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Introduction

◮ Aggregation functions are widely used in many domains
(computer sciences, decision, economics, etc.)

◮ (maybe) A new domain of applications: opinion formation in
social networks

◮ Social networks is the locus where agents form their opinion:
influence by other agents, imitation, etc., are common
phenomena which make your initial opinion change

◮ Examples on large scale networks: contagion, diffusion of
innovation

◮ In many models, the opinion of an agent results from the
aggregation of the opinion of the others

◮ Questions: to which opinion does each agent converge?
When do we reach consensus? When do subgroups of
different opinion form? Is cycling possible?
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Outline

1. A model of influence based on aggregation

functions

2. Anonymous influence

3. Contagion
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Influence

◮ N = {1, . . . , n}: set of agents having to make a yes/no
decision

◮ Each agent has an initial opinion (inclination) to say ’yes’ or
’no’

◮ Due to mutual influence, agents may change their opinion

◮ The change of opinion of agents makes (again by influence)
opinion change a second time, and so on. . .

◮ Assumptions:
◮ we consider that opinion changes occur in discrete time steps,

all together
◮ opinion changes are not deterministic
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A Markovian model of influence

◮ Given that S is the set of agents saying ‘yes’ at present time,
bS,T is the probability that T is the set of ’yes’-agents at next
time step
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A Markovian model of influence

◮ Given that S is the set of agents saying ‘yes’ at present time,
bS,T is the probability that T is the set of ’yes’-agents at next
time step

◮ It is supposed that bS,T does not depend on the past history
and that it is constant over time

◮ Hence, the 2n × 2n row-stochastic matrix B := [bS,T ]S,T⊆N is
the transition matrix of a stationary Markov chain, whose
states are the coalitions of ’yes’-agents

◮ It is well known that the qualitative description of
convergence (terminal classes) needs only the knowledge of
the reduced matrix B̃, where

b̃S,T =

{
1, if bS,T > 0

0, otherwise.

(equivalently represented by a directed graph)
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◮ An n-place aggregation function is any mapping
A : [0, 1]n → [0, 1] satisfying

1. A(0, . . . , 0) = 0, A(1, . . . , 1) = 1 (boundary conditions)
2. If x ≤ x′ then A(x) ≤ A(x′) (nondecreasingness).

◮ We associate an aggregation function Ai to each agent i

◮ Ai(1S ) is the probability that agent i says ’yes’ at next time
step, knowing that the current set of yes-agents is S

◮ Assuming that all agents are statistically independent, we find

bS,T =
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Aggregation functions

◮ To avoid exponential complexity, we suppose that the
updating of opinion is done through an aggregation function

◮ An n-place aggregation function is any mapping
A : [0, 1]n → [0, 1] satisfying

1. A(0, . . . , 0) = 0, A(1, . . . , 1) = 1 (boundary conditions)
2. If x ≤ x′ then A(x) ≤ A(x′) (nondecreasingness).

◮ We associate an aggregation function Ai to each agent i

◮ Ai(1S ) is the probability that agent i says ’yes’ at next time
step, knowing that the current set of yes-agents is S

◮ Assuming that all agents are statistically independent, we find

bS,T =
∏

i∈T

Ai (1S )
∏

i 6∈T

(1 − Ai(1S ))

◮ Remark: B̃ is insensitive to possible correlation among agents
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Influential players

Definition
Consider an influence model based on aggregation functions
A = (A1, . . . ,An).

1. Agent j ∈ N is yes-influential in Ai if Ai (1j) > 0.

2. Agent j ∈ N is no-influential in Ai if Ai(1N\j ) < 1.
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Influential players

Definition
Consider an influence model based on aggregation functions
A = (A1, . . . ,An).

1. Agent j ∈ N is yes-influential in Ai if Ai (1j) > 0.

2. Agent j ∈ N is no-influential in Ai if Ai(1N\j ) < 1.

The graph of yes-influence is a directed graph G yes

A = (N,E )
whose set of nodes is N, and there is an arc (j , i) from j to i if j is
yes-influential in Ai . The graph of no-influence Gno

A is defined
similarly.
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Influential coalitions

Definition
A nonempty coalition S ⊆ N is yes-influential for i if

1. Ai(1S ) > 0

2. For all S ′ ⊂ S , Ai(1S ′) = 0.

Similarly, a coalition S is no-influential for i if

1. Ai(1N\S ) < 1

2. For all S ′ ⊂ S , Ai(1N\S ′) = 1.
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Influential coalitions

Definition
A nonempty coalition S ⊆ N is yes-influential for i if

1. Ai(1S ) > 0

2. For all S ′ ⊂ S , Ai(1S ′) = 0.

Similarly, a coalition S is no-influential for i if

1. Ai(1N\S ) < 1

2. For all S ′ ⊂ S , Ai(1N\S ′) = 1.

Call Cyes

i and Cno

i the collections of yes- and no-influential
coalitions for i . These are nonempty antichains in 2N .
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Influential coalitions

n = 2 3 4 5 6 7 8

size of the transi-
tion matrix

16 64 256 1024 4096 16384 65536

total maximal size
of Cyes

i and Cno

i

8 18 48 100 240 490 1120

Table: Comparison of the size of the models
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size of the transi-
tion matrix

16 64 256 1024 4096 16384 65536

total maximal size
of Cyes

i and Cno

i

8 18 48 100 240 490 1120

Table: Comparison of the size of the models

Theorem
Consider an influence process B based on aggregation functions
A1, . . . ,An. Then B̃ can be reconstructed from the collections Cyes

i

and Cno

i , i ∈ N.
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Influential coalitions

n = 2 3 4 5 6 7 8

size of the transi-
tion matrix

16 64 256 1024 4096 16384 65536

total maximal size
of Cyes

i and Cno

i

8 18 48 100 240 490 1120

Table: Comparison of the size of the models

Theorem
Consider an influence process B based on aggregation functions
A1, . . . ,An. Then B̃ can be reconstructed from the collections Cyes

i

and Cno

i , i ∈ N.

Conclusion: it is not necessary to know the aggregation functions
for a qualitative description of convergence
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Some results on qualitative convergence

Theorem
Consider an influence process B based on aggregation functions.
Then terminal classes are:

1. either singletons {S}, S ∈ 2N ;

2. or cycles of nonempty sets {S1, . . . ,Sk} of any length
2 ≤ k ≤

(
n

⌊n/2⌋

)
(and therefore they are periodic of period k)

with the condition that all sets are pairwise incomparable;

3. or collections C of nonempty sets with the property that
C = C1 ∪ · · · ∪ Cp, where each subcollection Cj is a Boolean
lattice [Sj ,Sj ∪ Kj ], Sj 6= ∅, Sj ∪ Kj 6= N, and at least one Kj

is nonempty.

We call cyclic terminal classes those terminal classes of the second
type and regular terminal classes those of the third type. Regular
terminal classes can be periodic. Regular terminal classes formed
by a single Boolean lattice are called Boolean terminal classes.

A. Rusinowska, M. Förster & M. Grabisch c©2013 Aggregation functions in social networks



Example of regular terminal class

Example

Consider N = {1, 2, 3} and the following ag-
gregation functions:

A1(1 0 0) = 1 A2(1 0 0) = 0.5 A3(1 0 0) = 0

A1(0 1 0) = 0 A2(0 1 0) = 0.5 A3(0 1 0) = 0

A1(0 0 1) = 0 A2(0 0 1) = 0.5 A3(0 0 1) = 0.5

A1(1 1 0) = 1 A2(1 1 0) = 0.5 A3(1 1 0) = 0

A1(1 0 1) = 1 A2(1 0 1) = 0.5 A3(1 0 1) = 0.5

A1(0 1 1) = 1 A2(0 1 1) = 0.5 A3(0 1 1) = 1.

This gives the following digraph for the
Markov chain: ∅

1 2 3

12 13 23

123

1
2

1
2

1
4

1
2

1
4

1
2

1
4

1
4

1
4

1
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1
2

1
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4

1
4

1
4 1
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Some results on qualitative convergence

Consider an influence process B based on aggregation functions
A = (A1, . . . An).
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Some results on qualitative convergence

Consider an influence process B based on aggregation functions
A = (A1, . . . An).

Proposition

1. If the graph (G yes

A )∗ ∪ Gno

A is strongly connected, then there is
no nontrivial terminal state, where (·)∗ indicates the graph
with inverted arcs

2. If for all i ∈ N, i is yes- and no-influential for i , then there is
no cyclic class
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A )∗ ∪ Gno

A is strongly connected, then there is
no nontrivial terminal state, where (·)∗ indicates the graph
with inverted arcs

2. If for all i ∈ N, i is yes- and no-influential for i , then there is
no cyclic class

For an agent i ∈ N, its closure in Gno

A , denoted by cl(i), is the set
of agents which can reach i by a path in Gno

A . By convention,
i ∈ cl(i).
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Some results on qualitative convergence

Consider an influence process B based on aggregation functions
A = (A1, . . . An).

Proposition

1. If the graph (G yes

A )∗ ∪ Gno

A is strongly connected, then there is
no nontrivial terminal state, where (·)∗ indicates the graph
with inverted arcs

2. If for all i ∈ N, i is yes- and no-influential for i , then there is
no cyclic class

For an agent i ∈ N, its closure in Gno

A , denoted by cl(i), is the set
of agents which can reach i by a path in Gno

A . By convention,
i ∈ cl(i).

Theorem
There is no normal regular terminal class if for each i ∈ N, every
agent outside cl(i) can be reached by a path from cl(i) in G yes

A .
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Symmetric decomposable models

◮ An influence model based on aggregation functions A is
decomposable if all influential coalitions are singletons (i.e., all
can be described by influential players, hence by G yes

A and
Gno

A )
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Symmetric decomposable models

◮ An influence model based on aggregation functions A is
decomposable if all influential coalitions are singletons (i.e., all
can be described by influential players, hence by G yes

A and
Gno

A )

◮ An influence model based on aggregation functions A is
symmetric if any yes-influential coalition is also no-influential
and vice-versa

◮ Consequence: a symmetric decomposable model is described
through a single graph of influence GA

Theorem
Any symmetric decomposable model is qualitatively equivalent to a
unique WAM (weighted arithmetic mean) model. Conversely, any
WAM model is qualitatively equivalent to some symmetric
decomposable model.
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functions
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Motivations

◮ The internet accompanies us in everyday life
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◮ Customers often can express their opinion on the product or
the hotel, e.g., customer reviews on amazon.com or
booking.com
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Motivations

◮ The internet accompanies us in everyday life

◮ We use it to buy electronic devices, to book hotels, etc.

◮ Customers often can express their opinion on the product or
the hotel, e.g., customer reviews on amazon.com or
booking.com

◮ People follow anonymous customers that have expressed their
positive/negative opinion on the product
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Anonymous influence

◮ Anonymous influence means: the change in opinion of an
agent depends only on how many agents hold an opinion,
instead of which agents do so.
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Anonymous influence

◮ Anonymous influence means: the change in opinion of an
agent depends only on how many agents hold an opinion,
instead of which agents do so.

◮ Example: the majority model: an agent changes his opinion if
the proportion of agents with opposite opinion is greater than
a threshold η ≥ 1

2
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Anonymous influence

◮ Anonymous influence means: the change in opinion of an
agent depends only on how many agents hold an opinion,
instead of which agents do so.

◮ Example: the majority model: an agent changes his opinion if
the proportion of agents with opposite opinion is greater than
a threshold η ≥ 1

2

◮ More generally, OWA models this kind of behavior:

OWAW (x) =
n∑

i=1

wix(i)

with x(1) ≥ x(2) ≥ · · · ≥ x(n), and wi ≥ 0 ∀i ,
∑

i wi = 1.
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Anonymous influence

◮ Anonymous influence means: the change in opinion of an
agent depends only on how many agents hold an opinion,
instead of which agents do so.

◮ Example: the majority model: an agent changes his opinion if
the proportion of agents with opposite opinion is greater than
a threshold η ≥ 1

2

◮ More generally, OWA models this kind of behavior:

OWAW (x) =
n∑

i=1

wix(i)

with x(1) ≥ x(2) ≥ · · · ≥ x(n), and wi ≥ 0 ∀i ,
∑

i wi = 1.

◮ We propose a model where each agent j has an OWA function
with weight vector w j . Recall that OWAw j (1S ) is the
probability that agent j will say ’yes’ given that the current
set of ’yes’-voters is S .
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Convergence in the anonymous model

The following theorem gives us a necessary and sufficient condition
for convergence to consensus.

Theorem
Consider the aggregation model Ai = OWAw i , i ∈ N. Then, there
are only the trivial terminal classes if and only if there exists
k̄ ∈ {1, . . . , n} s.t. both:

1. For all k = k̄, . . . , n − 1, there are k + 1 distinct agents s.t.
coalitions of size k are “yes”-influential each on them.

2. For all k = 1, . . . , k̄ − 1, there are n− k + 1 distinct agents s.t.
coalitions of size n − k are “no”-influential on each of them.
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Convergence in the anonymous model

The following theorem gives us a necessary and sufficient condition
for convergence to consensus.

Theorem
Consider the aggregation model Ai = OWAw i , i ∈ N. Then, there
are only the trivial terminal classes if and only if there exists
k̄ ∈ {1, . . . , n} s.t. both:

1. For all k = k̄, . . . , n − 1, there are k + 1 distinct agents s.t.
coalitions of size k are “yes”-influential each on them.

2. For all k = 1, . . . , k̄ − 1, there are n− k + 1 distinct agents s.t.
coalitions of size n − k are “no”-influential on each of them.

◮ In other words, we have a cascade that leads either to the
“yes”- (part (i)) or “no”-consensus (part (ii))

A. Rusinowska, M. Förster & M. Grabisch c©2013 Aggregation functions in social networks



Generalization

◮ We say that an aggregation function A is
OWAw -decomposable if there exists λ ∈ ]0, 1] and an
aggregation function A′ s.t.

A = λOWAw + (1 − λ)A′.
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Generalization

◮ We say that an aggregation function A is
OWAw -decomposable if there exists λ ∈ ]0, 1] and an
aggregation function A′ s.t.

A = λOWAw + (1 − λ)A′.

◮ It turns out that the sufficiency part of our Theorem also
holds if agents use such decomposable aggregation functions.
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Example

To illustrate this result, we consider the phenomenon of mass
psychology, a.k.a. herding behavior.
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Example

To illustrate this result, we consider the phenomenon of mass
psychology, a.k.a. herding behavior.

Example: Mass psychology

◮ If at least a certain number of agents share the same opinion,
then these agents attract others
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Example

To illustrate this result, we consider the phenomenon of mass
psychology, a.k.a. herding behavior.

Example: Mass psychology

◮ If at least a certain number of agents share the same opinion,
then these agents attract others

◮ Consider n = 3 and that whenever only two agents are of the
same opinion, the third changes her opinion with probability
λ ∈ (0, 1):

Mass
[2]
i (x) = λx(2) + (1 − λ)xi for all i ∈ N
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Example

To illustrate this result, we consider the phenomenon of mass
psychology, a.k.a. herding behavior.

Example: Mass psychology

◮ If at least a certain number of agents share the same opinion,
then these agents attract others

◮ Consider n = 3 and that whenever only two agents are of the
same opinion, the third changes her opinion with probability
λ ∈ (0, 1):

Mass
[2]
i (x) = λx(2) + (1 − λ)xi for all i ∈ N

◮ This function is OWAw -decomposable and by the above
Theorem (k̄ = 2) the group eventually reaches a consensus
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Fuzzy linguistic quantifiers

◮ Agents might adjust their opinion according to soft
majorities/minorities, e.g., they could say “yes” if “most of
the agents say ‘yes’ ”

◮ Words like “most” or “many” are fuzzy linguistic quantifiers

We define a quantifier by a function of the agents’ proportion
saying “yes” to the degree the quantifier is satisfied.

Definition: Fuzzy linguistic quantifier

A fuzzy linguistic quantifier Q is defined by a nondecreasing
function

µQ : [0, 1] → [0, 1] s.t. µQ(0) = 0 and µQ(1) = 1.
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Fuzzy linguistic quantifiers

For all quantifiers, there exists a corresponding ordered weighted
average that represents it. We can find its weights as follows.

Lemma (Yager, 1988)

Let Q be a fuzzy linguistic quantifier defined by µQ. Then, the
weights of its corresponding OWAQ are given by

wk = µQ

(
k

n

)
− µQ

(
k − 1

n

)
, for k = 1, . . . , n.
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Examples

Example: Typical quantifiers

We define

(i) Qaa = “almost all” by
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Examples

(ii) Qmo = “most”
by
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(iii) Qma = “many”
by
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(iv) Qaf = “at least
a few” by
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Examples

Let us apply our results to the quantifiers from the Example.

Example: Typical quantifiers (cont’d)

Consider the aggregation model Ai = OWAQi , i ∈ N.
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Examples

Let us apply our results to the quantifiers from the Example.

Example: Typical quantifiers (cont’d)

Consider the aggregation model Ai = OWAQi , i ∈ N.

◮ If
Qi ∈ {Qaa,Qmo,Qma} for all i ∈ N,

then there are only the trivial terminal classes
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Examples

Let us apply our results to the quantifiers from the Example.

Example: Typical quantifiers (cont’d)

Consider the aggregation model Ai = OWAQi , i ∈ N.

◮ If
Qi ∈ {Qaa,Qmo,Qma} for all i ∈ N,

then there are only the trivial terminal classes

◮ The result still holds if less than ⌈ 3
10n⌉ agents deviate to Qaf
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Examples

Let us apply our results to the quantifiers from the Example.

Example: Typical quantifiers (cont’d)

Consider the aggregation model Ai = OWAQi , i ∈ N.

◮ If
Qi ∈ {Qaa,Qmo,Qma} for all i ∈ N,

then there are only the trivial terminal classes

◮ The result still holds if less than ⌈ 3
10n⌉ agents deviate to Qaf

⇒ If agents use similar quantifiers and not too many agents
deviate, they will eventually reach a consensus
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Outline

1. A model of influence based on aggregation

functions

2. Anonymous influence

3. Contagion
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Introduction

◮ Contagion occurs if an action can spread from a finite set of
individuals to the whole population
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Introduction

◮ Contagion occurs if an action can spread from a finite set of
individuals to the whole population

◮ An important contribution to the analysis of contagion is in
(Morris, 2000), where the author focuses on the
characterization of the contagion threshold
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Introduction

◮ Contagion occurs if an action can spread from a finite set of
individuals to the whole population

◮ An important contribution to the analysis of contagion is in
(Morris, 2000), where the author focuses on the
characterization of the contagion threshold

◮ We show that this model is a particular instance of our
influence model based on aggregation functions
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The contagion model of Morris

◮ countably infinite set X of players
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The contagion model of Morris

◮ countably infinite set X of players
◮ Γ(x): neighborhood of player x of size γ; threshold 0 ≤ q ≤ 1
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The contagion model of Morris

◮ countably infinite set X of players
◮ Γ(x): neighborhood of player x of size γ; threshold 0 ≤ q ≤ 1
◮ Rule of contagion: given a configuration X (t) at time t (set

of ‘yes’ players), next configuration X (t + 1) is the set of play-
ers having a proportion of neighbors in X (t) at least equal to q:

X (t + 1) = {x ∈ X |
|Γ(x) ∩ X (t)|

γ
≥ q}.
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The contagion model of Morris

◮ countably infinite set X of players
◮ Γ(x): neighborhood of player x of size γ; threshold 0 ≤ q ≤ 1
◮ Rule of contagion: given a configuration X (t) at time t (set

of ‘yes’ players), next configuration X (t + 1) is the set of play-
ers having a proportion of neighbors in X (t) at least equal to q:

X (t + 1) = {x ∈ X |
|Γ(x) ∩ X (t)|

γ
≥ q}.

◮ contagion threshold ξ is the largest q such that ‘yes’ spreads
over X from some finite group X (0)
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The contagion model of Morris

◮ countably infinite set X of players
◮ Γ(x): neighborhood of player x of size γ; threshold 0 ≤ q ≤ 1
◮ Rule of contagion: given a configuration X (t) at time t (set

of ‘yes’ players), next configuration X (t + 1) is the set of play-
ers having a proportion of neighbors in X (t) at least equal to q:

X (t + 1) = {x ∈ X |
|Γ(x) ∩ X (t)|

γ
≥ q}.

◮ contagion threshold ξ is the largest q such that ‘yes’ spreads
over X from some finite group X (0)

◮ The contagion model is a particular influence model based on
the following aggregation function for each player x :

Ax(1X ) =

{
1, if |X∩Γ(x)|

γ ≥ q

0, otherwise.
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The contagion model of Morris

◮ countably infinite set X of players
◮ Γ(x): neighborhood of player x of size γ; threshold 0 ≤ q ≤ 1
◮ Rule of contagion: given a configuration X (t) at time t (set

of ‘yes’ players), next configuration X (t + 1) is the set of play-
ers having a proportion of neighbors in X (t) at least equal to q:

X (t + 1) = {x ∈ X |
|Γ(x) ∩ X (t)|

γ
≥ q}.

◮ contagion threshold ξ is the largest q such that ‘yes’ spreads
over X from some finite group X (0)

◮ The contagion model is a particular influence model based on
the following aggregation function for each player x :

Ax(1X ) =

{
1, if |X∩Γ(x)|

γ ≥ q

0, otherwise.
◮ If q is below the contagion threshold, the terminal states are

the trivial states ∅ and X. Otherwise, other nontrivial terminal
classes can occur.
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Analysis of convergence

The analysis shows that no regular terminal exists, but it may exist
non trivial terminal states and cycles.
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Analysis of convergence

The analysis shows that no regular terminal exists, but it may exist
non trivial terminal states and cycles.
Example of a cycle: the 2-dim mesh with 4 neighbors (q = 1

2)

etc.
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Analysis of convergence

Example of nontrivial terminal state: the 2-dim mesh with 4
neighbors
Remarkable configurations (from left to right): antenna, convex
corner, concave corner, isthm
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Analysis of convergence

It can be shown that only q = 1
2 or 3

4 lead to nontrivial terminal
classes. Also, these two cases are exact complements of each
other, in the sense that S is a possible terminal state for q = 1

2 iff
X \ S is a possible terminal state for q = 3

4 . Taking for example
the latter, each connected component of S should be of size at
least 4, and should have no convex corner, no antenna and no
isthm, while each connected component of the complement set
should be of size at least 3 and have no antennas.
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Thank you for your attention!
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