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Basic definitions

Definition 1
A function I : [0, 1]2 → [0, 1] is called a fuzzy implication if it satisfies
the following conditions
(I1) if I(_, y) is decreasing;
(I2) if I(x ,_) is increasing;
(I3) I(0, 0) = 1; (I4) I(1, 1) = 1; (I5) I(1, 0) = 0.

Definition 2
An associative, commutative and non-decreasing operation
T : [0, 1]2 → [0, 1] is called a t-norm if it nas the neutral element 1.

Definition 3
A non-increasing function N : [0, 1]2 → [0, 1] is called a fuzzy negation
if N(0) = 1,N(1) = 0.
A fuzzy negation is called strong if it is an involution, i.e. N(N(x)) = x
for all x ∈ [0, 1].
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Derivation of Probabilistic Implications

A→ B ≡ P(B|A)

P(B|A) = P(B∩A)
P(A) (P(A) > 0)

A→ B ≡ ¬A ∨ B

P(A′ ∪ B) = P(A′) + P(B)− P(A′ ∩ B)

= P(A′) + P(A ∩ B)

= P(A ∩ B)− P(A) + 1
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Copulas

Definition 4

A copula (specifically a 2-copula) is a function C : [0, 1]2 → [0, 1] which
satisfies the following conditions:
(a) C(u, 0) = C(0, v) = 0 for every u, v ∈ [0, 1]
(b) C(u, 1) = u for every u ∈ [0, 1]
(c) C(1, v) = v for every v ∈ [0, 1]
(d) for every u1, u2, v1, v2 ∈ [0, 1] such that u1 ≤ u2 and v1 ≤ v2

C(u2, v2)− C(u2, v1)− C(u1, v2) + C(u1, v1) ≥ 0.

Theorem 1
Let X and Y be random variables with joint distribution function H and
marginal distribution functions F and G, respectively. Then there exists a
copula C such that

H(x , y) = C(F (x),G(y)) (1)

for all x , y ∈ R.
Conversely, if C is a copula and F and G are distribution functions, then the
function H defined by (1) is a joint distribution function with margins F and G.
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Derivation of Probabilistic Implications

P(Y ≤ y |X ≤ x) = P(X ≤ x ,Y ≤ y)
P(X ≤ x) =

H(x , y)
F (x) =

C(F (x),G(y))
F (x) =

C(u, v)
u ,

where u = F (x) and v = G(y) (u, v ∈ [0, 1]).

Grzegorzewski, EUSFLAT 2011:

Definition 5

A function IC : [0, 1]2 → [0, 1] given by

IC (u, v) =
{

1 if u = 0
C(u,v)

u if u > 0,
(2)

where C is a copula, is called a probabilistic implication (based on copula C).
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Derivation of Probabilistic S-Implications

P(X > x or Y ≤ y) = P(X ≤ x ,Y ≤ y)− P(X ≤ x) + 1
= H(x , y)− F (x) + 1
= C(F (x),G(y))− F (x) + 1 = C(u, v)− u + 1

where u = F (x) and v = G(y) (u, v ∈ [0, 1])
Grzegorzewski, EUSFLAT 2011:

Definition 6

A function IC : [0, 1]2 → [0, 1] given by

ĨC (u, v) = C(u, v)− u + 1 (3)

where C is a copula, is called a probabilistic S-implication (based on copula
C).
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Examples - C = min

C(u, v) = M(u, v) =
min(u, v)

IM(u, v) = IGG (u, v) ={
1 if u ≤ v
v
u if u > v

ĨM(u, v) = ILK (u, v) =
min(1, 1− u + v)
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Examples - C = Π

C(u, v) = Π(u, v) = uv
IΠ(u, v) ={

1 if u = 0
v if u > 0

ĨΠ(u, v) = IRC (u, v) =
uv − u + 1
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Examples - C = W

C(u, v) = W (u, v) =
max(u + v − 1, 0)

IW (u, v) ={
1 if u = 0
max(u+v−1,0)

u if u > 0
ĨW (u, v) = IKD(u, v) =
max(1− u, v)

I is a probabilistic S-implication → I is a fuzzy implication

I is a probabilistic implication + (I1) → I is a fuzzy implication
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Examples - C ∈ FGM(Θ)

CFGM(Θ)(u, v) =
uv + Θuv(1− u)(1− v)

IC(FGM(Θ))(u, v) ={
1 if u = 0
v + Θv(1− u)(1− v) if u > 0
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Examples - C ∈ AMH(Θ)

CAMH(Θ)(u, v) = uv
1−Θ(1−u)(1−v)

ĨAMH(Θ)(u, v) = uv
1−Θ(1−u)(1−v)−u+1
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Main properties of Probabilistic Implications
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Laws of Contraposition - definition

p → q ≡ ¬q → ¬p

−→ ¬(¬p) ≡ p
¬p → q ≡ ¬q → p
p → ¬q ≡ q → ¬p

Definition 7
I - fuzzy implication, N - fuzzy negation. I satisfies the

1 Law of Contraposition with respect to N, if

I(x , y) = I(N(y),N(x)) ∀x,y∈[0,1] (CP),(CP(N)).

2 Law of Left Contraposition with respect to N, if

I(N(x), y) = I(N(y), x) ∀x,y∈[0,1] (L-CP),(L-CP(N)).

3 Law of Right Contraposition with respect to N, if

I(x ,N(y)) = I(y ,N(x)) ∀x,y∈[0,1] (R-CP),(R-CP(N)).
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Laws of Contraposition for Probabilistic Implications

Lemma 1
No probabilistic implication satisfies the Laws of Contraposition (CP) and
(L-CP) with respect to any negation N.

Lemma 2
Every probabilistic implication satisfies (R − CP), but only with respect

to the least negation ND1(x) =

{
1, x = 0
0, x > 0 .
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Laws of Contraposition for Probabilistic S-Implications

Lemma 3
Let ĨC be any probabilistic S-implication. If ĨC satisfies the (CP) with
respect to a fuzzy negation N, then N is the strong negation
NC (x) = 1− x.

Corollary 1

Probabilistic S-implication ĨC based on a copula C satisfies (CP) (with
respect to NC ) if and only if C satisfies the following equation

C(x , y)− x + 1 = C(1− y , 1− x) + y , (4)

for all x , y ∈ (0, 1).

Example 1
C = Π, C = M, C = W, C ∈ FGM(Θ) OK
C ∈ AMH(Θ) X
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respect to a fuzzy negation N, then N is the strong negation
NC (x) = 1− x.

Corollary 1
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Law of Importation - definition

(p ∧ q)→ r ≡ p → (q → r)

Definition 8
Let I be a fuzzy implication and T be a t-norm. I is said to satisfy the
Law of Importation with t-norm T, if

I(T (x , y), z) = I(x , I(y , z)) ∀x ,y ,z∈[0,1] (LI).
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Law of Importation for Probabilistic Implications

Lemma 4
If a probabilistic implication IC and a t-norm T satisfy the law of
importation (LI), then T is positive, i.e., ¬∃x ,y 6=0T (x , y) = 0.

Example 2
IΠ - with any positive t-norm T.
IM - only with TP .
IW - only with TP .
FGM(Θ) - with any t-norm T.
AMH(Θ) - only for Θ = 1 and only with TP .



References Introduction Introduction to Probabilistic Implications Laws of Contraposition Law of Importation Conclusion

Law of Importation for Probabilistic Implications

Lemma 4
If a probabilistic implication IC and a t-norm T satisfy the law of
importation (LI), then T is positive, i.e., ¬∃x ,y 6=0T (x , y) = 0.

Example 2
IΠ - with any positive t-norm T.
IM - only with TP .
IW - only with TP .
FGM(Θ) - with any t-norm T.
AMH(Θ) - only for Θ = 1 and only with TP .



References Introduction Introduction to Probabilistic Implications Laws of Contraposition Law of Importation Conclusion

Law of Importation for Probabilistic Implications

Lemma 4
If a probabilistic implication IC and a t-norm T satisfy the law of
importation (LI), then T is positive, i.e., ¬∃x ,y 6=0T (x , y) = 0.

Example 2
IΠ - with any positive t-norm T.
IM - only with TP .
IW - only with TP .
FGM(Θ) - with any t-norm T.
AMH(Θ) - only for Θ = 1 and only with TP .



References Introduction Introduction to Probabilistic Implications Laws of Contraposition Law of Importation Conclusion

Law of Importation for Probabilistic S-Implications

Lemma 5

If a probabilistic S-implication ĨC satisfies (LI) with any t-norm T , then
T must be of the form T (x , y) = x − C(x , 1− y).

CΠ TP(x , y) = xy OK

CM TLK (x , y) = max(x + y − 1, 0) OK

CW TM(x , y) = min(x , y) OK

C ∈ FGM(Θ) T (x , y) = xy −Θxy(1− x)(1− y) X

C ∈ AMH(Θ) T (x , y) = xy 1−Θ(1−x)
1−Θ(1−x)y X
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Conclusion

We’ve examined (CP), (L-CP), (R-CP) and (LI) for probabilistic
implications and probabilistic S-mplications;
Questions:

Is there any particular family of copulas which satisfy the equation
C(x , y)− x + 1 = C(1− y , 1− x) + y?
If the formula T (x , y) = x − C(x , 1− y) expresses any special kind
of relation between functions T and C (some "duality")?

Other properties of Probabilistic Implications and Probabilistic
S-Implications may be checked still.
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