Triangle Functions

S.Saminger-Platz

Motivation

The lattice of distance distribution functions

Constructions

Concepts known from triangular norms?

Extensions of t-norms on bounded lattices

Other constructions

Functional (in)equalities

Cauchy's functional equation

Dominance

... of t-norms

... of triangle functions

Triangle Functions

Constructions and Functional (In)equalities

12th International Conference on Fuzzy Set Theory and Applications (FSTA 2014)

Liptovský Ján, Slovakia, January 31, 2014

Susanne Saminger-Platz¹ Department of Knowledge-Based Mathematical Systems Johannes Kepler University Linz, Austria

susanne.saminger-platz@jku.at

Triangle Functions

S.Saminger-Platz

Motivation

The lattice of distance distribution functions

Constructions

Concepts known from triangular norms?

Extensions of t-norms on bounded lattices

Other constructions

Functional (in)equalities

Cauchy's functional equation

Dominance

... of t-norms

Distance distribution functions

Distance distribution functions

A distribution function is a function $F : \mathbb{R} \to [0, 1]$ such that

- F is increasing;
- *F* is left-continuous on ℝ;
- $F(-\infty) = 0$ and $F(\infty) = 1$.

The set of all distributions functions (d.f.) will be denoted by Δ .

A distance distribution function is a distribution function F such that F(0) = 0.

The set of all distance distribution functions (d.d.f.) will be denoted by $\Delta^+.$

Triangle Functions

S.Saminger-Platz

Motivation

The lattice of distance distribution functions

Constructions

Concepts known from triangular norms?

Extensions of t-norms on bounded lattices

Other constructions

Functional (in)equalities

- Cauchy's functional equation Dominance ... of t-norms
- ... of triangle functions

 In probabilistic metric spaces a function *F* assigns to each pair of elements *p* and *q* of some non-empty set *X* a distance distribution function.

Then, for all x > 0, the value $\mathcal{F}(p, q)(x)$ is interpreted as the probability that the distance between p and q is less than x.

Triangle Functions

S.Saminger-Platz

Motivation

The lattice of distance distribution functions

Constructions

Concepts known from triangular norms?

Extensions of t-norms on bounded lattices

Other constructions

Functional (in)equalities

Cauchy's functional equation

Dominance

... of t-norms

 In probabilistic metric spaces a function *F* assigns to each pair of elements *p* and *q* of some non-empty set *X* a distance distribution function.

Then, for all x > 0, the value $\mathcal{F}(p, q)(x)$ is interpreted as the probability that the distance between p and q is less than x.

- A finite fuzzy real is a fuzzy subset A of \mathbb{R} such that
 - A is increasing;
 - *A* is left-continuous (on ℝ);
 - $\inf\{A(x) \mid x \in \mathbb{R}\} = 0$ and $\sup\{A(x) \mid x \in \mathbb{R}\} = 1$.

A **non-negative finite fuzzy real** is a finite fuzzy real *A* such that A(0) = 0.

Triangle Functions

S.Saminger-Platz

Motivation

The lattice of distance distribution functions

Constructions

Concepts known from triangular norms?

Extensions of t-norms on bounded lattices

Other constructions

Functional (in)equalities

Cauchy's functional equation

Dominance

... of t-norms

 In probabilistic metric spaces a function *F* assigns to each pair of elements *p* and *q* of some non-empty set *X* a distance distribution function.

Then, for all x > 0, the value $\mathcal{F}(p, q)(x)$ is interpreted as the probability that the distance between p and q is less than x.

- A finite fuzzy real is a fuzzy subset A of \mathbb{R} such that
 - A is increasing;
 - *A* is left-continuous (on ℝ);
 - $\inf\{A(x) \mid x \in \mathbb{R}\} = 0$ and $\sup\{A(x) \mid x \in \mathbb{R}\} = 1$.

A **non-negative finite fuzzy real** is a finite fuzzy real *A* such that A(0) = 0.

A function $F \in \Delta^+$ may be interpreted as a fuzzy set modeling, e.g., "at least 5"

Triangle Functions

S.Saminger-Platz

Motivation

The lattice of distance distribution functions

Constructions

Concepts known from triangular norms?

Extensions of t-norms on bounded lattices

Other constructions

Functional (in)equalities

Cauchy's functional equation

Dominance

... of t-norms

 In probabilistic metric spaces a function *F* assigns to each pair of elements *p* and *q* of some non-empty set *X* a distance distribution function.

Then, for all x > 0, the value $\mathcal{F}(p, q)(x)$ is interpreted as the probability that the distance between p and q is less than x.

- A finite fuzzy real is a fuzzy subset A of \mathbb{R} such that
 - A is increasing;
 - *A* is left-continuous (on ℝ);
 - $\inf\{A(x) \mid x \in \mathbb{R}\} = 0$ and $\sup\{A(x) \mid x \in \mathbb{R}\} = 1$.

A **non-negative finite fuzzy real** is a finite fuzzy real *A* such that A(0) = 0.

A function $F \in \Delta^+$ may be interpreted as a fuzzy set modeling, e.g., "at least 5"

Interpretation of distribution functions of type 1 – F.

Triangle Functions

S.Saminger-Platz

Motivation

The lattice of distance distribution functions

Constructions

Concepts known from triangular norms?

Extensions of t-norms on bounded lattices

Other constructions

Functional (in)equalities

Cauchy's functional equation

Dominance

- ... of t-norms
- ... of triangle functions

 In probabilistic metric spaces a function *F* assigns to each pair of elements *p* and *q* of some non-empty set *X* a distance distribution function.

Then, for all x > 0, the value $\mathcal{F}(p, q)(x)$ is interpreted as the probability that the distance between p and q is less than x.

- A finite fuzzy real is a fuzzy subset A of \mathbb{R} such that
 - A is increasing;
 - *A* is left-continuous (on ℝ);
 - $\inf\{A(x) \mid x \in \mathbb{R}\} = 0$ and $\sup\{A(x) \mid x \in \mathbb{R}\} = 1$.

A **non-negative finite fuzzy real** is a finite fuzzy real *A* such that A(0) = 0.

A function $F \in \Delta^+$ may be interpreted as a fuzzy set modeling, e.g., "at least 5"

- Interpretation of distribution functions of type 1 − F.
- Interpretation of Δ^+ as a **bounded lattice**.

Triangle Functions

S.Saminger-Platz

Motivation

The lattice of distance distribution functions

Constructions

Concepts known from triangular norms?

Extensions of t-norms on bounded lattices

Other constructions

Functional (in)equalities

Cauchy's functional equation

Dominance

- ... of t-norms
- ... of triangle functions

The lattice structure of Δ^+

Definition

• For all $F, G \in \Delta^+$:

$$F \leq G \quad :\Leftrightarrow \quad \forall x \in \overline{\mathbb{R}} : F(x) \leq G(x).$$

Triangle Functions

S.Saminger-Platz

Motivation

The lattice of distance distribution functions

Constructions

Concepts known from triangular norms?

Extensions of t-norms on bounded lattices

Other constructions

Functional (in)equalities

Cauchy's functional equation

Dominance

... of t-norms

The lattice structure of Δ^+

Definition

• For all $F, G \in \Delta^+$:

$$F \leq G$$
 : \Leftrightarrow $\forall x \in \mathbb{R} : F(x) \leq G(x).$

• Top and bottom element:

$$arepsilon_0(x) := egin{cases} 0, & x=0, \ 1, & x>0, \end{cases} ext{ and } arepsilon_\infty(x) := egin{cases} 0, & x<\infty, \ 1, & x=\infty, \end{cases}$$

S.Saminger-Platz

Motivation

The lattice of distance distribution functions

Constructions

Concepts known from triangular norms?

Extensions of t-norms on bounded lattices

Other constructions

Functional (in)equalities

Cauchy's functional equation

Dominance

... of t-norms

The lattice structure of Δ^+

Definition

• For all $F, G \in \Delta^+$:

$$F \leq G$$
 : \Leftrightarrow $\forall x \in \mathbb{R} : F(x) \leq G(x).$

• Top and bottom element:

$$arepsilon_0(x) := egin{cases} 0, & x=0, \ 1, & x>0, \end{cases} ext{ and } arepsilon_\infty(x) := egin{cases} 0, & x<\infty, \ 1, & x=\infty, \end{cases}$$

--- $(\Delta^+, \leq, \varepsilon_{\infty}, \varepsilon_0)$ is a bounded lattice.

Triangle Functions

S.Saminger-Platz

Motivation

The lattice of distance distribution functions

Constructions

Concepts known from triangular norms?

Extensions of t-norms on bounded lattices

Other constructions

Functional (in)equalities

Cauchy's functional equation

Dominance

... of t-norms

Remarks

Operations on Δ⁺:

S.Saminger-Platz

Motivation

The lattice of distance distribution functions

Constructions

Concepts known from triangular norms?

Extensions of t-norms on bounded lattices

Other constructions

Functional (in)equalities

Cauchy's functional equation

Dominance

... of t-norms

Remarks

Operations on Δ⁺:

--→ Enriching the poset (Δ^+, \leq) in order to achieve algebraic structures

S.Saminger-Platz

Motivation

The lattice of distance distribution functions

Constructions

Concepts known from triangular norms?

Extensions of t-norms on bounded lattices

Other constructions

Functional (in)equalities

Cauchy's functional equation

Dominance

... of t-norms

Remarks

Operations on Δ⁺:

---> Enriching the poset (Δ^+, \leq) in order to achieve algebraic structures

---> Triangle functions

Triangle Functions

S.Saminger-Platz

Motivation

The lattice of distance distribution functions

Constructions

Concepts known from triangular norms?

Extensions of t-norms on bounded lattices

Other constructions

Functional (in)equalities

Cauchy's functional equation

Dominance

... of t-norms

Remarks

Operations on Δ⁺:

---> Enriching the poset (Δ^+, \leq) in order to achieve algebraic structures

---> Triangle functions

Operations on finite fuzzy reals:

Triangle Functions

S.Saminger-Platz

Motivation

The lattice of distance distribution functions

Constructions

Concepts known from triangular norms?

Extensions of t-norms on bounded lattices

Other constructions

Functional (in)equalities

Cauchy's functional equation

Dominance

... of t-norms

Remarks

Operations on Δ⁺:

---> Enriching the poset (Δ^+, \leq) in order to achieve algebraic structures

---> Triangle functions

- Operations on finite fuzzy reals:
 - --→ Closedness w.r.t. operations induced by the extension principle, i.e.

Triangle Functions

S.Saminger-Platz

Motivation

The lattice of distance distribution functions

Constructions

Concepts known from triangular norms?

Extensions of t-norms on bounded lattices

Other constructions

Functional (in)equalities

Cauchy's functional equation

Dominance

... of t-norms

Remarks

Operations on Δ⁺:

---> Enriching the poset (Δ^+, \leq) in order to achieve algebraic structures

---> Triangle functions

• Operations on finite fuzzy reals:

--→ Closedness w.r.t. operations induced by the extension principle, i.e.

 $A \circledast B(x) = \sup\{T(A(u), B(v)) \mid u, v \in \mathbb{R}, u * v = z\}$

with T some t-norm and * a binary operation on \mathbb{R} .

S.Saminger-Platz

Motivation

The lattice of distance distribution functions

Constructions

Concepts known from triangular norms?

Extensions of t-norms on bounded lattices

Other constructions

Functional (in)equalities

Cauchy's functional equation

Dominance

... of t-norms

Triangle functions

Definition

A binary operation $\tau : \Delta^+ \times \Delta^+ \to \Delta^+$ which fulfills for all $F, G, H \in \Delta^+$ (i) $\tau(F, \varepsilon_0) = F$,

(ii) $\tau(F, G) \succeq \tau(F, H)$ whenever $G \succeq H$,

(iii)
$$\tau(F, G) = \tau(G, F)$$
,

(iv)
$$\tau(F, \tau(G, H)) = \tau(\tau(F, G), H).$$

is called a triangle function.

Triangle Functions

S.Saminger-Platz

Motivation

The lattice of distance distribution functions

Constructions

Concepts known from triangular norms?

Extensions of t-norms on bounded lattices

Other constructions

Functional (in)equalities

Cauchy's functional equation

Dominance

... of t-norms

Triangle functions

Definition

A binary operation $\tau \colon \Delta^+ \times \Delta^+ \to \Delta^+$ which fulfills for all $F, G, H \in \Delta^+$ (i) $\tau(F, \varepsilon_0) = F$,

(ii)
$$\tau(F,G) \succeq \tau(F,H)$$
 whenever $G \succeq H$,

(iii)
$$\tau(F, G) = \tau(G, F)$$
,

(iv)
$$\tau(F, \tau(G, H)) = \tau(\tau(F, G), H).$$

is called a triangle function.

$$(\Delta^+, \tau, \leq)$$

is a commutative, partially ordered semigroup with neutral element ε_0

Triangle Functions

S.Saminger-Platz

Motivation

The lattice of distance distribution functions

Constructions

Concepts known from triangular norms?

Extensions of t-norms on bounded lattices

Other constructions

Functional (in)equalities

Cauchy's functional equation

Dominance

... of t-norms

Triangle functions

Definition

A binary operation $\tau: \Delta^+ \times \Delta^+ \to \Delta^+$ which fulfills for all $F, G, H \in \Delta^+$ (i) $\tau(F, \varepsilon_0) = F$, (ii) $\tau(F, G) \succeq \tau(F, H)$ whenever $G \succeq H$, (iii) $\tau(F, G) = \tau(G, F)$, (iv) $\tau(F, \tau(G, H)) = \tau(\tau(F, G), H)$. is called a triangle function.

> au is a **triangular norm** on the bounded lattice $(\Delta^+, \leq, \varepsilon_{\infty}, \varepsilon_0)$.

Triangle Functions

S.Saminger-Platz

Motivation

The lattice of distance distribution functions

Constructions

Concepts known from triangular norms?

Extensions of t-norms on bounded lattices

Other constructions

Functional (in)equalities

Cauchy's functional equation

Dominance

... of t-norms

• Consider some left-continuous t-norm T.

$$\tau_{\mathcal{T}}(\mathcal{F}, \mathcal{G})(x) = \sup\{\mathcal{T}(\mathcal{F}(u), \mathcal{G}(v)) \mid u + v = x\}$$

Triangle Functions

S.Saminger-Platz

Motivation

The lattice of distance distribution functions

Constructions

Concepts known from triangular norms?

Extensions of t-norms on bounded lattices

Other constructions

Functional (in)equalities

Cauchy's functional equation

Dominance

... of t-norms

• Consider some left-continuous t-norm T.

$$\tau_T(F,G)(x) = \sup\{T(F(u),G(v)) \mid u + v = x\}$$

• Consider some left-continuous t-norm *T*.

 $\pi_T(F,G)(x) = T(F(x),G(x))$

Triangle Functions

S.Saminger-Platz

Motivation

The lattice of distance distribution functions

Constructions

Concepts known from triangular norms?

Extensions of t-norms on bounded lattices

Other constructions

Functional (in)equalities

Cauchy's functional equation

Dominance

... of t-norms

• Consider some left-continuous t-norm T.

$$\tau_T(F,G)(x) = \sup\{T(F(u),G(v)) \mid u+v=x\}$$

• Consider some left-continuous t-norm T.

 $\pi_T(F,G)(x) = T(F(x),G(x))$

Convolution

$$(F*G)(x) = \int_{[0,x[} F(x-t) dG(t)$$

Triangle Functions

S.Saminger-Platz

Motivation

The lattice of distance distribution functions

Constructions

Concepts known from triangular norms?

Extensions of t-norms on bounded lattices

Other constructions

Functional (in)equalities

Cauchy's functional equation

- Dominance
- of t-norms
- ... of triangle functions

S.Saminger-Platz

• Consider some left-continuous t-norm T.

 $\pi_T(F,G)(x) = T(F(x),G(x))$

• Consider some left-continuous t-norm T.

$$\tau_T(F,G)(x) = \sup\{T(F(u),G(v)) \mid u+v=x\}$$

Convolution

$$(F * G)(x) = \int_{[0,x[} F(x-t) dG(t)$$

• Consider some ordinal sum C of product summands only.

$$\sigma_{C}(F,G)(x) = \int_{\{(u,v)|u+v$$

Triangle Functions

S.Saminger-Platz

Motivation

The lattice of distance distribution functions

Constructions

Concepts known from triangular norms?

Extensions of t-norms on bounded lattices

Other constructions

Functional (in)equalities

- Cauchy's functional equation
- Dominance
- ... of t-norms
- ... of triangle functions

Triangle Functions

S.Saminger-Platz

Motivation

The lattice of distance distribution functions

Construction

Concepts known from triangular norms?

Extensions of t-norms on bounded lattices

Other constructions

Functional (in)equalities

Cauchy's functional equation

Dominance

... of t-norms

Triangle Functions

S.Saminger-Platz

Motivation

The lattice of distance distribution functions

Constructions

Concepts known from triangular norms?

Extensions of t-norms on bounded lattices

Other constructions

Functional (in)equalities

Cauchy's functional equation

Dominance

... of t-norms

... of triangle functions

Approach 1

Are there approaches similar to the construction/representation of (continuous) t-norms on [0, 1]?

T-norms on [0,1]

Triangle functions and t-norms

For some left-continuous t-norm T on [0, 1],

$$\pi_T(F,G)(x) = T(F(x),G(x))$$

is a triangle function.

Triangle Functions

S.Saminger-Platz

Motivation

The lattice of distance distribution functions

Constructions

Concepts known from triangular norms?

Extensions of t-norms on bounded lattices

Other constructions

Functional (in)equalities

Cauchy's functional equation

Dominance

... of t-norms

T-norms on [0,1]

Triangle functions and t-norms

For some left-continuous t-norm T on [0, 1],

$$\pi_T(F,G)(x) = T(F(x),G(x))$$

is a triangle function.

Constructions of t-norms on [0, 1]

- Ordinal sums and extensions
- Additive generators

Triangle Functions

S.Saminger-Platz

Motivation

The lattice of distance distribution functions

Constructions

Concepts known from triangular norms?

Extensions of t-norms on bounded lattices

Other constructions

Functional (in)equalities

Cauchy's functional equation

Dominance

... of t-norms

^{...} of triangle functions

T-norms on [0, 1]

Triangle functions and t-norms

For some left-continuous t-norm T on [0, 1],

$$\pi_T(F,G)(x) = T(F(x),G(x))$$

is a triangle function.

Constructions of t-norms on [0, 1]

- Ordinal sums and extensions
- Additive generators

---> similar approaches for triangle functions?

S.Saminger-Platz

Motivation

The lattice of distance distribution functions

Constructions

Concepts known from triangular norms?

Extensions of t-norms on bounded lattices

Other constructions

Functional (in)equalities

Cauchy's functional equation

Dominance

... of t-norms

(Still) open problems by Schweizer and Sklar

Problem 7.9.1

(Schweizer, Sklar, 1983)

"... In particular determine all continuous triangle functions and, if possible, find a representation corresponding to the one given in Theorems 5.3.8 and 5.4.1."

Theorem 5.3.8: Representation as minimum, Archimedean t-norm, or ordinal sum thereof;

Theorem 5.4.1: Representation by generators;

Problem 7.9.5

(Schweizer, Sklar, 1983)

"Suppose that *T* is a continuous t-norm. ... In particular, if *T* is an ordinal sum is $\tau_{T,L}$ an ordinal sum?"

Triangle Functions

S.Saminger-Platz

Motivation

The lattice of distance distribution functions

Constructions

Concepts known from triangular norms?

Extensions of t-norms on bounded lattices

Other constructions

Functional (in)equalities

Cauchy's functional equation

- Dominance
- of t-norms
- ... of triangle functions

Triangle Functions

S.Saminger-Platz

Motivation

The lattice of distance distribution functions

Constructions

Concepts known from triangular norms?

Extensions of t-norms on bounded lattices

Other constructions

Functional (in)equalities

Cauchy's functional equation

Dominance

... of t-norms

... of triangle functions

What can we infer from the construction methods for t-norms on lattices?

Extensions of t-norms on bounded lattices

• a bounded lattice $(L, \leq, 0_1, 1_1)$,

• a t-norm $T^S : S^2 \to S$ on S.

(Sam,Kle,Mes 2008)

Triangle Functions

S.Saminger-Platz

Motivation

The lattice of distance distribution functions

Constructions

Concepts known from triangular norms?

Extensions of t-norms on bounded lattices

Other constructions

Functional (in)equalities

Cauchy's functional equation

Dominance

... of t-norms ... of triangle functions

S.Saminger-Platz

Consider

• a bounded (and complete) sublattice (S, \leq, a, b) , and

Extensions of t-norms on bounded lattices

(Sam,Kle,Mes 2008)

Triangle Functions

S.Saminger-Platz

Motivation

The lattice of distance distribution functions

Constructions

Concepts known from triangular norms?

Extensions of t-norms on bounded lattices

Other constructions

Functional (in)equalities

Cauchy's functional equation

Dominance

... of t-norms

... of triangle functions

- a bounded lattice $(L, \leq, 0_L, 1_L)$,
- a bounded (and complete) sublattice (S, \leq, a, b) , and
- a t-norm $T^S \colon S^2 \to S$ on S.

Weakest and strongest extension

Determine operations \underline{T}^L , \overline{T}^L : $L^2 \to L$ such that

- $\underline{T}^L|_{S^2} = \overline{T}^L|_{S^2} = T^S;$
- for all t-norms $T: L^2 \to L$ with $T|_{S^2} = T^S$:

Extensions of t-norms on bounded lattices

(Sam,Kle,Mes 2008)

Triangle Functions

S.Saminger-Platz

Motivation

The lattice of distance distribution functions

Constructions

Concepts known from triangular norms?

Extensions of t-norms on bounded lattices

Other constructions

Functional (in)equalities

Cauchy's functional equation

Dominance

- ... of t-norms
- ... of triangle functions

- a bounded lattice $(L, \leq, 0_L, 1_L)$,
- a bounded (and complete) sublattice (S, \leq, a, b) , and
- a t-norm $T^S \colon S^2 \to S$ on S.

Weakest and strongest extension

Determine operations \underline{T}^L , \overline{T}^L : $L^2 \to L$ such that

- $\underline{T}^L|_{S^2} = \overline{T}^L|_{S^2} = T^S;$
- for all t-norms $T: L^2 \to L$ with $T|_{S^2} = T^S$:

 $\underline{T}^{L} \leq T \leq \overline{T}^{L};$

•
$$\underline{T}^{L}$$
 resp. \overline{T}^{L} is a t-norm on L.

Interesting sublattices of Δ^+

• Step functions
$$\varepsilon_a := \mathbf{1}_{]a,\infty]}$$
 for all $a \ge 0$;
 $E^+ = \{\varepsilon_a \mid a \ge 0\};$
 $\varepsilon_a \ge \varepsilon_b \Leftrightarrow a \le b.$
 $(E^+, \le, \varepsilon_\infty, \varepsilon_0)$

Triangle Functions

S.Saminger-Platz

Motivation

The lattice of distance distribution functions

Constructions

Concepts known from triangular norms?

Extensions of t-norms on bounded lattices

Other constructions

Functional (in)equalities

Cauchy's functional equation

Dominance

... of t-norms

Interesting sublattices of Δ^+

• Step functions
$$\varepsilon_a := \mathbf{1}_{]a,\infty]}$$
 for all $a \ge 0$;
 $E^+ = \{\varepsilon_a \mid a \ge 0\};$
 $\varepsilon_a \ge \varepsilon_b \Leftrightarrow a \le b.$
 $(E^+, \le, \varepsilon_\infty, \varepsilon_0)$

• "Constant functions"

$$\delta_{a,b} := b\varepsilon_a + (1 - b)\varepsilon_\infty$$
 for all $a \ge 0, b \in [0, 1]$;

$$\Delta_{\delta}^{+} = \{ \delta_{a,b} \mid a \geq 0, b \in [0,1] \}; \qquad \delta_{a,b} \uparrow \\ \delta_{s,t} \leq \delta_{s,u} \Leftrightarrow t \leq u \Leftrightarrow \delta_{t,s} \geq \delta_{u,s}. \qquad (\Delta_{\delta}^{+}, \leq, \delta_{a,0}, \delta_{1,0})$$

Triangle Functions

S.Saminger-Platz

Motivation

The lattice of distance distribution functions

Constructions

Concepts known from triangular norms?

Extensions of t-norms on bounded lattices

Other constructions

Functional (in)equalities

Cauchy's functional equation

Dominance

- ... of t-norms
- ... of triangle functions

Strongest extension

The model

Consider

- a bounded lattice $(L, \leq, 0_L, 1_L)$,
- a bounded (and complete) sublattice (S, \leq, a, b) , and
- a t-norm $T^S \colon S^2 \to S$ on S.

Triangle Functions

S.Saminger-Platz

Motivation

The lattice of distance distribution functions

Constructions

Concepts known from triangular norms?

Extensions of t-norms on bounded lattices

Other constructions

Functional (in)equalities

Cauchy's functional equation

Dominance

... of t-norms ... of triangle functions

Strongest extension

The model

Consider

- a bounded lattice $(L, \leq, 0_L, 1_L)$,
- a bounded (and complete) sublattice (S, \leq, a, b) , and
- a t-norm $T^S \colon S^2 \to S$ on S.

Define $T: L^2 \to L$, for all $x, y \in L$ by

$$\mathcal{T}(x,y) = egin{cases} \mathcal{T}^{\mathcal{S}}(x,y), & ext{if } (x,y) \in \mathcal{S}^2, \ x \wedge y, & ext{otherwise} \end{cases}$$

If T is a t-norm, then $T = \overline{T}_{T^s}^L$.

Triangle Functions

S.Saminger-Platz

Motivation

The lattice of distance distribution functions

Constructions

Concepts known from triangular norms?

Extensions of t-norms on bounded lattices

Other constructions

Functional (in)equalities

Cauchy's functional equation

- Dominance
- ... of t-norms
- ... of triangle functions

Strongest extension

The model

Consider

- a bounded lattice $(L, \leq, 0_L, 1_L)$,
- a bounded (and complete) sublattice (S, \leq, a, b) , and
- a t-norm $T^S \colon S^2 \to S$ on S.

Define $T: L^2 \to L$, for all $x, y \in L$ by

$$\mathcal{T}(x,y) = egin{cases} \mathcal{T}^{\mathcal{S}}(x,y), & ext{if } (x,y) \in \mathcal{S}^2, \ x \wedge y, & ext{otherwise} \end{cases}$$

If T is a t-norm, then $T = \overline{T}_{T^s}^L$.

The particular case $(\Delta^+, \leq, \varepsilon_{\infty}, \varepsilon_0)$

For any non-trivial bounded sublattice $(S, \leq, \varepsilon_{\infty}, \varepsilon_{0})$, *T* is not a t-norm for some t-norm T^{S} on *S*.

Triangle Functions

S.Saminger-Platz

Motivation

The lattice of distance distribution functions

Constructions

Concepts known from triangular norms?

Extensions of t-norms on bounded lattices

Other constructions

Functional (in)equalities

Cauchy's functional equation

Dominance

- ... of t-norms
- ... of triangle functions

The model

Consider

- a bounded lattice $(L, \leq, 0_L, 1_L)$,
- a bounded and complete sublattice (S, \leq, a, b) , and
- a t-norm $T^S \colon S^2 \to S$ on S.

Triangle Functions

S.Saminger-Platz

Motivation

The lattice of distance distribution functions

Constructions

Concepts known from triangular norms?

Extensions of t-norms on bounded lattices

Other constructions

Functional (in)equalities

Cauchy's functional equation

Dominance

... of t-norms ... of triangle functions

The model

Consider

- a bounded lattice $(L, \leq, 0_L, 1_L)$,
- a bounded and complete sublattice (S, \leq, a, b) , and
- a t-norm $T^S \colon S^2 \to S$ on S.

Define

$$\mathcal{T}^{S \cup \{0,1\}} \colon (S \cup \{0,1\})^2 \to (S \cup \{0,1\}) \text{ by}$$
$$\mathcal{T}^{S \cup \{0,1\}}(x,y) := \begin{cases} x \land y, & \text{if } 1 \in \{x,y\}, \\ 0, & \text{if } 0 \in \{x,y\}, \\ \mathcal{T}(x,y), & \text{if } (x,y) \in S^2. \end{cases}$$

•
$$\underline{T}_{T^S}^L \colon L^2 \to L$$
 by
 $\underline{T}_{T^S}^L \coloneqq \begin{cases} x \land y, & \text{if } 1 \in \{x, y\}, \\ T^{S \cup \{0,1\}}(x^*, y^*), & \text{otherwise}, \end{cases}$
with $x^* = \sup\{z \mid z \le x, z \in S \cup \{0, 1\}\},$

Triangle Functions

S.Saminger-Platz

Motivation

The lattice of distance distribution functions

Constructions

Concepts known from triangular norms?

Extensions of t-norms on bounded lattices

Other constructions

Functional (in)equalities

Cauchy's functional equation

Dominance

... of t-norms

... of triangle functions

S.Saminger-Platz

The model

Consider

- a bounded lattice $(L, \leq, 0_L, 1_L)$,
- a bounded and complete sublattice (S, \leq, a, b) , and
- a t-norm T^S : $S^2 \rightarrow S$ on S.

Define

$$\mathcal{T}^{S \cup \{0,1\}} \colon (S \cup \{0,1\})^2 \to (S \cup \{0,1\}) \text{ by}$$
$$\mathcal{T}^{S \cup \{0,1\}}(x,y) := \begin{cases} x \land y, & \text{if } 1 \in \{x,y\}, \\ 0, & \text{if } 0 \in \{x,y\}, \\ \mathcal{T}(x,y), & \text{if } (x,y) \in S^2. \end{cases}$$

•
$$\underline{T}_{T^{S}}^{L}: L^{2} \to L$$
 by

$$\underline{T}_{T^{S}}^{L}:=\begin{cases} x \land y, & \text{if } 1 \in \{x, y\}, \\ T^{S \cup \{0,1\}}(x^{*}, y^{*}), & \text{otherwise}, \end{cases}$$
with $x^{*} = \sup\{z \mid z \leq x, z \in S \cup \{0, 1\}\},$
then $\underline{T}_{T^{S}}^{L}$ is a t-norm and the smallest possible extension of T^{S} .

S.Saminger-Platz

Triangle Functions

S.Saminger-Platz

Motivation

The lattice of distance distribution functions

Constructions

Concepts known from triangular norms?

Extensions of t-norms on bounded lattices

Other constructions

Functional (in)equalities

Cauchy's functional equation

Dominance

... of t-norms

Triangle Functions

S.Saminger-Platz

Motivation

The lattice of distance distribution functions

Constructions

Concepts known from triangular norms?

Extensions of t-norms on bounded lattices

Other constructions

Functional (in)equalities

Cauchy's functional equation

- Dominance
- ... of t-norms
- ... of triangle functions

The particular case $(\Delta^+, \leq, \varepsilon_{\infty}, \varepsilon_0)$

For $L = (\Delta^+, \leq, \varepsilon_{\infty}, \varepsilon_0)$, each bounded and complete sublattice is appropriate for the weakest extension.

Triangle Functions

S.Saminger-Platz

Motivation

The lattice of distance distribution functions

Constructions

Concepts known from triangular norms?

Extensions of t-norms on bounded lattices

Other constructions

Functional (in)equalities

Cauchy's functional equation

Dominance

... of t-norms

... of triangle functions

Approach 3

Look for other strategies!

Historic examples of triangle functions

• Consider some left-continuous t-norm T.

$$\tau_{\mathcal{T}}(\mathcal{F}, \mathcal{G})(x) = \sup\{\mathcal{T}(\mathcal{F}(u), \mathcal{G}(v)) \mid u + v = x\}$$

Convolution

$$(F*G)(x) = \int_{[0,x[} F(x-t)dG(t)$$

• Consider some ordinal sum C of product summands only.

$$\sigma_{\mathcal{C}}(F,G)(x) = \int_{\{(u,v)|u+v$$

• Consider some left-continuous t-norm T.

$$\pi_T(F,G)(x) = T(F(x),G(x))$$

Triangle Functions

S.Saminger-Platz

Motivation

The lattice of distance distribution functions

Constructions

Concepts known from triangular norms?

Extensions of t-norms on bounded lattices

Other constructions

Functional (in)equalities

- Cauchy's functional equation
- Dominance
- ... of t-norms
- ... of triangle functions

Types of triangle functions

General remarks

Consider a binary operation on $\Delta^+,$ i.e. ,

 $\Theta \colon \Delta^+ \times \Delta^+ \to \Delta^+, \quad (F, G) \mapsto \Theta(F, G).$

What shall/can we do to determine the value $\Theta(F, G)(x)$?

- Strategy 1: Pointwise induced triangle functions;
- Strategy 2: "Splitting the argument"
 - involving semicopulas;
 - involving co-semicopulas;
 - involving quasi-copulas;
- Strategy 3: "Involving measures and integrals".

Triangle Functions

S.Saminger-Platz

Motivation

The lattice of distance distribution functions

Constructions

Concepts known from triangular norms?

Extensions of t-norms on bounded lattices

Other constructions

Functional (in)equalities

Cauchy's functional equation

Dominance

... of t-norms

Pointwise induced operations

General remarks

Consider a binary operation on $\Delta^+,$ i.e. ,

 $\Theta \colon \Delta^+ \times \Delta^+ \to \Delta^+, \quad (F, G) \mapsto \Theta(F, G).$

What shall/can we do to determine the value $\Theta(F, G)(x)$?

Strategy 1: "Passing through the argument"

- Consider some binary function A on [0, 1];
- Determine $\Theta(F, G)(x)$ by

 $\Theta(F,G)(x) = A(F(x),G(x)).$

--- Pointwise induced operations π_A

Triangle Functions

S.Saminger-Platz

Motivation

The lattice of distance distribution functions

Constructions

Concepts known from triangular norms?

Extensions of t-norms on bounded lattices

Other constructions

Functional (in)equalities

Cauchy's functional equation

Dominance

... of t-norms

Pointwise induced operations

Theorem

Consider a function A: $[0,1]^2 \rightarrow [0,1]$. π_A is a binary operation on Δ^+ . \Leftrightarrow A is a left–continuous binary aggregation operator.

Triangle Functions

S.Saminger-Platz

Motivation

The lattice of distance distribution functions

Constructions

Concepts known from triangular norms?

Extensions of t-norms on bounded lattices

Other constructions

Functional (in)equalities

Cauchy's functional equation

Dominance

... of t-norms

Pointwise induced operations

Theorem

Consider a function A: $[0, 1]^2 \rightarrow [0, 1]$. π_A is a binary operation on Δ^+ . \Leftrightarrow A is a left–continuous binary aggregation operator.

Theorem

```
Consider a function T: [0,1]^2 \rightarrow [0,1].

\pi_T is a triangle function.

\Leftrightarrow

T is a left–continuous t-norm.
```

Triangle Functions

S.Saminger-Platz

Motivation

The lattice of distance distribution functions

Constructions

Concepts known from triangular norms?

Extensions of t-norms on bounded lattices

Other constructions

Functional (in)equalities

Cauchy's functional equation

Dominance

... of t-norms

"Splitting the argument"

General remarks

Consider a binary operation on Δ^+ , i.e. ,

 $\Theta \colon \Delta^+ \times \Delta^+ \to \Delta^+, \quad (F, G) \mapsto \Theta(F, G).$

What shall/can we do to determine the value $\Theta(F, G)(x)$?

Strategy 2: "Splitting the argument"

- Consider
 - some binary function A on [0, 1],
 - some binary operation *L* on $\overline{\mathbb{R}}^+$,
 - choose $\Omega = \sup$ or $\Omega = \inf$.
- Determine $\Theta(F, G)(x)$ by

 $\Theta_{A,L,\Omega}(x) = \Omega\{A(F(u), G(v)) \mid L(u, v) = x\}$

Triangle Functions

S.Saminger-Platz

Motivation

The lattice of distance distribution functions

Constructions

Concepts known from triangular norms?

Extensions of t-norms on bounded lattices

Other constructions

Functional (in)equalities

Cauchy's functional equation

Dominance

... of t-norms

"Splitting the argument"

General remarks

Consider a binary operation on $\Delta^+,$ i.e. ,

 $\Theta \colon \Delta^+ \times \Delta^+ \to \Delta^+, \quad (F, G) \mapsto \Theta(F, G).$

What shall/can we do to determine the value $\Theta(F, G)(x)$?

Strategy 2: "Splitting the argument"

- Consider
 - some binary function A on [0, 1],
 - some binary operation L on $\overline{\mathbb{R}}^+$,
 - choose $\Omega = \sup$ or $\Omega = \inf$.
- Determine $\Theta(F, G)(x)$ by

 $\Theta_{A,L,\Omega}(x) = \Omega\{A(F(u), G(v)) \mid L(u, v) = x\}$

---- Operations and triangle functions of the type $\tau_{f,L}(\tau_{T,L}), \tau^*_{S^*,L}(\tau_{T^*,L}), \rho_{Q,L}(\rho_{T,L})$

Triangle Functions

S.Saminger-Platz

Motivation

The lattice of distance distribution functions

Constructions

Concepts known from triangular norms?

Extensions of t-norms on bounded lattices

Other constructions

Functional (in)equalities

Cauchy's functional equation

- Dominance
- ... of t-norms
- ... of triangle functions

The class \mathfrak{L}

We consider binary operations L on $\overline{\mathbb{R}}^+$ such that

- *L* is surjective, i.e., $\operatorname{Ran}_{L} = \overline{\mathbb{R}}^{+}$,
- L is increasing in each place,
- L is continuous on
 [¬]
 [¬]
 except possibly at the points (0,∞) and (∞, 0).

We denote by \mathfrak{L} the set of all such operations.

Triangle Functions

S.Saminger-Platz

Motivation

The lattice of distance distribution functions

Constructions

Concepts known from triangular norms?

Extensions of t-norms on bounded lattices

Other constructions

Functional (in)equalities

- Cauchy's functional equation
- Dominance
- ... of t-norms
- ... of triangle functions

The class \mathfrak{L}

We consider binary operations L on $\overline{\mathbb{R}}^+$ such that

- *L* is surjective, i.e., $\operatorname{Ran}_{L} = \overline{\mathbb{R}}^{+}$,
- L is increasing in each place,
- L is continuous on ℝ⁺ except possibly at the points (0,∞) and (∞, 0).

We denote by \mathfrak{L} the set of all such operations.

Additional properties

Consider some $L \in \mathfrak{L}$:

(LS) *L* fulfills for all $u_1, u_2, v_1, v_2 \in \overline{\mathbb{R}}^+$ with $u_1 < u_2, v_1 < v_2$

 $L(u_1, v_1) < L(u_2, v_2).$

(L0) L has 0 as its neutral element.

Triangle Functions

S.Saminger-Platz

Motivation

The lattice of distance distribution functions

Constructions

Concepts known from triangular norms?

Extensions of t-norms on bounded lattices

Other constructions

Functional (in)equalities

- Cauchy's functional equation
- Dominance
- ... of t-norms
- ... of triangle functions

The class $\tau_{f,L}$

Definition

Consider some $L \in \mathfrak{L}$ and a function $f: [0, 1]^2 \rightarrow [0, 1]$.

Define $au_{f,L}: \Delta^+ imes \Delta^+ o [0,1]^{\overline{\mathbb{R}}^+}$ by

$$\tau_{f,L}(F,G)(x) = \sup\{f(F(u),G(v)) \mid L(u,v) = x\}.$$

Triangle Functions

S.Saminger-Platz

Motivation

The lattice of distance distribution functions

Constructions

Concepts known from triangular norms?

Extensions of t-norms on bounded lattices

Other constructions

Functional (in)equalities

Cauchy's functional equation

Dominance

... of t-norms

The class $\tau_{f,L}$

Definition

Consider some $L \in \mathfrak{L}$ and a function $f: [0, 1]^2 \rightarrow [0, 1]$.

Define
$$au_{f,L}:\Delta^+ imes\Delta^+ o [0,1]^{\overline{\mathbb{R}}^+}$$
 by

$$\tau_{f,L}(F,G)(x) = \sup\{f(F(u),G(v)) \mid L(u,v) = x\}.$$

Theorem

Assume additionally that *L* satisfies (LS) and (L0).

• If $\tau_{T,L}$ is a triangle function, then *T* is a t-norm.

Triangle Functions

S.Saminger-Platz

Motivation

The lattice of distance distribution functions

Constructions

Concepts known from triangular norms?

Extensions of t-norms on bounded lattices

Other constructions

Functional (in)equalities

Cauchy's functional equation

Dominance

... of t-norms

The class $\tau_{f,L}$

Definition

Consider some $L \in \mathfrak{L}$ and a function $f: [0, 1]^2 \rightarrow [0, 1]$.

Define
$$au_{f,L}:\Delta^+ imes\Delta^+ o [0,1]^{\overline{\mathbb{R}}^+}$$
 by

$$\tau_{f,L}(F,G)(x) = \sup\{f(F(u),G(v)) \mid L(u,v) = x\}.$$

Theorem

Assume additionally that *L* satisfies (LS) and (L0).

- If $\tau_{T,L}$ is a triangle function, then T is a t-norm.
- If *L* is commutative and associative and if *T* is a left-continuous t-norm, then *τ*_{T,L} is a triangle function.

S.Saminger-Platz

Motivation

The lattice of distance distribution functions

Constructions

Concepts known from triangular norms?

Extensions of t-norms on bounded lattices

Other constructions

Functional (in)equalities

Cauchy's functional equation

Dominance

... of t-norms

The class $\tau^*_{S^*,L}$

Definition

Consider some $L\in\mathfrak{L}$ and a co-semicopula ${\boldsymbol{\mathcal{S}}}^*\colon [0,1]^2\to [0,1],$ i.e.,

$$S(x, y) = 1 - S^*(1 - x, 1 - y)$$

is a semicopula.

Define $\tau^*_{\mathcal{S}^*, L} \colon \Delta^+ \times \Delta^+ \to [0, 1]^{\overline{\mathbb{R}}^+}$ by

$$\tau^*_{S^*,L}(F,G)(x) = \inf\{S^*(F(u),G(v)) \mid L(u,v) = x\}.$$

Triangle Functions

S.Saminger-Platz

Motivation

The lattice of distance distribution functions

Constructions

Concepts known from triangular norms?

Extensions of t-norms on bounded lattices

Other constructions

Functional (in)equalities

Cauchy's functional equation

Dominance

... of t-norms

The class $\tau^*_{S^*,L}$

Definition

Consider some $L\in\mathfrak{L}$ and a co-semicopula $\mathcal{S}^*\colon [0,1]^2\to [0,1],$ i.e.,

$$S(x, y) = 1 - S^*(1 - x, 1 - y)$$

is a semicopula.

Define
$$\tau^*_{S^*,L}$$
: $\Delta^+ \times \Delta^+ \to [0,1]^{\mathbb{R}^+}$ by
 $\tau^*_{S^*,L}(F,G)(x) = \inf\{S^*(F(u),G(v)) \mid L(u,v) = x\}.$

Theorem

Assume additionally that L is commutative, associative and satisfies (LS) and (L0).

 T^* is a continuous t-conorm. \Rightarrow $\tau^*_{T^*,L}$ is a triangle function.

Triangle Functions

S.Saminger-Platz

Motivation

The lattice of distance distribution functions

Constructions

Concepts known from triangular norms?

Extensions of t-norms on bounded lattices

Other constructions

Functional (in)equalities

Cauchy's functional equation

Dominance

... of t-norms

The class $\sigma_{C,L}$

General remarks

Consider a binary operation on Δ^+ , i.e. ,

 $\Theta \colon \Delta^+ \times \Delta^+ \to \Delta^+, \quad (F, G) \mapsto \Theta(F, G).$

What shall/can we do to determine the value $\Theta(F, G)(x)$?

Strategy 3: "Involving measures and integrals", e.g.

- Consider
 - some copula C,
 - some binary operation *L* on $\overline{\mathbb{R}}^+$.
- Determine $\Theta(F, G)(x)$ by

$$\Theta(F, G)(x) = \int_{L(x)} dC(F(u), G(v))$$

with $L(x) = \{(u, v) \mid L(u, v) < x\}.$

Triangle Functions

S.Saminger-Platz

Motivation

The lattice of distance distribution functions

Constructions

Concepts known from triangular norms?

Extensions of t-norms on bounded lattices

Other constructions

Functional (in)equalities

Cauchy's functional equation

- Dominance
- ... of t-norms
- ... of triangle functions

Involving copulas

Definition

Consider some $L \in \mathfrak{L}$ and some copula *C*.

Define the function $\sigma_{{\it C},{\it L}}\colon \Delta^+\times \Delta^+\to \Delta^+$ by

$$\sigma_{\mathcal{C},\mathcal{L}}(\mathcal{F},\mathcal{G})(\mathbf{0}):=\mathbf{0},\qquad \sigma_{\mathcal{C},\mathcal{L}}(\mathcal{F},\mathcal{G})(\infty):=\mathbf{1}$$

and

$$\sigma_{C,L}(F,G)(x) := \int_{L(x)} dC(F(u),G(v))$$

for all $x \in (0, +\infty)$, where

 $L(x) = \{(u, v) \mid u, v \in \mathbb{R}^+, L(u, v) < x\}.$

Triangle Functions

S.Saminger-Platz

Motivation

The lattice of distance distribution functions

Constructions

Concepts known from triangular norms?

Extensions of t-norms on bounded lattices

Other constructions

Functional (in)equalities

Cauchy's functional equation

Dominance

... of t-norms

Neutral element

Consider some $L \in \mathfrak{L}$ and some copula *C*.

```
\sigma_{C,L} has \varepsilon_0 as its neutral element.

\Leftrightarrow

L fulfills (L0).
```

Triangle Functions

S.Saminger-Platz

Motivation

The lattice of distance distribution functions

Constructions

Concepts known from triangular norms?

Extensions of t-norms on bounded lattices

Other constructions

Functional (in)equalities

Cauchy's functional equation

Dominance

... of t-norms

Neutral element

Triangle Functions

S.Saminger-Platz

Motivation

The lattice of distance distribution functions

Constructions

Concepts known from triangular norms?

Extensions of t-norms on bounded lattices

Other constructions

Functional (in)equalities

Cauchy's functional equation

Dominance

- ... of t-norms
- ... of triangle functions

Commutativity

(Frank, 1975, Frank 1991)

Consider some $L \in \mathfrak{L}$ and some copula *C*.

Consider some $L \in \mathfrak{L}$ and some copula *C*.

 $\sigma_{C,L}$ is commutative. $\Rightarrow L$ is commutative.

 $\sigma_{C,L}$ has ε_0 as its neutral element.

 \Leftrightarrow

L fulfills (L0).

Neutral element

Triangle Functions

S.Saminger-Platz

Motivation

The lattice of distance distribution functions

Constructions

Concepts known from triangular norms?

Extensions of t-norms on bounded lattices

Other constructions

Functional (in)equalities

Cauchy's functional equation

Dominance

- ... of t-norms
- ... of triangle functions

Commutativity

(Frank, 1975, Frank 1991)

Consider some $L \in \mathfrak{L}$ and some copula C.

Consider some $L \in \mathfrak{L}$ and some copula *C*.

 $\sigma_{C,L}$ is commutative. \Rightarrow *L* is commutative. $\sigma_{C,L}$ is commutative. \Leftarrow *C* and *L* are commutative.

 σ_{CI} has ε_0 as its neutral element.

 \Leftrightarrow

L fulfills (L0).

Associativity

(Frank, 1991)

Consider some $L \in \mathfrak{L}$ and some copula *C*.

 $\sigma_{C,L}$ is associative. $\Rightarrow L$ is associative.

Triangle Functions

S.Saminger-Platz

Motivation

The lattice of distance distribution functions

Constructions

Concepts known from triangular norms?

Extensions of t-norms on bounded lattices

Other constructions

Functional (in)equalities

Cauchy's functional equation

Dominance

... of t-norms

Associativity

(Frank, 1991)

Consider some $L \in \mathfrak{L}$ and some copula *C*.

 $\sigma_{C,L}$ is associative. $\Rightarrow L$ is associative.

Particular $L \in \mathfrak{L}$

Consider some $L \in \mathfrak{L}$ satisfying (L0) and (LS) and being commutative and associative.

- *L* = max;
- there exists some continuous and strictly increasing function *h*: ℝ₊ → ℝ₊ with

 $L(u, v) = h^{-1}(h(u) + h(v)).$

Triangle Functions

S.Saminger-Platz

Motivation

The lattice of distance distribution functions

Constructions

Concepts known from triangular norms?

Extensions of t-norms on bounded lattices

Other constructions

Functional (in)equalities

Cauchy's functional equation

Dominance

... of t-norms

Characterization

Theorem

Consider

- some L ∈ L such that L(u, v) = h⁻¹(h(u) + h(v)) for some a continuous, strictly icnreasing function h: ℝ₊ → ℝ₊;
- some copula C.

Triangle Functions

S.Saminger-Platz

Motivation

The lattice of distance distribution functions

Constructions

Concepts known from triangular norms?

Extensions of t-norms on bounded lattices

Other constructions

Functional (in)equalities

Cauchy's functional equation

- Dominance
- ... of t-norms
- ... of triangle functions

S.Saminger-Platz

(Frank, 1991)

Characterization

Theorem

Consider

- some L ∈ £ such that L(u, v) = h⁻¹(h(u) + h(v)) for some a continuous, strictly icnreasing function h: ℝ₊ → ℝ₊;
- some copula C.

 $\sigma_{C,L}$ is associative.

 \Leftrightarrow *C* is a (trivial or non-trivial) ordinal sum of product t-norms.

Triangle Functions

S.Saminger-Platz

Motivation

The lattice of distance distribution functions

Constructions

Concepts known from triangular norms? Extensions of t-norms on

Extensions of t-norms on bounded lattices

Other constructions

Functional (in)equalities

Cauchy's functional equation

- Dominance
- ... of t-norms
- ... of triangle functions

(Frank, 1991)

Summary

Triangle Functions

S.Saminger-Platz

Motivation

The lattice of distance distribution functions

Constructions

Concepts known from triangular norms?

Extensions of t-norms on bounded lattices

Other constructions

Functional (in)equalities

Cauchy's functional equation

- Dominance
- ... of t-norms
- ... of triangle functions

We have discussed different strategies for constructing triangle functions.

Are there triangle functions different from the types we have listed and presented above?

Triangle Functions

S.Saminger-Platz

Motivation

The lattice of distance distribution functions

Constructions

Concepts known from triangular norms?

Extensions of t-norms on bounded lattices

Other constructions

Functional (in)equalitie

Cauchy's functional equation

Dominance

... of t-norms

... of triangle functions

Functional (in)equalities

Triangle Functions

S.Saminger-Platz

Motivation

The lattice of distance distribution functions

Constructions

Concepts known from triangular norms?

Extensions of t-norms on bounded lattices

Other constructions

Functional

(in)equalities

Cauchy's functional equation

Dominance

... of t-norms

Cauchy's functional equation

Cauchy's functional equation for triangle functions

Consider a triangle function τ .

A mapping $\varphi \colon \Delta^+ \to \Delta^+$ is a solution of the Cauchy's functional equation for τ , if, and only if, for all $F, G \in \Delta^+$,

 $\varphi(\tau(F,G)) = \tau(\varphi(F),\varphi(G)).$

Triangle Functions

S.Saminger-Platz

Motivation

The lattice of distance distribution functions

Constructions

Concepts known from triangular norms?

Extensions of t-norms on bounded lattices

Other constructions

Functional (in)equalities

Cauchy's functional equation

Dominance

... of t-norms

Cauchy's functional equation

Cauchy's functional equation for triangle functions

Consider a triangle function τ .

A mapping $\varphi \colon \Delta^+ \to \Delta^+$ is a solution of the Cauchy's functional equation for τ , if, and only if, for all $F, G \in \Delta^+$,

 $\varphi(\tau(F,G)) = \tau(\varphi(F),\varphi(G)).$

Results for triangle functions achieved by T. Riedel based on work by R.C. Powers.

Triangle Functions

S.Saminger-Platz

Motivation

The lattice of distance distribution functions

Constructions

Concepts known from triangular norms?

Extensions of t-norms on bounded lattices

Other constructions

Functional (in)equalities

Cauchy's functional equation

Dominance

... of t-norms

Cauchy's functional equation Necessary conditions

Let φ be a solution of the Cauchy equation for a triangle function τ . Then the following holds:

Idempotent elements: For all *F* ∈ Δ⁺ with *τ*(*F*, *F*) = *F*, it holds that

$$\varphi(F) = \varphi(\tau(F,F)) = \tau(\varphi(F),\varphi(F)),$$

i.e., φ maps idempotents to idempotents. In particular:

Triangle Functions

S.Saminger-Platz

Motivation

The lattice of distance distribution functions

Constructions

Concepts known from triangular norms?

Extensions of t-norms on bounded lattices

Other constructions

Functional (in)equalities

Cauchy's functional equation

Dominance

... of t-norms

Cauchy's functional equation Necessary conditions

Let φ be a solution of the Cauchy equation for a triangle function τ . Then the following holds:

Idempotent elements: For all F ∈ Δ⁺ with τ(F, F) = F, it holds that

$$\varphi(F) = \varphi(\tau(F,F)) = \tau(\varphi(F),\varphi(F)),$$

i.e., φ maps idempotents to idempotents. In particular:

• Neutral element:

$$\varphi(\varepsilon_0) = \varphi(\tau(\varepsilon_0, \varepsilon_0)) = \tau(\varphi(\varepsilon_0), \varphi(\varepsilon_0)),$$

i.e., $\varphi(\varepsilon_0)$ is an idempotent element of τ .

Triangle Functions

S.Saminger-Platz

Motivation

The lattice of distance distribution functions

Constructions

Concepts known from triangular norms?

Extensions of t-norms on bounded lattices

Other constructions

Functional (in)equalities

Cauchy's functional equation

Dominance

... of t-norms

Some solutions

Consider an arbitrary triangle function τ and denote by Id_{τ} its set of idempotent elements.

Then the following functions $\varphi \colon \Delta^+ \to \Delta^+$ are solutions of the Cauchy's functional equation w.r.t. τ :

Constant functions: For all *H* ∈ Id_τ, the (constant) functions φ defined, for all *F* ∈ Δ⁺, by

$$\varphi(F) = H$$

Triangle Functions

S.Saminger-Platz

Motivation

The lattice of distance distribution functions

Constructions

Concepts known from triangular norms?

Extensions of t-norms on bounded lattices

Other constructions

Functional (in)equalities

Cauchy's functional

equation

Dominance

... of t-norms

Some solutions

Consider an arbitrary triangle function τ and denote by Id_{τ} its set of idempotent elements.

Then the following functions $\varphi \colon \Delta^+ \to \Delta^+$ are solutions of the Cauchy's functional equation w.r.t. τ :

Constant functions: For all *H* ∈ Id_τ, the (constant) functions φ defined, for all *F* ∈ Δ⁺, by

$$\varphi(F) = H$$

• Functions φ_H defined, for arbitrary $H \in Id_\tau$ and all $F \in \Delta^+$, by

$$\varphi_{H}(F) = \tau(F, H).$$

Triangle Functions

S.Saminger-Platz

Motivation

The lattice of distance distribution functions

Constructions

Concepts known from triangular norms?

Extensions of t-norms on bounded lattices

Other constructions

Functional (in)equalities

Cauchy's functional equation

Dominance

... of t-norms

Some solutions

Consider an arbitrary triangle function τ and denote by Id_{τ} its set of idempotent elements.

Then the following functions $\varphi \colon \Delta^+ \to \Delta^+$ are solutions of the Cauchy's functional equation w.r.t. τ :

Constant functions: For all *H* ∈ Id_τ, the (constant) functions φ defined, for all *F* ∈ Δ⁺, by

$$\varphi(F) = H.$$

• Functions φ_H defined, for arbitrary $H \in Id_{\tau}$ and all $F \in \Delta^+$, by

$$\varphi_{\mathcal{H}}(\mathcal{F})=\tau(\mathcal{F},\mathcal{H}).$$

In particular with $H = \varepsilon_0$, $\varphi_{\varepsilon_0} = id_{\Delta^+}$.

Triangle Functions

S.Saminger-Platz

Motivation

The lattice of distance distribution functions

Constructions

Concepts known from triangular norms?

Extensions of t-norms on bounded lattices

Other constructions

Functional (in)equalities

Cauchy's functional equation

Dominance

... of t-norms

Some solutions

Consider an arbitrary triangle function τ and denote by Id_{τ} its set of idempotent elements.

Then the following functions $\varphi \colon \Delta^+ \to \Delta^+$ are solutions of the Cauchy's functional equation w.r.t. τ :

Constant functions: For all *H* ∈ Id_τ, the (constant) functions φ defined, for all *F* ∈ Δ⁺, by

$$\varphi(F) = H.$$

• Functions φ_H defined, for arbitrary $H \in Id_\tau$ and all $F \in \Delta^+$, by

$$\varphi_{H}(F) = \tau(F, H).$$

In particular with $H = \varepsilon_0$, $\varphi_{\varepsilon_0} = id_{\Delta^+}$.

• Powers τ^n of τ , defined, for all $n \in \mathbb{N}$, $n \ge 2$, and all $F \in \Delta^+$, by

$$\varphi(F) = \tau^n(\underbrace{F, \dots, F}_{n \text{ times}}) = \tau(\tau^{n-1}(\underbrace{F, \dots, F}_{n-1 \text{ times}}), F).$$

Triangle Functions

S.Saminger-Platz

Motivation

The lattice of distance distribution functions

Constructions

Concepts known from triangular norms?

Extensions of t-norms on bounded lattices

Other constructions

Functional (in)equalities

Cauchy's functional equation

Dominance

... of t-norms

Cauchy's functional equation Characterization for sup-continuous functions

(Riedel, 1991)

Theorem

Consider a sup-continuous triangle function τ and a sup-continuous function $\varphi \colon \Delta^+ \to \Delta^+$.

Then φ is a solution of the Cauchy's equation if and only if

 $\varphi\left(\tau\left(\delta_{\boldsymbol{a},\boldsymbol{b}},\delta_{\boldsymbol{c},\boldsymbol{d}}\right)\right)=\tau\left(\varphi\left(\delta_{\boldsymbol{a},\boldsymbol{b}}\right),\varphi\left(\delta_{\boldsymbol{c},\boldsymbol{d}}\right)\right),$

for all a and c in $\overline{\mathbb{R}}_+$, and for all b and d in [0, 1], where

 $\delta_{a,b}(x) := \begin{cases} 0, & x \in [0,a], \\ b, & x \in]a, +\infty[, \\ 1, & x = +\infty. \end{cases}$

Triangle Functions

S.Saminger-Platz

Motivation

The lattice of distance distribution functions

Constructions

Concepts known from triangular norms?

Extensions of t-norms on bounded lattices

Other constructions

Functional (in)equalities

Cauchy's functional equation

Dominance

... of t-norms

- Due to Tardiff, 1975:
 - If *T* is continuous, then τ_T is sup-continuous.
 - However, not all triangle functions are sup-continuous, e.g., convolution, σ_{Π} is not.

Triangle Functions

S.Saminger-Platz

Motivation

The lattice of distance distribution functions

Constructions

Concepts known from triangular norms?

Extensions of t-norms on bounded lattices

Other constructions

Functional

(in)equalities

Cauchy's functional equation

Dominance

... of t-norms

- Due to Tardiff, 1975:
 - If *T* is continuous, then τ_T is sup-continuous.
 - However, not all triangle functions are sup-continuous, e.g., convolution, σ_{Π} is not.
- Characterization of solutions φ for the case of τ_T with T a strict or nilpotent t-norm by Riedel, 1991, based on the additive generators of T.

Triangle Functions

S.Saminger-Platz

Motivation

The lattice of distance distribution functions

Constructions

Concepts known from triangular norms?

Extensions of t-norms on bounded lattices

Other constructions

Functional (in)equalities

Cauchy's functional equation

Dominance

... of t-norms

- Due to Tardiff, 1975:
 - If *T* is continuous, then τ_T is sup-continuous.
 - However, not all triangle functions are sup-continuous, e.g., convolution, σ_{Π} is not.
- Characterization of solutions φ for the case of τ_T with T a strict or nilpotent t-norm by Riedel, 1991, based on the additive generators of T.

The strict case

 φ is a solution if and only if there exists k, l > 0 such that, for all $x \in \mathbb{R}$ and all $F \in \Delta^+$

 $\varphi(F)(x) = g^{-1} \left(k \cdot g(F(I \cdot x)) \right)$

with g the additive generator of the strict t-norm T.

Triangle Functions

S.Saminger-Platz

Motivation

The lattice of distance distribution functions

Constructions

Concepts known from triangular norms?

Extensions of t-norms on bounded lattices

Other constructions

Functional (in)equalities

Cauchy's functional equation

- Dominance
- ... of t-norms
- ... of triangle functions

- Due to Tardiff, 1975:
 - If *T* is continuous, then τ_T is sup-continuous.
 - However, not all triangle functions are sup-continuous, e.g., convolution, σ_{Π} is not.
- Characterization of solutions φ for the case of τ_T with T a strict or nilpotent t-norm by Riedel, 1991, based on the additive generators of T.

The strict case

 φ is a solution if and only if there exists k, l > 0 such that, for all $x \in \mathbb{R}$ and all $F \in \Delta^+$

 $\varphi(F)(x) = g^{-1} \left(k \cdot g(F(I \cdot x)) \right)$

with g the additive generator of the strict t-norm T.

• Generalization of the results for $\tau_{T,L}$ for some generated *L*, i.e., $L(x, y) = f^{-1}(f(x) + f(y))$ in Riedel, 1992.

Triangle Functions

S.Saminger-Platz

Motivation

The lattice of distance distribution functions

Constructions

Concepts known from triangular norms?

Extensions of t-norms on bounded lattices

Other constructions

Functional (in)equalities

Cauchy's functional equation

- Dominance
- ... of t-norms
- ... of triangle functions

Cauchy's functional equation Summary

Cauchy's functional equation for triangle functions has been studied only for triangle functions of the type

 $\tau = \pi_T, \quad \tau = \tau_T, \quad \tau = \tau_{T,L},$

with restriction on both the t-norm T and on the function L.

What are the solution when τ belongs to a different family of triangle functions?

Triangle Functions

S.Saminger-Platz

Motivation

The lattice of distance distribution functions

Constructions

Concepts known from triangular norms?

Extensions of t-norms on bounded lattices

Other constructions

Functional (in)equalities

Cauchy's functional equation

Dominance

... of t-norms

Triangle Functions

S.Saminger-Platz

Motivation

The lattice of distance distribution functions

Constructions

Concepts known from triangular norms?

Extensions of t-norms on bounded lattices

Other constructions

Functional (in)equalities

Cauchy's functional equation

Dominance

... of t-norms

... of triangle functions

S.Saminger-Platz

Definition (Schweizer, Sklar, 1983)

Consider a partially ordered set (P, \leq) and two associative binary operations f, g on P with common identity e.

Then *f* dominates g ($f \gg g$) if, for all x, y, u, v in P,

 $f(g(x,y),g(u,v))\geq g(f(x,u),f(y,v)).$

Triangle Functions

S.Saminger-Platz

Motivation

The lattice of distance distribution functions

Constructions

Concepts known from triangular norms?

Extensions of t-norms on bounded lattices

Other constructions

Functional (in)equalities

Cauchy's functional equation

Dominance

... of t-norms

Definition (Schweizer, Sklar, 1983)

Consider a partially ordered set (P, \leq) and two associative binary operations f, g on P with common identity e.

Then *f* dominates g ($f \gg g$) if, for all x, y, u, v in P,

$$f(g(x, y), g(u, v)) \geq g(f(x, u), f(y, v)).$$

Remarks:

- Due to the common neutral elemtent, dominance of *f* over *g* induces that *f* ≥ *g*.
- Associativity and commutativity of an operation *f* ensures its self-dominance (bisymmetry).
- Dominance does not constitute a transitive relation on the set of all triangle functions.

Triangle Functions

S.Saminger-Platz

Motivation

The lattice of distance distribution functions

Constructions

Concepts known from triangular norms?

Extensions of t-norms on bounded lattices

Other constructions

Functional (in)equalities

Cauchy's functional equation

Dominance

... of t-norms

Triangle Functions

S.Saminger-Platz

Motivation

The lattice of distance distribution functions

Constructions

Concepts known from triangular norms?

Extensions of t-norms on bounded lattices

Other constructions

Functional (in)equalities

Cauchy's functional equation

Dominance

... of t-norms

Known results on families of t-norms until 2005

Family of t-norms

Schweizer-Sklar $(T_{\lambda}^{ss})_{\lambda \in [-\infty,\infty]}$

(Sherwood, 1984)

 $\begin{array}{l} \mathsf{Acz\acute{e}l}\text{-}\mathsf{Alsina}\;(\; \mathcal{T}^{\mathbf{AA}}_{\lambda})_{\lambda\in[0,\infty]}\\ \mathsf{Dombi}\;(\; \mathcal{T}^{\mathbf{D}}_{\lambda})_{\lambda\in[0,\infty]}\\ \mathsf{Yager}\;(\; \mathcal{T}^{\mathbf{Y}}_{\lambda})_{\lambda\in[0,\infty]} \end{array}$

(Klement, Mesiar, Pap, 2000)

Frank $(T_{\lambda}^{\mathsf{F}})_{\lambda \in [0,\infty]}$ Hamacher $(T_{\lambda}^{\mathsf{H}})_{\lambda \in [0,\infty]}$

Mayor-Torrens $(T_{\lambda}^{MT})_{\lambda \in [0,1]}$ Dubois-Prade $(T_{\lambda}^{DP})_{\lambda \in [0,1]}$

(Sam, De Baets, De Meyer, 2005)

 $\lambda \ge \mu$

 $T_{\lambda} \gg T_{\mu}$

 $\lambda < \mu$

 $\lambda = 0, \, \lambda = \mu, \, \mu = \infty$

$$\lambda = \mathbf{0}, \lambda = \mu$$

S.Saminger-Platz

Motivation

The lattice of distance distribution functions

Triangle Functions

Constructions

Concepts known from triangular norms? Extensions of t-norms on

bounded lattices

Other constructions

Functional (in)equalities

Cauchy's functional equation

Dominance

- ... of t-norms
 - ... of triangle functions

Known results on families of t-norms until 2005

Family of t-norms

Schweizer-Sklar $(T_{\lambda}^{ss})_{\lambda \in [-\infty,\infty]}$

(Sherwood, 1984)

 $\begin{array}{l} \mathsf{Acz\acute{e}l}\text{-}\mathsf{Alsina}\;(\; \mathcal{T}^{\mathbf{AA}}_{\lambda})_{\lambda\in[0,\infty]}\\ \mathsf{Dombi}\;(\; \mathcal{T}^{\mathbf{D}}_{\lambda})_{\lambda\in[0,\infty]}\\ \mathsf{Yager}\;(\; \mathcal{T}^{\mathbf{Y}}_{\lambda})_{\lambda\in[0,\infty]} \end{array}$

(Klement, Mesiar, Pap, 2000)

Frank $(T_{\lambda}^{\mathsf{F}})_{\lambda \in [0,\infty]}$ Hamacher $(T_{\lambda}^{\mathsf{H}})_{\lambda \in [0,\infty]}$

Mayor-Torrens $(T_{\lambda}^{MT})_{\lambda \in [0,1]}$ Dubois-Prade $(T_{\lambda}^{DP})_{\lambda \in [0,1]}$

(Sam, De Baets, De Meyer, 2005)

On all these families of t-norms, dominance is **transitive** and therefore an **order relation**.

 $T_{\lambda} \gg T_{\mu}$

 $\lambda < \mu$

 $\lambda \geq \mu$

 $\lambda = 0, \lambda = \mu, \mu = \infty$

 $\lambda = 0, \lambda = \mu$

Motivation The lattice of distance

Triangle Functions

S.Saminger-Platz

The lattice of distance distribution functions

Constructions

Concepts known from triangular norms? Extensions of t-norms on

bounded lattices Other constructions

Functional (in)equalities

Cauchy's functional equation

Dominance

- ... of t-norms
 - ... of triangle functions

Non-transitivity of dominance for continuous t-norms

Triangle Functions

S.Saminger-Platz

Motivation

The lattice of distance distribution functions

Constructions

Concepts known from triangular norms?

Extensions of t-norms on bounded lattices

Other constructions

Functional (in)equalities

Cauchy's functional equation

Dominance

... of t-norms

Non-transitivity of dominance for continuous t-norms

Dominance is not transitive on the class of (continuous) t-norms.

... of t-norms ... of triangle functions

S.Saminger-Platz

FSTA 2014

Liptovský Ján, Jan 2014

Triangle Functions

S.Saminger-Platz

Generalized Mulholland inequality Sufficient and necessary conditions

generators t_1 and t_2 . If the function

Triangle Functions

S.Saminger-Platz

Motivation

The lattice of distance distribution functions

Constructions

Concepts known from triangular norms? Extensions of t-norms on

Extensions of t-norms on bounded lattices

Other constructions

Functional (in)equalities

Cauchy's functional equation

```
Dominance
```

```
... of t-norms
```

... of triangle functions

Consider two continuous Archimedean t-norms T_1 and T_2 with additive

Easy-to-check-conditions ($T_1 \gg T_2$ **)** Conditions on *h*

Consider two continuous Archimedean t-norms T_1 and T_2 with sufficiently often differentable additive generators t_1 and t_2 . Define the function $h = t_1 \circ t_2^{(-1)}$: $[0, \infty] \to [0, \infty]$. Then

• *h* is convex on $]0, t_2(0)[$, if and only if, for all $u \in]0, 1[$,

 $t_1'(u)t_2''(u) - t_1''(u)t_2'(u) \ge 0.$

• *h* is log-convex on $]0, t_2(0)[$, if and only if, for all $u \in]0, 1[$,

 $t_1'^2(u)t_2'(u) + t_1(u)(t_1'(u)t_2''(u) - t_1''(u)t_2'(u)) \ge 0.$

• *h* is **geo-convex** on $]0, t_2(0)[$, if and only if, for all $u \in]0, 1[$,

FSTA 2014

$$\frac{t_1'^2(u) - t_1(u)t_1''(u)}{t_1(u)t_1'(u)} \geq \frac{t_2'^2(u) - t_2(u)t_2''(u)}{t_2(u)t_2'(u)}$$

Triangle Functions

S.Saminger-Platz

Motivation

The lattice of distance distribution functions

Constructions

Concepts known from triangular norms?

Extensions of t-norms on bounded lattices

Other constructions

Functional (in)equalities

Cauchy's functional equation

Dominance

... of t-norms

New results on families of t-norms

All families are taken from the book on associative functions by Alsina, Frank, Schweizer, 2006 resp. the book on copulas by Nelsen, 2006.

Family of t-norms		$T_\lambda \gg T_\mu$	Hasse-Diag
$(\mathcal{T}_{\lambda}^{8})_{\lambda\in [0,\infty]}$	log-convexity of h'	$\lambda \leq \mu$	I
$(T_{\lambda}^{15})_{\lambda\in [0,\infty]}$	geo-convexity of h	$\lambda \leq \mu$	•
$(\mathcal{T}_{\lambda}^{22})_{\lambda\in[0,\infty]}$	geo-convexity of h'	$\lambda \leq \mu$	I
$(\mathcal{T}_{\lambda}^{23})_{\lambda\in [0,\infty]}$	geo-convexity of h	$\lambda \leq \mu$	

 $\lambda = \infty, \lambda = \mu, \mu = 0$ $(T_{\lambda}^{9})_{\lambda \in [0,\infty]}$

On all these families of t-norms, dominance is transitive and therefore an order relation.

S.Saminger-Platz

Motivation

The lattice of distance distribution functions

Constructions

Concepts known from triangular norms?

Extensions of t-norms on bounded lattices

Other constructions

Functional (in)equalities

Cauchy's functional equation

Dominance

... of t-norms

The family of Sugeno-Weber t-norms

The family of Sugeno-Weber t-norms $(T_{\lambda}^{SW})_{\lambda \in [0,\infty]}$ is given by

$$\mathcal{T}_{\lambda}^{SW}(u,v) = \begin{cases} \mathcal{T}_{\mathsf{P}}(u,v), & \text{if } \lambda = 0, \\ \mathcal{T}_{\mathsf{D}}(u,v), & \text{if } \lambda = \infty, \\ \max(0,(1-\lambda)uv + \lambda(u+v-1)), & \text{if } \lambda \in]0, \infty[. \end{cases}$$

Triangle Functions

S.Saminger-Platz

Motivation

The lattice of distance distribution functions

Constructions

Concepts known from triangular norms? Extensions of t-norms on

Extensions of t-norms on bounded lattices

Other constructions

Functional (in)equalities

Cauchy's functional equation

Dominance

... of t-norms

The family of Sugeno-Weber t-norms

The family of Sugeno-Weber t-norms $(T_{\lambda}^{SW})_{\lambda \in [0,\infty]}$ is given by

$$\mathcal{T}_{\lambda}^{SW}(u,v) = \begin{cases} \mathcal{T}_{\mathsf{P}}(u,v), & \text{if } \lambda = 0, \\ \mathcal{T}_{\mathsf{D}}(u,v), & \text{if } \lambda = \infty, \\ \max(0,(1-\lambda)uv + \lambda(u+v-1)), & \text{if } \lambda \in]0, \infty[. \end{cases}$$

Results on dominance

- · Partial results based on the differential sufficient conditions
- Full characterization now available (proven by CAD)

Triangle Functions

S.Saminger-Platz

Motivation

The lattice of distance distribution functions

Constructions

Concepts known from triangular norms? Extensions of t-norms on

bounded lattices

Other constructions

Functional (in)equalities

Cauchy's functional equation

Dominance

- ... of t-norms
- ... of triangle functions

The family of Sugeno-Weber t-norms

Theorem

Consider the family of Sugeno-Weber t-norms $(T_{\lambda}^{SW})_{\lambda \in [0,\infty]}$.

 T_{λ}^{SW} dominates T_{μ}^{SW} if and only if one of the following holds: (i) $\lambda = 0$, (ii) $\mu = \infty$, (iii) $\lambda = \mu$,

(iv)
$$0 < \lambda < \mu \le 17 + 12\sqrt{2}$$
,
(v) $17 + 12\sqrt{2} < \mu$ and $0 < \lambda \le \left(\frac{1-3\sqrt{\mu}}{3-\sqrt{\mu}}\right)^2$.

Triangle Functions

S.Saminger-Platz

Motivation

The lattice of distance distribution functions

Constructions

Concepts known from triangular norms?

Extensions of t-norms on bounded lattices

Other constructions

Functional (in)equalities

Cauchy's functional equation

Dominance

... of t-norms

Triangle Functions

S.Saminger-Platz

Motivation

The lattice of distance distribution functions

Constructions

Concepts known from triangular norms?

Extensions of t-norms on bounded lattices

Other constructions

Functional (in)equalities

Cauchy's functional equation

Dominance

... of t-norms

Why dominance for functions on Δ^+ ?

In probabilistic metric (PM) spaces a function \mathcal{F} assigns to each pair of elements p and q in a non-empty set X a distance distribution function.

Then, for all x > 0, the value $\mathcal{F}(p, q)(x)$ is interpreted as the probability that the distance between p and q is less than x.

Triangle Functions

S.Saminger-Platz

Motivation

The lattice of distance distribution functions

Constructions

Concepts known from triangular norms?

Extensions of t-norms on bounded lattices

Other constructions

Functional (in)equalities

Cauchy's functional equation

Dominance

... of t-norms ... of triangle functions

Why dominance for functions on Δ^+ ?

In probabilistic metric (PM) spaces a function \mathcal{F} assigns to each pair of elements p and q in a non-empty set X a distance distribution function.

Then, for all x > 0, the value $\mathcal{F}(p, q)(x)$ is interpreted as the probability that the distance between p and q is less than x.

The **triangle inequality** for the PM space is formulated as, for all $p, q, r \in X$,

 $\mathcal{F}(\boldsymbol{\rho}, \boldsymbol{r}) \geq \tau(\mathcal{F}(\boldsymbol{\rho}, \boldsymbol{q}), \mathcal{F}(\boldsymbol{\rho}, \boldsymbol{q}))$

shall hold, where τ denotes the triangle function associated with the given PM space.

Triangle Functions

S.Saminger-Platz

Motivation

The lattice of distance distribution functions

Constructions

Concepts known from triangular norms?

Extensions of t-norms on bounded lattices

Other constructions

Functional (in)equalities

Cauchy's functional equation Dominance

Why dominance for functions on Δ^+ ?

In probabilistic metric (PM) spaces a function \mathcal{F} assigns to each pair of elements p and q in a non-empty set X a distance distribution function.

Then, for all x > 0, the value $\mathcal{F}(p, q)(x)$ is interpreted as the probability that the distance between p and q is less than x.

The **triangle inequality** for the PM space is formulated as, for all $p, q, r \in X$,

 $\mathcal{F}(\boldsymbol{p}, \boldsymbol{r}) \geq \tau(\mathcal{F}(\boldsymbol{p}, \boldsymbol{q}), \mathcal{F}(\boldsymbol{p}, \boldsymbol{q}))$

shall hold, where τ denotes the triangle function associated with the given PM space.

Several approaches for (finite) **products of PM spaces** have been introduced. The **preservation** of the corresponding triangle inequality has been the crucial point in all these considerations.

Triangle Functions

S.Saminger-Platz

Motivation

The lattice of distance distribution functions

Constructions

Concepts known from triangular norms?

Extensions of t-norms on bounded lattices

Other constructions

Functional (in)equalities

Cauchy's functional equation Dominance ... of t-norms

(Finite) products of PM spaces

SamPla, Sempi 2010

Theorem

Consider

- a (finite) family of PM spaces (X_i, F_i, τ_i), i = 1,..., n, n ∈ N,
- an n-ary operation α on Δ⁺ which is increasing in each place.

Define $\overrightarrow{\mathcal{F}}$ on $X := \prod_{i=1}^{n} X_i$, for all \overrightarrow{p} , \overrightarrow{q} , \overrightarrow{r} in X, by $\overrightarrow{\mathcal{F}}(\overrightarrow{p}, \overrightarrow{q}) = \alpha(\mathcal{F}_1(p_1, q_1), \dots, \mathcal{F}_n(p_n, q_n)).$

Triangle Functions

S.Saminger-Platz

Motivation

The lattice of distance distribution functions

Constructions

Concepts known from triangular norms?

Extensions of t-norms on bounded lattices

Other constructions

Functional (in)equalities

Cauchy's functional equation

Dominance

... of t-norms

... of triangle functions

S.Saminger-Platz

(Finite) products of PM spaces

SamPla, Sempi 2010

Theorem

Consider

- a (finite) family of PM spaces (X_i, F_i, τ_i), i = 1,..., n, n ∈ N,
- an n-ary operation α on Δ⁺ which is increasing in each place.

Define $\overrightarrow{\mathcal{F}}$ on $X := \prod_{i=1}^{n} X_i$, for all \overrightarrow{p} , \overrightarrow{q} , \overrightarrow{r} in X, by $\overrightarrow{\mathcal{F}}(\overrightarrow{p}, \overrightarrow{q}) = \alpha(\mathcal{F}_1(p_1, q_1), \dots, \mathcal{F}_n(p_n, q_n)).$

If there exists a triangle function τ such that

- α dominates τ , $\tau \ll \alpha$, and
- $\tau \leq \tau_i$ for every $i = 1, \ldots, n$,

S.Saminger-Platz

Motivation

The lattice of distance distribution functions

Constructions

Concepts known from triangular norms?

Extensions of t-norms on bounded lattices

Other constructions

Functional (in)equalities

Cauchy's functional equation

Dominance

... of t-norms

(Finite) products of PM spaces

SamPla, Sempi 2010

Theorem

Consider

- a (finite) family of PM spaces (X_i, F_i, τ_i), i = 1,..., n, n ∈ N,
- an n-ary operation α on Δ⁺ which is increasing in each place.

Define $\overrightarrow{\mathcal{F}}$ on $X := \prod_{i=1}^{n} X_i$, for all \overrightarrow{p} , \overrightarrow{q} , \overrightarrow{r} in X, by

$$\vec{\mathcal{F}}(\vec{p},\vec{q}) = \alpha(\mathcal{F}_1(p_1,q_1),\ldots,\mathcal{F}_n(p_n,q_n)).$$

If there exists a triangle function τ such that

- α dominates τ , $\tau \ll \alpha$, and
- $\tau \leq \tau_i$ for every $i = 1, \ldots, n$,

then $\overrightarrow{\mathcal{F}}$ satisfies the triangle inequality on X with respect to τ , so that $(X, \overrightarrow{\mathcal{F}}, \tau)$ is a probabilistic metric space.

Triangle Functions

S.Saminger-Platz

Motivation

The lattice of distance distribution functions

Constructions

Concepts known from triangular norms?

Extensions of t-norms on bounded lattices

Other constructions

Functional (in)equalities

Cauchy's functional equation

Dominance

... of t-norms

Some results

Results by Tardiff, 1976

• For continuous t-norms T_1 and T_2 the following holds:

$$\begin{array}{rcl} T_1 \gg T_2 & \Leftrightarrow & \pi_{T_1} \gg \pi_{T_2} & \Leftrightarrow & \tau_{T_1,+} \gg \tau_{T_2,+} \\ & \Leftrightarrow & \pi_{T_1} \gg \tau_{T_2,+} & \Leftrightarrow & \tau_{T_2^*,+}^* \gg \tau_{T_1^*,+}^*. \end{array}$$

Triangle Functions

S.Saminger-Platz

Motivation

The lattice of distance distribution functions

Constructions

Concepts known from triangular norms?

Extensions of t-norms on bounded lattices

Other constructions

Functional (in)equalities

Cauchy's functional equation

Dominance

... of t-norms

Some results

Results by Tardiff, 1976

• For continuous t-norms T_1 and T_2 the following holds:

$$T_{1} \gg T_{2} \quad \Leftrightarrow \quad \pi_{T_{1}} \gg \pi_{T_{2}} \quad \Leftrightarrow \quad \tau_{T_{1,+}} \gg \tau_{T_{2,+}} \\ \Leftrightarrow \quad \pi_{T_{1}} \gg \tau_{T_{2,+}} \quad \Leftrightarrow \quad \tau_{T_{*,+}}^{*} \gg \tau_{T_{*,+}}^{*}.$$

• For all triangle functions τ it holds that

$$\tau \gg \tau$$
 and $\pi_M \gg \tau$.

Triangle Functions

S.Saminger-Platz

Motivation

The lattice of distance distribution functions

Constructions

Concepts known from triangular norms?

Extensions of t-norms on bounded lattices

Other constructions

Functional (in)equalities

Cauchy's functional equation

Dominance

... of t-norms

Some results

Results by Tardiff, 1976

• For continuous t-norms T_1 and T_2 the following holds:

$$T_{1} \gg T_{2} \quad \Leftrightarrow \quad \pi_{T_{1}} \gg \pi_{T_{2}} \quad \Leftrightarrow \quad \tau_{T_{1,+}} \gg \tau_{T_{2,+}} \\ \Leftrightarrow \quad \pi_{T_{1}} \gg \tau_{T_{2,+}} \quad \Leftrightarrow \quad \tau_{T_{*,+}}^{*} \gg \tau_{T_{*,+}}^{*}.$$

• For all triangle functions τ it holds that

$$\tau \gg \tau$$
 and $\pi_M \gg \tau$.

Constructing dominating operations from given ones

(SamPla, Sempi, 2010)

Particular case: For all triangle functions τ and all $n \in \mathbb{N}$, $n \ge 2$, it holds that

$$\tau^n \gg \tau$$

Triangle Functions

S.Saminger-Platz

Motivation

The lattice of distance distribution functions

Constructions

Concepts known from triangular norms?

Extensions of t-norms on bounded lattices

Other constructions

Functional (in)equalities

Cauchy's functional equation Dominance

... of t-norms

Conditions on the "splitting the argument"

Consider two commutative and associative functions

$$L_1, L_2 \colon \overline{\mathbb{R}}^+ \to \overline{\mathbb{R}}^+$$

such that

• both have full range,

Triangle Functions

S.Saminger-Platz

Motivation

The lattice of distance distribution functions

Constructions

Concepts known from triangular norms?

Extensions of t-norms on bounded lattices

Other constructions

Functional (in)equalities

Cauchy's functional equation

Dominance

... of t-norms

Conditions on the "splitting the argument"

Consider two commutative and associative functions

$$L_1, L_2 \colon \overline{\mathbb{R}}^+ \to \overline{\mathbb{R}}^+$$

such that

- both have full range,
- are increasing in each place,

Triangle Functions

S.Saminger-Platz

Motivation

The lattice of distance distribution functions

Constructions

Concepts known from triangular norms?

Extensions of t-norms on bounded lattices

Other constructions

Functional (in)equalities

Cauchy's functional equation

Dominance

... of t-norms

Conditions on the "splitting the argument"

Consider two commutative and associative functions

$$L_1, L_2 \colon \overline{\mathbb{R}}^+ \to \overline{\mathbb{R}}^+$$

such that

- both have full range,
- · are increasing in each place, and
- are continuous on $\overline{\mathbb{R}}^+ \times \overline{\mathbb{R}}^+$, except possibly at the points $(0,\infty)$ and $(\infty,0)$.

Triangle Functions

S.Saminger-Platz

Motivation

The lattice of distance distribution functions

Constructions

Concepts known from triangular norms?

Extensions of t-norms on bounded lattices

Other constructions

Functional (in)equalities

Cauchy's functional equation

Dominance

... of t-norms

Conditions on the "splitting the argument"

Consider two commutative and associative functions

$$L_1, L_2 \colon \overline{\mathbb{R}}^+ \to \overline{\mathbb{R}}^+$$

such that

- both have full range,
- are increasing in each place, and
- are continuous on $\overline{\mathbb{R}}^+ \times \overline{\mathbb{R}}^+$, except possibly at the points $(0,\infty)$ and $(\infty,0)$.

Assume that both are additionally

(LS) jointly strictly increasing, i.e., that for all u_1 , u_2 , v_1 , $v_2 \in \mathbb{R}^+$

$$u_1 < u_2, v_1 < v_2 \quad \Rightarrow \quad L_i(u_1, v_1) < L_i(u_2, v_2),$$

(L0) and having 0 as their common neutral element.

Triangle Functions

S.Saminger-Platz

Motivation

The lattice of distance distribution functions

Constructions

Concepts known from triangular norms?

Extensions of t-norms on bounded lattices

Other constructions

Functional (in)equalities

Cauchy's functional equation

Dominance

... of t-norms

$$\begin{array}{rcl} T_1 \gg T_2 & \text{and} & L_1 \ll L_2 & \Rightarrow & \tau_{T_1,L_1} \gg \tau_{T_2,L_2}, \\ & T_1 \gg T_2 & \Leftarrow & \tau_{T_1,L_1} \gg \tau_{T_2,L_2}. \end{array}$$

Proposition Consider

Some results

- two left-continuous t-norms T₁, T₂, and
- two functions L_1, L_2 of the type mentioned above.

Then the following holds:

S.Saminger-Platz

Triangle Functions

S.Saminger-Platz

Motivation

The lattice of distance distribution functions

Constructions

Concepts known from triangular norms?

Extensions of t-norms on bounded lattices

Other constructions

Functional (in)equalities

Cauchy's functional equation

Dominance

... of t-norms ... of triangle functions

-Ci

S.Saminger-Platz

Some results

relating to triangle functions of the type "splitting the argument"

Proposition

(SamPla, Sempi 2010)

Consider

- two left-continuous t-norms T₁, T₂, and
- two functions L_1, L_2 of the type mentioned above.

Then the following holds:

$$\begin{array}{rcl} T_1 \gg T_2 & \text{and} & L_1 \ll L_2 & \Rightarrow & \tau_{T_1,L_1} \gg \tau_{T_2,L_2}, \\ & T_1 \gg T_2 & \Leftarrow & \tau_{T_1,L_1} \gg \tau_{T_2,L_2}. \end{array}$$

Special case: $L_1 = L_2 = L$

In particular, if $L_1 = L_2 = L$, then

 $\tau_{T_1,L} \gg \tau_{T_2,L} \quad \Leftrightarrow \quad T_1 \gg T_2.$

FSTA 2014

Triangle Functions

S.Saminger-Platz

Motivation

The lattice of distance distribution functions

Constructions

Concepts known from triangular norms?

Extensions of t-norms on bounded lattices

Other constructions

Functional (in)equalities

Cauchy's functional equation

Dominance

... of t-norms

Some results relating to triangle functions of the type "splitting the argument" Proposition (SamPla, Sempi 2010) Consider

- two left-continuous t-norms T₁, T₂, and
- two functions L_1, L_2 of the type mentioned above.

Then the following holds:

$$\begin{array}{rcl} T_1 \gg T_2 & \text{and} & L_1 \ll L_2 & \Rightarrow & \tau_{T_1,L_1} \gg \tau_{T_2,L_2}, \\ & T_1 \gg T_2 & \Leftarrow & \tau_{T_1,L_1} \gg \tau_{T_2,L_2}. \end{array}$$

Special case: $L_1 = L_2 = L$

In particular, if $L_1 = L_2 = L$, then

$$\tau_{T_1,L} \gg \tau_{T_2,L} \quad \Leftrightarrow \quad T_1 \gg T_2.$$

but also

$$\pi_{T_1} \gg \tau_{T_2,L} \quad \Leftrightarrow \quad T_1 \gg T_2.$$

Triangle Functions

S.Saminger-Platz

Motivation

The lattice of distance distribution functions

Constructions

Concepts known from triangular norms?

Extensions of t-norms on bounded lattices

Other constructions

Functional (in)equalities

Cauchy's functional equation

Dominance

... of t-norms

... of triangle functions

S.Saminger-Platz

Proposition

Consider

• two continuous co-semicopulas S₁^{*}, S₂^{*},

Triangle Functions

S.Saminger-Platz

Motivation

The lattice of distance distribution functions

Constructions

Concepts known from triangular norms?

Extensions of t-norms on bounded lattices

Other constructions

Functional (in)equalities

Cauchy's functional equation

Dominance

... of t-norms

... of triangle functions

Proposition

(SamPla, Sempi 2010)

Consider

two continuous co-semicopulas S₁^{*}, S₂^{*},
 e.g., they might be two continuous t-conorms, and

Triangle Functions

S.Saminger-Platz

Motivation

The lattice of distance distribution functions

Constructions

Concepts known from triangular norms?

Extensions of t-norms on bounded lattices

Other constructions

Functional (in)equalities

Cauchy's functional equation

Dominance

... of t-norms

Proposition

Consider

- two continuous co-semicopulas S^{*}₁, S^{*}₂,
 e.g., they might be two continuous t-conorms, and
- two functions L_1, L_2 of the type mentioned above.

Then we know

$$S_1^* \gg S_2^*$$
 and $L_1 \ll L_2 \Rightarrow \tau_{S_1^*,L_1}^* \gg \tau_{S_2^*,L_2}^*$.

Triangle Functions

S.Saminger-Platz

Motivation

The lattice of distance distribution functions

Constructions

Concepts known from triangular norms?

Extensions of t-norms on bounded lattices

Other constructions

Functional (in)equalities

Cauchy's functional equation

Dominance

... of t-norms

... of triangle functions

Proposition

Consider

- two continuous co-semicopulas S₁^{*}, S₂^{*},
 e.g., they might be two continuous t-conorms, and
- two functions L_1, L_2 of the type mentioned above.

Then we know

$$S_1^* \gg S_2^*$$
 and $L_1 \ll L_2 \Rightarrow \tau^*_{S_1^*,L_1} \gg \tau^*_{S_2^*,L_2}$.

We still do not know whether the converse is also true or not.

$$S_1^* \gg S_2^*$$
 and/or $L_1 \ll L_2 \stackrel{?}{\leftarrow} au_{S_1^*,L_1}^* \gg au_{S_2^*,L_2}^*.$

Triangle Functions

S.Saminger-Platz

Motivation

The lattice of distance distribution functions

Constructions

Concepts known from triangular norms?

Extensions of t-norms on bounded lattices

Other constructions

Functional (in)equalities

Cauchy's functional equation

Dominance

... of t-norms

... of triangle functions

Triangle Functions

S.Saminger-Platz

Motivation

The lattice of distance distribution functions

Constructions

Concepts known from triangular norms?

Extensions of t-norms on bounded lattices

Other constructions

Functional (in)equalities

Cauchy's functional equation

Dominance

... of t-norms

... of triangle functions

Thank you for your attention

References Triangle functions, probabilistic metric and normed spaces and their (finite) products

S. Saminger-Platz, C. Sempi. A primer on triangle functions I. Aequationes Mathematicae, 76:201–240, 2008.

S. Saminger-Platz, C. Sempi. A primer on triangle functions II. *Aequationes Mathematicae*, 80:239–268, 2010.

B. Schweizer, A. Sklar, *Probabilistic Metric Spaces.* North Holland, New York, 1983; 2nd ed., Dover, Mineola NY, 2005.

C. Alsina.

On countable products and algebraic convexifications of probabilistic metric spaces. Pac. J. Math., 76:291–300, 1978.

R.J. Egbert.

Products and quotients of probabilistic metric spaces. Pac. J. Math., 24:437–455, 1968.

B. Lafuerza-Guillén.

Finite products of probabilistic normed spaces. *Rad. Mat.*, 13:111–117, 2004.

B. Lafuerza–Guillén, C. Sempi, G. Zhang, M. Zhang. Countable products of probabilistic normed spaces. *Nonlinear Analysis*, 71:4405–4414, 2009.

C. Sempi. A short and partial history of probabilistic normed spaces. *Mediterr. J. Math.*, 3:283–300, 2006.

Triangle Functions

S.Saminger-Platz

Motivation

The lattice of distance distribution functions

Constructions

Concepts known from triangular norms?

Extensions of t-norms on bounded lattices

Other constructions

Functional (in)equalities

Cauchy's functional equation

Dominance

... of t-norms

References Cauchy's functional equation

Cauchy's equation on Δ^+ . Aequationes Math., 41:192–211, 1991.

T. Riedel.

Cauchy's equation on Δ^+ : further results. Aequationes Math., 44:236–248, 1992.

T. Riedel. On sup-continuous triangle functions. J. Math. Anal. Appl., 184:382–388, 1994.

R.C. Powers. Order automorphisms of spaces of nondecreasing functions.

J. Math. Anal. Appl., 136:112-123, 1988.

J. Aczél. Lectures on functional equations. Academic Press, New York, 1966; 2nd ed., Dover, Mineola NY, 2006.

J. Aczél, J. Dhombres. Functional equations in several variables. Cambridge University Press, 1989.

P. Benvenuti, D. Vivona, M. Divari. The Cauchy equation on *I*-semigroups, *Aequationes Math.*, 69:220–230, 2002.

S. Saminger–Platz, R. Mesiar, D. Dubois. Aggregation operators and commuting. *IEEE Trans. Fuzzy Syst.*, 15:1032–1045, 2007.

Triangle Functions

S.Saminger-Platz

Motivation

The lattice of distance distribution functions

Constructions

Concepts known from triangular norms?

Extensions of t-norms on bounded lattices

Other constructions

Functional (in)equalities

Cauchy's functional equation

Dominance

... of t-norms

... of triangle functions

S.Saminger-Platz

References Dominance

S. Saminger, R. Mesiar, and U. Bodenhofer. Domination of aggregation operators and preservation of transitivity. Internat. J. Uncertain. Fuzziness Knowledge-Based Systems, 10/s:11–35, 2002.

S. Saminger, B. De Baets, and H. De Meyer. On the dominance relation between ordinal sums of conjunctors. *Kybernetika*, 42(3):337–350, 2006.

S. Saminger, P. Sarkoci, and B. De Baets. The dominance relation on the class of continuous t-norms from an ordinal sum point of view. Lecture Notes in Artificial Intelligence, 4342-334–354, 2006.

S. Saminger-Platz, B. De Baets, and H. De Meyer.

A generalization of the Mulholland inequality for continuous Archimedean t-norms. J. Math. Anal. Appl., 345:607–614, 2008.

S. Saminger-Platz, B. De Baets, and H. De Meyer.

Differential inequality conditions for dominance between continuos Archimedean t-norms. *Mathematical Inequalities & Applications*, 12(1):191–208, 2009.

S. Saminger-Platz.

The dominance relation in some families of continuous Archimedean t-norms and copulas. Fuzzy Sets and Systems, 160:2017–2031, 2009.

S. Saminger-Platz, C. Sempi. A primer on triangle functions II. Aeguationes Mathematicae, 80:239–268, 2010.

M. Kauers, V. Pillwein, S. Saminger-Platz. Dominance in the family of Sugeno-Weber t-norm. *Fuzzy Sets and Systems*, 181:74–87, 2011.

Triangle Functions

S.Saminger-Platz

Motivation

The lattice of distance distribution functions

Constructions

Concepts known from triangular norms?

Extensions of t-norms on bounded lattices

Other constructions

Functional (in)equalities

Cauchy's functional equation

Dominance

... of t-norms ... of triangle functions

References (cont'd)

Dominance

C. Alsina, M.J. Frank, B. Schweizer, Associative functions. t-norms and copulas. World Scientific, Singapore, 2006.

W. Jarczyk and J. Matkowski. On Mulholland's inequality. Proc. Amer. Math. Soc., 130(11):3243-3247, 2002.

E.P. Klement, R. Mesiar, and E. Pap,

Triangular Norms, volume 8 of Trends in Logic, Studia Logica Library, Kluwer Academic Publishers, Dordrecht, 2000,

H.P. Mulholland.

On generalizations of Minkowski's inequality in the form of a triangle inequality. Proc. London Math. Soc., 51(2):294-307, 1950.

P. Sarkoci,

Domination in the families of Frank and Hamacher t-norms. Kybernetika, 41:345-356, 2005.

P. Sarkoci

Dominance is not transitive on continuous triangular norms. Aeguationes Mathematicae, 75:201-207, 2008.

H. Sherwood.

Characterizing dominates on a family of triangular norms. Aeguationes Math., 27:255-273, 1984.

B.M. Tardiff.

On a generalized Minkowski inequality and its relation to dominates for t-norms. Aeguationes Math., 27:308-316, 1984.

B. M. Tardiff.

Topologies for probabilistic metric spaces. Ph.D. Dissertation, University of Massachusetts, Amherst, MA, 1975.

R. M. Tardiff. Topologies for probabilistic metric spaces. Pacific J. Math., 65:233-251, 1976. S.Saminger-Platz

FSTA 2014

Triangle Functions

S.Saminger-Platz

Motivation

The lattice of distance distribution functions

Constructions

Concepts known from triangular norms?

Extensions of t-norms on bounded lattices

Other constructions

Functional (in)equalities

Cauchy's functional equation

Dominance

of t-norms

