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Aggregation operator

Definition
A mapping A :

⋃
n[0,1]

n → [0,1] is called an aggregation
operator, if it satisfies:

(A1) A(0, . . . ,0) = 0;
(A2) A(1, . . . ,1) = 1;
(A3) ∀x1, x2, . . . , xn, y1, y2, . . . , yn ∈ [0,1]:

if x1 ≤ y1, . . . , xn ≤ yn, then A(x1, . . . , xn) ≤ A(y1, . . . , yn).

(A1) un (A2) – boundary conditions;
(A3) – monotonicity condition.
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General aggregation operator

Definition

(A. Takaci, 2003) A mapping Ã :
⋃

n([0,1]
D)n → [0,1]D is called

a general aggregation operator if the following conditions hold:
(Ã1) Ã(0̃, . . . , 0̃) = 0̃;
(Ã2) Ã(1̃, . . . , 1̃) = 1̃;
(Ã3) ∀µ1, µ2, . . . , µn, η1, η2, . . . , ηn ∈ [0,1]D :

if µ1 � η1, . . . , µn � ηn, then Ã(µ1, . . . , µn) � Ã(η1, . . . , ηn).

Here µ1, µ2, ..., µn, η1, η2, ..., ηn ∈ [0,1]D are fuzzy sets, � is an
order on [0,1]D, while 0̃, 1̃ are indicators of ∅ and D
respectively, i.e.

0̃(x) = 0 and 1̃(x) = 1 for all x ∈ D.
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Factoraggregation

Let A : [0,1]n → [0,1] be an ordinary aggregation operator and
ρ be an equivalence relation defined on a set D. An operator

Ãρ :
⋃
n

([0,1]D)n → [0,1]D

such as

Ãρ(µ1, µ2, . . . , µn)(x) = sup
u∈D:(u,x)∈ρ

A(µ1(u), µ2(u), . . . , µn(u)),

where x ∈ D and µ1, µ2, . . . , µn ∈ [0,1]D, is called a
factoraggregation operator corresponding to ρ.
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Generalized factoraggregation

Let T be a t-norm, E be a T -fuzzy equivalence relation defined
on D and A be an ordinary aggregation operator. An operator

ÃE ,T :
⋃
n

([0,1]D)n → [0,1]D

such as

ÃE ,T (µ1, µ2, . . . , µn)(x) = sup
u∈D

T (E(x ,u),A(µ1(u), µ2(u), . . . , µn(u))),

where x ∈ D and µ1, µ2, . . . , µn ∈ [0,1]D, is called a generalized
T -fuzzy factoraggregation operator corresponding to E .
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T -fuzzy equivalence relation

Definition
Let T be a t-norm and E be a fuzzy relation on a set D, i.e. E is
a fuzzy subset of D × D. A fuzzy relation E is a T -fuzzy
equivalence relation if and only if for all x , y , z ∈ D it holds

(E1) E(x , x) = 1 (reflexivity);
(E2) E(x , y) = E(y , x) (symmetry);
(E3) T (E(x , y),E(y , z)) ≤ E(x , z) (T -transitivity).
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Generalized factoraggregation: numerical examples

Let us consider the discrete universe

D = {x1, x2, x3, x4, x5}

and the following TL-fuzzy (TL is the Lukasiewicz t-norm)
equivalence relation E , given in the matrix form:

E =


1 0.9 0.7 0.4 0.2

0.9 1 0.7 0.4 0.2
0.7 0.7 1 0.4 0.2
0.4 0.4 0.4 1 0.2
0.2 0.2 0.2 0.2 1

 .

This equivalence relation is also TM -transitive and TP-transitive,
i.e. transitive with respect to the minimum t-norm TM and the
product t-norm TP respectively.
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Generalized factoraggregation: numerical examples

Let us take the following fuzzy subsets of D:

µ1 =


0.9
0.5
0.6
0.8
0.3

 , µ2 =


0.2
0

0.2
0.6
0.9

 , µ3 =


0.7
0.5
0.1
0.8
0.6

 , µ4 =


0.1
0.9
0.2
0.8
0.5

 .
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Generalized factoraggregation: numerical examples

We consider the minimum aggregation operator A = MIN and
obtain the following generalized T -fuzzy factoraggregation:

ÃE ,T (µ1, µ2, µ3, µ4)(x) =

= max
u∈D

T (E(x ,u),min(µ1(u), µ2(u), µ3(u), µ4(u))).

Taking T = TL, T = TM and T = TP we obtain as results the
fuzzy subsets µTL , µTM and µTP respectively:

µTL =


0.1
0

0.1
0.6
0.3

 , µTM =


0.4
0.4
0.4
0.6
0.3

 , µTP =


0.2
0.2
0.2
0.6
0.3

 .
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Generalized factoraggregation: numerical examples

Taking as an ordinary aggregation operator the arithmetic mean
aggregation operator A = AVG, we obtain the following
generalized T -fuzzy factoraggregations respectively:

ÃE ,T (µ1, µ2, µ3, µ4)(x) =

= max
u∈D

T (E(x ,u),AVG(µ1(u), µ2(u), µ3(u), µ4(u))),

Taking T = TL, T = TM and T = TP we obtain as results the
following fuzzy subsets:

µTL =


0.5
0.5
0.3
0.8
0.6

 , µTM =


0.5
0.5
0.5
0.8
0.6

 , µTP =


0.5
0.5
0.3
0.8
0.6

 .
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Generalized factoraggregation and extensional fuzzy
sets

Definition
Let T be a t-norm and E be a T -fuzzy equivalence relation on a
set D. A fuzzy subset µ ∈ [0,1]D is called extensional with
respect to E if and only if:

T (E(x , y), µ(y)) ≤ µ(x) for all x , y ∈ D.

Proposition
Let T be a left-continuous t-norm, E be a T -fuzzy equivalence
relation on a set D and ÃE ,T be a generalized T -fuzzy
factoraggregation. Then fuzzy set ÃE ,T (µ1, µ2, . . . , µn) is
extensional with respect to E for each n ∈ N and for all fuzzy
sets µ1, ..., µn ∈ [0,1]D.
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Approximation of a fuzzy set by extensional fuzzy sets

We recall two approximation operators φE and ψE considered in
[see e.g. Mattioli, Recasens, AGOP 2013]. Fuzzy sets φE(µ)
and ψE(µ) were introduced to provide upper and lower
approximation of a fuzzy set µ by extensional fuzzy sets with
respect to T -fuzzy equivalence relation E

Definition

Let T be a left-continuous t-norm,
−→
T be its residuum and E be

a T -fuzzy equivalence relation on a set D. The maps
φE : [0,1]D → [0,1]D and ψE : [0,1]D → [0,1]D are defined by:

φE(µ)(x) = sup
y∈D

T (E(x , y), µ(y)),

ψE(µ)(x) = inf
y∈D

−→
T (E(x , y)|µ(y))

for all x ∈ D and for all µ ∈ [0,1]D.
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Lower generalized T -fuzzy factoraggregation

Let T be a left-continuous t-norm,
−→
T be the residuum of T , E

be a T -fuzzy equivalence relation defined on D and A be an
ordinary aggregation operator. An operator

Ã
E ,
−→
T
:
⋃
n

([0,1]D)n → [0,1]D

such as

Ã
E ,
−→
T
(µ1, µ2, . . . , µn)(x) = inf

u∈D

−→
T (E(x ,u)|A(µ1(u), µ2(u), . . . , µn(u))),

where µ1, µ2, . . . , µn ∈ [0,1]D and x ∈ D, is called a lower
generalized T -fuzzy factoraggregation operator corresponding
to E .
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Lower generalized T -fuzzy factoraggregation

It is clear, that for all µ1, µ2, . . . , µn ∈ [0,1]D and for all x ∈ D it
holds

Ã
E ,
−→
T
(µ1, . . . , µn)(x) ≤ A(µ1(x), . . . , µn(x)) ≤ ÃE ,T (µ1, . . . , µn)(x).

Proposition
Let T be a left-continuous t-norm, E be a T -fuzzy equivalence
relation on a set D and Ã

E ,
−→
T

be a lower generalized T -fuzzy

factoraggregation. Then fuzzy set Ã
E ,
−→
T
(µ1, µ2, . . . , µn) is

extensional with respect to E for each n ∈ N and for all fuzzy
sets µ1, ..., µn ∈ [0,1]D.
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Lower generalized factoraggregation: numerical
examples

Similarly to the case of upper generalized factoraggregation,
we will calculate several numerical results for the following
lower generalized T -fuzzy factoraggregation:

Ã
E ,
−→
T
(µ1, µ2, µ3, µ4)(x) =

= min
u∈D

−→
T (E(x ,u)|AVG(µ1(u), µ2(u), µ3(u), µ4(u))) :

As a result we obtain the fuzzy subsets µ−→
T L

, µ−→
T M

and µ−→
T P

:

µ−→
T L

=


0.5
0.5
0.3
0.8
0.6

 , µ−→
T M

=


0.3
0.3
0.3
0.3
0.6

 , µ−→
T P

=


0.4
0.4
0.3
0.7
0.6

 .
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Generalized factoraggregations:
the case of a crisp relation

Let us note that in the case of crisp equivalence relations, i.e.
when E = Eρ for an equivalence relation ρ, where

Eρ(x , y) =

{
1, (x , y) ∈ ρ,
0, (x , y) /∈ ρ,

we obtain
ÃEρ,T = Ãρ.

If we apply the crisp equivalence relation Eρ to Ã
Eρ,
−→
T

, for any
left-continuous t-norm T we obtain the following formula:

Ã
Eρ,
−→
T
(µ1, . . . , µn)(x) = inf

u∈D:(u,x)∈ρ
A(µ1(u), . . . , µn(u))

for all µ1, µ2, . . . , µn ∈ [0,1]D and x ∈ D.
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Generalized factoraggregations:
the case of a crisp relation

Numerical evaluation of the value ÃEρ,T (µ1, ..., µn)(x) can be
reduced to the problem

α −→ min{
A(µ1(u), . . . , µn(u)) ≤ α,
(u, x) ∈ ρ, u ∈ D.

By analogy with the previous case, numerical evaluation of the
value Ã

Eρ,
−→
T
(µ1, ..., µn)(x) can be reduced to the problem

α −→ max{
A(µ1(u), . . . , µn(u)) ≥ α,
(u, x) ∈ ρ, u ∈ D.
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Thank you for your attention!
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