▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQで

Laws of contraposition and law of importation for probabilistic implications and probabilistic S-implications

Michał Baczyński, Przemysław Grzegorzewski, Wanda Niemyska

Institute of Mathematics University of Silesia Poland

January 30th, 2014

FSTA, Slovakia

References	Introduction	Introduction to Probabilistic Implications	Laws of Contraposition	Law of Importation	Conclusion
Conte	ent				

References	Introduction	Introduction to Probabilistic Implications	Laws of Contraposition	Law of Importation	Conclusion
Conte	nt				

Basic definitions.

References	Introduction	Introduction to Probabilistic Implications	Laws of Contraposition	Law of Importation	Conclusion
~					

- Basic definitions.
- Introduction of Probabilistic Implications and Probabilistic S-implications.

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ 三三 - のへぐ

References	Introduction	Introduction to Probabilistic Implications	Laws of Contraposition	Law of Importation	Conclusion

- Basic definitions.
- Introduction of Probabilistic Implications and Probabilistic S-implications.

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ 三三 - のへぐ

Laws of Contraposition.

References	Introduction	Introduction to Probabilistic Implications	Laws of Contraposition	Law of Importation	Conclusion

- Basic definitions.
- Introduction of Probabilistic Implications and Probabilistic S-implications.

- Laws of Contraposition.
- Law of Importation.

References	Introduction	Introduction to Probabilistic Implications	Laws of Contraposition	Law of Importation	Conclusion

- Basic definitions.
- Introduction of Probabilistic Implications and Probabilistic S-implications.

▲□▶ ▲圖▶ ▲匡▶ ▲匡▶ ― 匡 … のへで

- Laws of Contraposition.
- Law of Importation.
- What does still remain to do?

Basic definitions

Definition 1

A function $I : [0,1]^2 \rightarrow [0,1]$ is called a **fuzzy implication** if it satisfies the following conditions

(11) if $I(_, y)$ is decreasing; (12) if $I(x,_)$ is increasing; (13) I(0,0) = 1; (14) I(1,1) = 1; (15) I(1,0) = 0.

Basic definitions

Definition 1

A function $I : [0,1]^2 \rightarrow [0,1]$ is called a **fuzzy implication** if it satisfies the following conditions (I1) if $I(_, y)$ is decreasing;

(12) if $I(x, _)$ is increasing; (13) I(0,0) = 1; (14) I(1,1) = 1; (15) I(1,0) = 0.

Definition 2

An associative, commutative and non-decreasing operation $T : [0,1]^2 \rightarrow [0,1]$ is called a **t-norm** if it nas the neutral element 1.

Definition 3

A non-increasing function $N : [0,1]^2 \rightarrow [0,1]$ is called a **fuzzy negation** if N(0) = 1, N(1) = 0. A fuzzy negation is called **strong** if it is an involution, i.e. N(N(x)) = xfor all $x \in [0,1]$.

▲□▶ ▲圖▶ ▲匡▶ ▲匡▶ ― 匡 … のへで

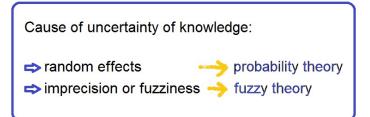
Uncertainty

Cause of uncertainty of knowledge:

➡ random effects
 ➡ imprecision or fuzziness

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQで

Uncertainty



References Intro

Introduction to Probabilistic Implications

Laws of Contraposition

Law of Importation

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ □臣 ○のへ⊙

Conclusion

$$A \rightarrow B \equiv P(B|A)$$

$$P(B|A) = rac{P(B \cap A)}{P(A)} \quad (P(A) > 0)$$

References Introd

Introduction to Probabilistic Implications

aws of Contraposition

_aw of Importation

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

Conclusion

Derivation of Probabilistic Implications

$$A \rightarrow B \equiv P(B|A)$$

$$P(B|A) = rac{P(B \cap A)}{P(A)}$$
 $(P(A) > 0)$

$A \rightarrow B \equiv \neg A \lor B$

$$P(A' \cup B) = P(A') + P(B) - P(A' \cap B)$$

= $P(A') + P(A \cap B)$
= $P(A \cap B) - P(A) + 1$

Copulas

Definition 4

A copula (specifically a 2-copula) is a function $C : [0,1]^2 \rightarrow [0,1]$ which satisfies the following conditions: (a) C(u,0) = C(0,v) = 0 for every $u, v \in [0,1]$ (b) C(u,1) = u for every $u \in [0,1]$ (c) C(1,v) = v for every $v \in [0,1]$ (d) for every $u_1, u_2, v_1, v_2 \in [0,1]$ such that $u_1 \leq u_2$ and $v_1 \leq v_2$ $C(u_2, v_2) - C(u_2, v_1) - C(u_1, v_2) + C(u_1, v_1) \geq 0.$

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQで

Copulas

Definition 4

A copula (specifically a 2-copula) is a function $C : [0,1]^2 \rightarrow [0,1]$ which satisfies the following conditions: (a) C(u,0) = C(0,v) = 0 for every $u, v \in [0,1]$

- (b) C(u, 1) = u for every $u \in [0, 1]$
- (c) C(1, v) = v for every $v \in [0, 1]$
- (d) for every $u_1, u_2, v_1, v_2 \in [0,1]$ such that $u_1 \leq u_2$ and $v_1 \leq v_2$

$$C(u_2, v_2) - C(u_2, v_1) - C(u_1, v_2) + C(u_1, v_1) \ge 0.$$

Theorem 1

Let X and Y be random variables with joint distribution function H and marginal distribution functions F and G, respectively. Then there exists a copula C such that

$$H(x, y) = C(F(x), G(y))$$

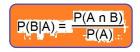
for all $x, y \in \mathbb{R}$.

Conversely, if C is a copula and F and G are distribution functions, then the function H defined by (1) is a joint distribution function with margins F and G.

(1)

_aw of Importation

Conclusion



.aw of Importation

Conclusion

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ □臣 ○のへ⊙

Conclusion

$$P(B|A) = \frac{P(A \cap B)}{P(A)}$$

$$H(x,y) = C(F(x),G(y))$$

aw of Importation

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ □臣 ○のへ⊙

Conclusion

$$\begin{array}{|c|c|c|} \hline P(B|A) = \frac{P(A \cap B)}{P(A)} & A = \{w : X(w) \leq x\} \\ \hline B = \{w : Y(w) \leq y\} \end{array} \quad H(x,y) = C(F(x),G(y)) \end{array}$$

$$P(Y \le y | X \le x) = \frac{P(X \le x, Y \le y)}{P(X \le x)} = \frac{H(x, y)}{F(x)} = \frac{C(F(x), G(y))}{F(x)} = \frac{C(u, v)}{u},$$

where $u = F(x)$ and $v = G(y)$ $(u, v \in [0, 1]).$

Conclusion

Derivation of Probabilistic Implications

$$\begin{array}{|c|c|c|} \hline P(B|A) = \frac{P(A \cap B)}{P(A)} & A = \{w : X(w) \leq x\} \\ \hline B = \{w : Y(w) \leq y\} \end{array} \quad H(x,y) = C(F(x),G(y)) \end{array}$$

$$P(Y \le y | X \le x) = \frac{P(X \le x, Y \le y)}{P(X \le x)} = \frac{H(x, y)}{F(x)} = \frac{C(F(x), G(y))}{F(x)} = \frac{C(u, v)}{u},$$

where $u = F(x)$ and $v = G(y)$ $(u, v \in [0, 1]).$

Grzegorzewski, EUSFLAT 2011:

Definition 5

A function $I_C:[0,1]^2\to [0,1]$ given by

$$I_C(u,v) = \begin{cases} 1 & \text{if } u = 0\\ \frac{C(u,v)}{u} & \text{if } u > 0, \end{cases}$$

where C is a copula, is called a **probabilistic implication** (based on copula C).

(2)

.aw of Importation

Conclusion

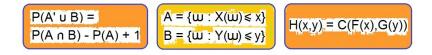
Derivation of Probabilistic S-Implications

$$H(x,y) = C(F(x),G(y))$$

<ロト <回ト < 三ト < 三ト = 三

▲ロ ▶ ▲周 ▶ ▲ 国 ▶ ▲ 国 ▶ ● の Q @

Derivation of Probabilistic S-Implications



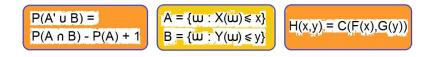
$$P(X > x \text{ or } Y \le y) = P(X \le x, Y \le y) - P(X \le x) + 1$$

= $H(x, y) - F(x) + 1$
= $C(F(x), G(y)) - F(x) + 1 = C(u, v) - u + 1$

where u = F(x) and v = G(y) $(u, v \in [0, 1])$

Conclusion

Derivation of Probabilistic S-Implications



$$P(X > x \text{ or } Y \le y) = P(X \le x, Y \le y) - P(X \le x) + 1$$

= $H(x, y) - F(x) + 1$
= $C(F(x), G(y)) - F(x) + 1 = C(u, v) - u + 1$

where u = F(x) and v = G(y) $(u, v \in [0, 1])$ Grzegorzewski, EUSFLAT 2011:

Definition 6

A function $I_C : [0,1]^2 \rightarrow [0,1]$ given by

$$\widetilde{I}_C(u,v) = C(u,v) - u + 1$$

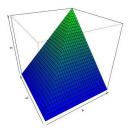
(3)

where C is a copula, is called a **probabilistic S-implication** (based on copula C).

◆□▶ ◆□▶ ◆ 臣▶ ◆ 臣▶ ○ 臣 ○ の Q @

Examples - C = min

$$C(u, v) = M(u, v) = \min(u, v)$$

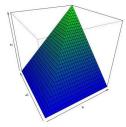


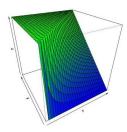
▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ 三三 - のへぐ

Examples - C = min

 $C(u, v) = M(u, v) = \min(u, v)$

$$I_{M}(u, v) = I_{GG}(u, v) = \begin{cases} 1 & \text{if } u \leq v \\ \frac{v}{u} & \text{if } u > v \end{cases}$$



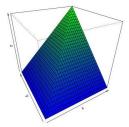


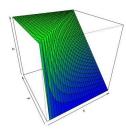
Examples - C = min

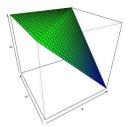
 $C(u, v) = M(u, v) = \min(u, v)$

$$I_{M}(u, v) = I_{GG}(u, v) = \begin{cases} 1 & \text{if } u \leq v \\ \frac{v}{u} & \text{if } u > v \end{cases}$$

$$\tilde{l}_M(u,v) = l_{LK}(u,v) = \min(1, 1-u+v)$$







▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ 三三 - のへぐ

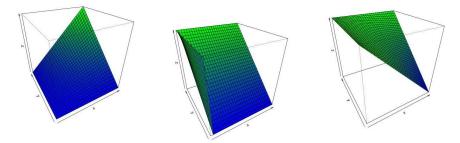
Examples - $C = \Pi$

 $C(u,v)=\Pi(u,v)=uv$

$$\begin{aligned}
I_{\Pi}(u, v) &= \\
\begin{cases}
1 & \text{if } u = 0 \\
v & \text{if } u > 0
\end{aligned}$$

$$\tilde{l}_{\Pi}(u, v) = l_{RC}(u, v) = uv - u + 1$$

◆□▶ ◆□▶ ◆ 臣▶ ◆ 臣▶ ○ 臣 ○ の Q @



v of Importation Co

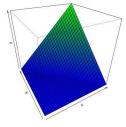
Conclusion

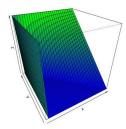
Examples - C = W

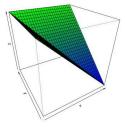
$$C(u, v) = W(u, v) = \max(u + v - 1, 0)$$

$$\begin{cases} I_w(u, v) = \\ \begin{cases} 1 & \text{if } u = 0 \\ \frac{\max(u+v-1, 0)}{u} & \text{if } u > 0 \end{cases} \end{cases}$$

$$ilde{l}_W(u,v) = l_{\mathcal{KD}}(u,v) = \max(1-u,v)$$



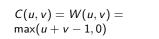




of Importation Co

Conclusion

Examples - C = W



$$\begin{aligned}
I_w(u, v) &= \\
\begin{cases}
1 & \text{if } u = 0 \\
\frac{\max(u+v-1, 0)}{u} & \text{if } u > 0
\end{aligned}$$

$$\tilde{l}_W(u, v) = l_{KD}(u, v) = \max(1 - u, v)$$

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

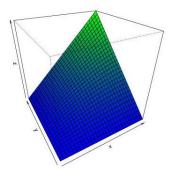


I is a probabilistic S-implication \rightarrow I is a fuzzy implication

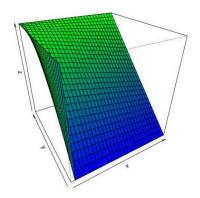
I is a probabilistic implication + (I1) \rightarrow I is a fuzzy implication

Examples - $C \in FGM(\Theta)$

$$C_{FGM(\Theta)}(u, v) = uv + \Theta uv(1-u)(1-v)$$



$$\begin{cases} I & \text{if } u = 0 \\ v + \Theta v (1 - u)(1 - v) & \text{if } u > 0 \end{cases}$$

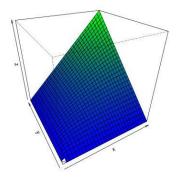


▲□▶ ▲□▶ ▲ □▶ ▲ □▶ □ のへぐ

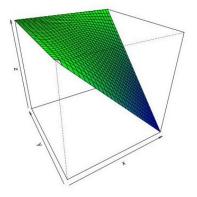
Conclusion

Examples - $C \in AMH(\Theta)$

$$C_{AMH(\Theta)}(u,v) = \frac{uv}{1-\Theta(1-u)(1-v)}$$



$$\widetilde{l}_{AMH(\Theta)}(u,v) = rac{uv}{1-\Theta(1-u)(1-v)} - u + 1$$



▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ 三三 - のへぐ

Main properties of Probabilistic Implications

	Probabilistic Implications	Probabilistic S-Implications
(NP)	×	V
(IP)	✓ ONLY FOR I _{GG} (the Goguen implication - based on copula M=min)	✓ ONLY FOR I _{LK} (the Łukasiewicz implication - based on copula M=min)
(OP)	V ONLY FOR I GG	√ ONLY FOR I _{LK}
(EP)	√ FOR SOME (e.g. I ₆₆ , I _Π) X FOR SOME (e.g. I _{FGM(θ)} ,θ≠0)	\checkmark FOR SOME (e.g. I_{LK} , I_{RC}) χ FOR SOME (e.g. some $I_{AMH(0)}$)

シック 単 (中本) (中本) (日)

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 - のへで

NEW RESULTS

Law of Importation

Conclusion

Laws of Contraposition - definition

Laws of Contraposition - definition

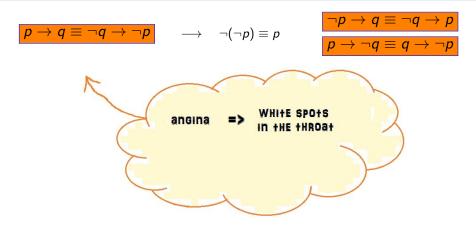
$$p \rightarrow q \equiv \neg q \rightarrow \neg p \qquad \longrightarrow \quad \neg(\neg p) \equiv p$$

$$eg p
ightarrow q \equiv \neg q
ightarrow p$$
 $p
ightarrow \neg q \equiv q
ightarrow \neg p$

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ □臣 ○のへ⊙

▲ロ ▶ ▲周 ▶ ▲ 国 ▶ ▲ 国 ▶ ● の Q @

Laws of Contraposition - definition

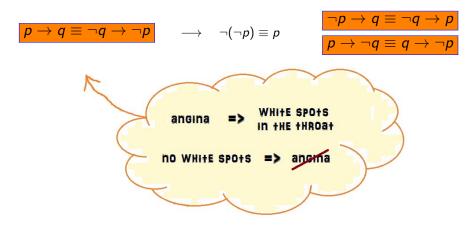


.aw of Importation Co

▲ロ ▶ ▲周 ▶ ▲ 国 ▶ ▲ 国 ▶ ● の Q @

Conclusion

Laws of Contraposition - definition



Laws of Contraposition - definition

$$p \rightarrow q \equiv \neg q \rightarrow \neg p \qquad \longrightarrow \quad \neg(\neg p) \equiv p$$

$$\neg p \to q \equiv \neg q \to p$$
$$p \to \neg q \equiv q \to \neg p$$

Definition 7

- I fuzzy implication, N fuzzy negation. I satisfies the
 - **1** Law of Contraposition with respect to N, if

 $I(x,y) = I(N(y), N(x)) \quad \forall_{x,y \in [0,1]} \quad (CP), (CP(N)).$

Laws of Contraposition - definition

$$p \rightarrow q \equiv \neg q \rightarrow \neg p \qquad \longrightarrow \quad \neg(\neg p) \equiv p$$

$$eg p
ightarrow q \equiv \neg q
ightarrow p$$

 $p
ightarrow \neg q \equiv q
ightarrow \neg p$

Definition 7

I - fuzzy implication, N - fuzzy negation. I satisfies the

1 Law of Contraposition with respect to N, if

 $I(x,y) = I(N(y), N(x)) \quad \forall_{x,y \in [0,1]} \quad (CP), (CP(N)).$

2 Law of Left Contraposition with respect to N, if

 $I(N(x), y) = I(N(y), x) \quad \forall_{x,y \in [0,1]} \quad (L-CP), (L-CP(N)).$

Laws of Contraposition - definition

$$p \to q \equiv \neg q \to \neg p \longrightarrow \neg (\neg p) \equiv p$$

$$eg p
ightarrow q \equiv \neg q
ightarrow p$$
 $p
ightarrow \neg q \equiv q
ightarrow \neg p$

Definition 7

I - fuzzy implication, N - fuzzy negation. I satisfies the

1 Law of Contraposition with respect to N, if

 $I(x,y) = I(N(y), N(x)) \quad \forall_{x,y \in [0,1]} \quad (CP), (CP(N)).$

2 Law of Left Contraposition with respect to N, if

 $I(N(x), y) = I(N(y), x) \quad \forall_{x,y \in [0,1]} \quad (L-CP), (L-CP(N)).$

3 Law of Right Contraposition with respect to N, if $I(x, N(y)) = I(y, N(x)) \quad \forall_{x,y \in [0,1]} \quad (R-CP), (R-CP(N)).$ References

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQで

Conclusion

Laws of Contraposition for Probabilistic Implications

Lemma 1

No probabilistic implication satisfies the Laws of Contraposition (CP) and (L-CP) with respect to any negation N.

Conclusion

Laws of Contraposition for Probabilistic Implications

Lemma 1

No probabilistic implication satisfies the Laws of Contraposition (CP) and (L-CP) with respect to any negation N.

Lemma 2

Every probabilistic implication satisfies (R - CP), but only with respect to the least negation $N_{D1}(x) = \begin{cases} 1, & x = 0 \\ 0, & x > 0 \end{cases}$.

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

Conclusion

Laws of Contraposition for Probabilistic S-Implications

人口 医水黄 医水黄 医水黄素 化甘油

Sac

Laws of Contraposition for Probabilistic S-Implications

Lemma 3

Let \tilde{I}_C be any probabilistic S-implication. If \tilde{I}_C satisfies the (CP) with respect to a fuzzy negation N, then N is the strong negation $N_C(x) = 1 - x$.

・ロト ・四ト ・ヨト ・ヨト ・ヨ

Laws of Contraposition for Probabilistic S-Implications

Lemma 3

Let \tilde{I}_C be any probabilistic S-implication. If \tilde{I}_C satisfies the (CP) with respect to a fuzzy negation N, then N is the strong negation $N_C(x) = 1 - x$.

Corollary 1

Probabilistic S-implication \tilde{I}_C based on a copula C satisfies (CP) (with respect to N_C) if and only if C satisfies the following equation

$$C(x, y) - x + 1 = C(1 - y, 1 - x) + y,$$
 (4)

for all $x, y \in (0, 1)$.

Laws of Contraposition for Probabilistic S-Implications

Lemma 3

Let \tilde{I}_C be any probabilistic S-implication. If \tilde{I}_C satisfies the (CP) with respect to a fuzzy negation N, then N is the strong negation $N_C(x) = 1 - x$.

Corollary 1

Probabilistic S-implication \tilde{I}_C based on a copula C satisfies (CP) (with respect to N_C) if and only if C satisfies the following equation

$$C(x, y) - x + 1 = C(1 - y, 1 - x) + y,$$

for all $x, y \in (0, 1)$.

Example 1

$$C = \Pi, C = M, C = W, C \in FGM(\Theta) OK$$

 $C \in AMH(\Theta) X$

(4)

References

Introduction to Probabilistic Implications

Laws of Contraposition

Law of Importation

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ □臣 ○のへ⊙

Conclusion

Law of Importation - definition

References Intro

Introduction to Probabilistic Implications

Laws of Contraposition

Law of Importation

Conclusion

Law of Importation - definition

Definition 8

Let I be a fuzzy implication and T be a t-norm. I is said to satisfy the **Law of Importation** with t-norm T, if

 $I(T(x,y),z) = I(x,I(y,z)) \quad \forall_{x,y,z \in [0,1]}$ (L1).

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ ─臣 ─のへで

Law of Importation

Conclusion

Law of Importation for Probabilistic Implications

Law of Importation

▲ロ ▶ ▲周 ▶ ▲ 国 ▶ ▲ 国 ▶ ● の Q @

Conclusion

Law of Importation for Probabilistic Implications

Lemma 4

If a probabilistic implication I_C and a t-norm T satisfy the law of importation (LI), then T is positive, i.e., $\neg \exists_{x,y\neq 0} T(x,y) = 0$.

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQで

Conclusion

Law of Importation for Probabilistic Implications

Lemma 4

If a probabilistic implication I_C and a t-norm T satisfy the law of importation (LI), then T is positive, i.e., $\neg \exists_{x,y\neq 0} T(x,y) = 0$.

Example 2

- In with any positive t-norm T.
- \blacksquare I_M only with T_P .
- I_W only with T_P .
- $FGM(\Theta)$ with any t-norm T.
- $AMH(\Theta)$ only for $\Theta = 1$ and only with T_P .

Conclusion

Law of Importation for Probabilistic S-Implications

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQで

Conclusion

Law of Importation for Probabilistic S-Implications

Lemma 5

If a probabilistic S-implication \tilde{I}_C satisfies (LI) with any t-norm T, then T must be of the form T(x, y) = x - C(x, 1 - y).

Law of Importation for Probabilistic S-Implications

Lemma 5

If a probabilistic S-implication \tilde{I}_C satisfies (LI) with any t-norm T, then T must be of the form T(x, y) = x - C(x, 1 - y).

СП	$T_P(x,y) = xy$	OK
C _M	$T_{LK}(x,y) = \max(x+y-1,0)$	OK
C _W	$T_M(x,y) = \min(x,y)$	ОК
$C \in FGM(\Theta)$	$T(x,y) = xy - \Theta xy(1-x)(1-y)$	X
$C \in AMH(\Theta)$	$T(x,y) = xy \frac{1-\Theta(1-x)}{1-\Theta(1-x)y}$	X

▲□▶ ▲□▶ ▲臣▶ ★臣▶ = 臣 = のへで

References	Introduction to Probabilistic Implications	Laws of Contraposition	Law of Importation	Conclusion

 We've examined (CP), (L-CP), (R-CP) and (LI) for probabilistic implications and probabilistic S-mplications;

- We've examined (CP), (L-CP), (R-CP) and (LI) for probabilistic implications and probabilistic S-mplications;
- Questions:
 - Is there any particular family of copulas which satisfy the equation C(x, y) x + 1 = C(1 y, 1 x) + y?
 - If the formula T(x, y) = x C(x, 1 y) expresses any special kind of relation between functions T and C (some "duality")?

- We've examined (CP), (L-CP), (R-CP) and (LI) for probabilistic implications and probabilistic S-mplications;
- Questions:
 - Is there any particular family of copulas which satisfy the equation C(x, y) x + 1 = C(1 y, 1 x) + y?
 - If the formula T(x, y) = x C(x, 1 y) expresses any special kind of relation between functions T and C (some "duality")?
- Other properties of Probabilistic Implications and Probabilistic S-Implications may be checked still.

THANK YOU !