT)=(RoS)oT
ROS=(R<S)N(R>S)

B Ri <Ry, = (RloS) (RQOS) and
S1 <S8y = (RoS1) C(RoSy)

R <Ry = (R1<IS)_(R2<S) and
(R1[>S) (R2[>S)

(RiURg)oS=(R10oS)U(R2005)

6] (RlﬂRz)Q =(R1QS)U(R2<9)

(RIURy) > S = (R >8)U(R>0)

E(RlﬂRz)OSC(Rlos) (Ry0 )

B (BiURy) QS = (R a8)N(R2<5)
( )

VA

i (R1N Ry =(Ri>S)N(R2>9) /\
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Compositions based on generalized quantifiers

Are the properties preserved for 09, <9, >¢ o@7?

Ro® (So?T)=(Ro®S)oQT

RO®SC(R<? S)N(R>?S)

Ry <Ry = (R1098)C (Ry0%S) and
51 <85 = (R o Sl) (R o Sg)

Ri <Ry = (R1<98)2(Ry<?8) and
(R1 >Q S) - (R2 >Q S)

(RiURy)0? S = (Ry 09 S)U(Ry 0% S)

@ (R1NRy) Q@ S = (Ry <@ S)U (Ry <@ S)

(R UR3) >@ S = (Ry >@ S)U (Ry >@ S)

B (R1NRy) o?SC (Ry o? S) N (Ry o S)

@ (RiURy) <9 SC(Ry <9 S) N (Ry <9 S)

it (R1NRy) >@ SC(Ry >@ S) N (Ry >@ S) AL
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Final remarks
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Final remarks

Images of fuzzy sets under fuzzy relations

A C 0 x X
R C X x Y
AQR C 0 x Y

where @ € {o, <, >,0}.

m X - set of symptoms,

m Y — set of patients,

m R — fuzzy relation on X x Y,

m A — fuzzy sets specifying “searched” symptoms from X,

m AQR - fuzzy sets of patients having searched symptoms.

\RQ
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Final remarks

Images of fuzzy sets under fuzzy relations

m Ao R - fuzzy set of patients having at least one from the searched
symptoms.

® A < R - fuzzy set of patients having all searched symptoms.

m A R - fuzzy set of patients for whose symptoms hold that all of
them are among the searched ones (no symptoms out of the searched
ones).

m AOR - fuzzy sets of patients having all searched symptoms and no
other symptoms.
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Final remarks

Relational databases

O. Pivert, P. Bosc, Fuzzy Preference Queries to Relational Databases,
Imperial College Press 2012.

If r and s are two relations with respective schemas R(A, X) and
S(B,Y) where A and B are compatible sets of attributes, the division is
defined as follows

div(r, s, A, B) = {z | Va, (a € project(s,B)) = ({(a,z) € r)}

Nothing else but an image of a (fuzzy) set under a (fuzzy) relation,
particularly:

SCKxL, S ClLisgienasS =proj.(S), RCLxM

Then the division is S’ <R C M. N
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Final remarks

Conclusions

Compositions of classical and fuzzy binary relations were recalled.

Motivation for introducing new compositions based on generalized
quantifiers was provided.

New compositions were defined and their use demonstrated.

Validity of basic properties proved.

Application potential lies e.g. in flexible query answering systems
(images of fuzzy sets under fuzzy relations derived from the newly
defined compositions) or may be also in fuzzy inference systems.
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Thanksgiving

Thank You for Your Attention
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