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Abstract

Abstract

The aim of this research is to present some application of fuzzy
techniques in classical mathematics, namely in ordered structures.
One of the most important notions in the classical fuzzy set theory
is a cut set.
It is a bridge between functional and set-theoretic aspects of fuzzy
structures.
The other basic feature of fuzzy sets is their functional nature,
including properties of the ordered structure of membership values.
There are many results concerning properties of cut sets and of
fuzzy sets as functions, which are developed for different purposes.
We use these techniques for investigations of different lattices,
semilattices and functions on ordered sets, obtaining results in the
classical set and order theory.
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H. Monim, B. Šešelja, A. Tepavčević Structural analysis of semilattices and lattices by fuzzy sets



Abstract

Abstract
The aim of this research is to present some application of fuzzy
techniques in classical mathematics, namely in ordered structures.
One of the most important notions in the classical fuzzy set theory
is a cut set.
It is a bridge between functional and set-theoretic aspects of fuzzy
structures.
The other basic feature of fuzzy sets is their functional nature,
including properties of the ordered structure of membership values.

There are many results concerning properties of cut sets and of
fuzzy sets as functions, which are developed for different purposes.
We use these techniques for investigations of different lattices,
semilattices and functions on ordered sets, obtaining results in the
classical set and order theory.
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Abstract (cont.)

We deal with the lattice LX of all functions (fuzzy sets) from a
nonempty set to an ordered structure, considering particular cases
when the co-domain is a semilattice or a lattice, fulfilling particular
properties.
Every cut set of a function µ : X → L determines an equivalence
relation ≈ on L, which induces a closure operator on L.
We describe classes of this equivalence relation, and we give
conditions under which it is a congruence on L.
In particular, we prove that ≈ is a diagonal relation if and only if
µ(X ) is meet-dense subset of L.
Next, if L is finite and distributive and µ(X ) consists of (some)
meet-irreducible elements of L, then ≈ is a congruence relation on
lattice (semilattice) L.
If L is not distributive, then the analogue property holds if µ(X )
consists of particular special elements in L.
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Abstract (cont.)

The quotient lattice L/≈ is proved to be isomorphic with the
lattice of cuts of µ.

Using this, we classify all functions – fuzzy sets in LX , defining
special equivalence relation on LX . We describe equivalence classes
in terms of collections of cuts of the corresponding functions and
also using properties of the congruences on L defined above.
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Ordered structures

A complete lattice is a structure (L,∧,∨,6) where 6 is an
ordering relation on a nonempty set L, where for every subset there
is a infimum (meet, greatest lower bound - glb) and a supremum
(join, least upper bound - lub).

In addition, meet and join are binary operations on L, denoted
respectively by ∧ and ∨ .

Infimum and supremum of an arbitrary family {pi | i ∈ I} of
elements from L are denoted by

∧
i∈I pi and

∨
i∈I pi , respectively.

Every complete lattice possesses the smallest element, the bottom,
0, and the greatest element, the top, 1.
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A semilattice (S , ∗) is an idempotent commutative semigroup.

A natural ordering relation in a semilattice is defined by

x 6 y if and only if x ∗ y = x .

A poset (S ,6) is a complete meet-semilattice if for every subset
there is a infimum (meet, greatest lower bound - glb). A complete
meet-semilattice possesses the bottom element, 0.

(S ,6) is a complete join-semilattice if for every subset there is a
supremum (join, least upper bound - lub). A complete
join-semilattice possesses the top element, 1.

Meet (join) in a meet (join) – semilattice (S ,6) is a binary
operation under which S is an idempotent, commutative
semigroup. Hence also denotation (S ,∧) and (S ,∨).
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For p ∈ L, the principal filter generated by p is denoted by ↑p:

↑p := {x ∈ P | p 6 x}

Dually, the principal ideal generated by p is denoted by ↓p:

↓p := {x ∈ P | x 6 p}.

Let S be a poset and N ⊆ S . Then N is said to be meet-dense in
S if for every x ∈ S there is a subset M of N such that x =

∧
SM.

A join-dense subset is defined dually.

An element a in a lattice is said to be meet-irreducible if
a = b ∧ c implies a = b or a = c .
A join-irreducible element is defined dually.
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An element a in a lattice L is said to be distributive if for all
x , y ∈ L

a ∨ (x ∧ y) = (a ∨ x) ∧ (a ∨ y).

A codistributive element is defined dually.

If a is a distributive element in a lattice L, then the relation θa on
L, defined by

xθay if and only if x ∨ a = y ∨ a

is a congruence relation on L.
If a is codistributive, then the corresponding congruence is defined
dually.
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A closure system over a nonempty set A is collection of subsets
of A, closed under set intersections of arbitrary (including empty)
subcollections.

A closure system is a complete lattice under set inclusion.

A closure operator on a nonempty set A is mapping X 7→ X on
the power set P(A) of A, fulfilling properties:

X ⊆ X

X ⊆ Y implies X ⊆ Y

X = X .

If X = X , then subset X of A is closed under the
corresponding closure operator.
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Fuzzy sets, cut sets

Let X be a nonempty set and L a complete lattice (meet, join
semilattice).
A mapping µ : X → L is called an (L-valued), function on X , or a
fuzzy set on X .
Let p ∈ L. A cut set of an L-valued function µ : X → L (a p-cut)
is a subset µp ⊆ X defined by:

x ∈ µp if and only if µ(x) ≥ p.

In other words, a p-cut of µ : X → L is the inverse image of the
principal filter ↑p, generated by p ∈ L:

µp = µ−1(↑p).

It is well known that for p, q ∈ L,

from p ≤ q it follows that µq ⊆ µp.
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H. Monim, B. Šešelja, A. Tepavčević Structural analysis of semilattices and lattices by fuzzy sets



Fuzzy sets, cut sets

Let X be a nonempty set and L a complete lattice (meet, join
semilattice).
A mapping µ : X → L is called an (L-valued), function on X , or a
fuzzy set on X .
Let p ∈ L. A cut set of an L-valued function µ : X → L (a p-cut)
is a subset µp ⊆ X defined by:

x ∈ µp if and only if µ(x) ≥ p.

In other words, a p-cut of µ : X → L is the inverse image of the
principal filter ↑p, generated by p ∈ L:

µp = µ−1(↑p).

It is well known that for p, q ∈ L,

from p ≤ q it follows that µq ⊆ µp.
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The collection µL = {f ⊆ X | f = µp, for some p ∈ L} of all cuts
of µ : X → L is usually ordered by set inclusion.

Lemma

If µ : X → L is an L-valued function on X , then the collection µL
of all cuts of µ is a closure system on X under the set inclusion.

The following is a kind of a converse.

Proposition

Let F be a closure system over a set X . Then there is a lattice L
and an L-valued function µ : X → L, such that the collection µL of
cuts of µ is F .

The required lattice L is the collection F ordered dually to
inclusion, and µ : X → L can be defined by:

µ(x) =
⋂
{f ∈ F | x ∈ f }.

Moreover, for every f ∈ F , the cut µf coincides with f : µf = f .
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The following are some properties of the collection of cuts.

Let µ : X → L be an L-valued function on X and (µL,≤) the poset
in which µL = {µp | p ∈ L} (the collection of cuts of µ) and the
order ≤ is the inverse of the set inclusion: for µp, µq ∈ µL,

µp ≤ µq if and only if µq ⊆ µp.

Lemma

(µL,≤) is a complete lattice and⋂
{µp | p ∈ L1 ⊆ L} = µ∨(p|p∈L1).
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Equivalence relation ≈ on codomain

For µ : X → L, we define a relation ≈ on L: for p, q ∈ L

p ≈ q if and only if µp = µq.

Lemma

The relation ≈ is an equivalence on L, and

p ≈ q if and only if ↑p ∩ µ(X ) = ↑q ∩ µ(X ),

where µ(X ) = {r ∈ L | r = µ(x) for some x ∈ X}.

We denote by L/≈ the collection of equivalence classes under ≈.

Lemma

For every x ∈ X

µ(x) =
∨

[µ(x)]≈.
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H. Monim, B. Šešelja, A. Tepavčević Structural analysis of semilattices and lattices by fuzzy sets



Equivalence relation ≈ on codomain
For µ : X → L, we define a relation ≈ on L: for p, q ∈ L

p ≈ q if and only if µp = µq.

Lemma

The relation ≈ is an equivalence on L, and

p ≈ q if and only if ↑p ∩ µ(X ) = ↑q ∩ µ(X ),

where µ(X ) = {r ∈ L | r = µ(x) for some x ∈ X}.

We denote by L/≈ the collection of equivalence classes under ≈.

Lemma

For every x ∈ X

µ(x) =
∨

[µ(x)]≈.
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The quotient L/≈ can be ordered by the relation ≤L/≈ defined as
follows:

[p]≈ ≤L/≈ [q]≈ if and only if ↑q ∩ µ(X ) ⊆ ↑p ∩ µ(X ).

The order ≤L/≈ of classes in L/≈ corresponds to the order of
suprema of classes in L (we denote the order in L by ≤L):

Proposition

The poset (L/≈,≤L/≈) is a complete lattice.
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Next we connect the lattice (L/≈,≤L/≈) and the lattice (µL,≤) of
cuts of µ; recall that the latter is ordered dually to inclusion.

Proposition

Let µ : X → L be an L-valued function on X . The lattice of cuts
(µL,≤) is isomorphic with the lattice (L/≈,≤L/≈) of ≈-classes in
L under the mapping µp 7→ [p]≈.
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Proposition

If L is a complete lattice, then ≈ is compatible with joins in L,
hence it is a congruence relation on the semilattice (L,∨).

Our aim is to find conditions under which ≈ is compatible also
with meets in L.
Hence we investigate conditions under which ≈ is a congruence
relation on the semilattice (L,∧) and thus also on the lattice L.
Under such conditions, the lattice (µL,≤) of cuts of a fuzzy set µ
is a homomorphic image of L, and if ≈ classes are one-element
sets, we get an isomorphism.
In this case L is (up to an isomorphism) represented as a lattice of
cuts of µ.
Or, if ≈ is a congruence which is not a diagonal relation, we obtain
that the lattice of cuts possesses the same properties as L (e.g., it
is Boolean if L is, it is Heyting if L is and so on).
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Problem

Let L be a complete lattice (semilattice, or Heyting
semilattice), and M a nonempty subset of L. Let
also ≈M be a relation on L defined by:

p ≈M q if and only if ↑p ∩M = ↑q ∩M .

Find conditions under which ≈M is a congruence
relation on L.
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In the following, L is a complete lattice, M is a nonempty subset of
L, and ≈M is the above defined relation on L:

p ≈M q if and only if ↑p ∩M = ↑q ∩M,

for a given subset M of L.

Proposition

For any p, q ∈ L, ↑p ∩ ↑q = ↑(p ∨ q).

Proposition

For every p ∈ L, if ↑p ∩M 6= ∅, then [p]≈M
has the top element∨

[p]≈M
, and

∨
[p]≈M

∈ [p]≈M
.
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Proposition

If ≈M is a congruence relation on L, then for every x ∈ M and
p, q ∈ L

x ≤ p ∧ q implies x ≤ p.

Theorem

M is a meet-dense subset of L if and only if the ≈M classes are
one-element sets (i.e., if and only if ≈M is a diagonal relation in L).

Theorem

Let J be a minimal meet-dense subset of L and ∅ 6= M ⊆ J. Then
≈M is a congruence relation on L.

Theorem

If M is a collection of (some) meet-irreducible elements in L, then
≈M is a congruence relation on L.
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Theorem

Let a be a distributive element in L, and M = ↑a. Then ≈M is a
congruence relation on L.

Theorem

Let L be an infinitely distributive lattice and I ⊆ L the set of all
meet-irreducible elements of L. Further, let M ⊆ I . Then ≈M is a
congruence relation on L.
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Let (S ,∧) be a meet-semilattice. We say that an element a ∈ L is
distributive in S if a ≥ b ∧ c implies that a = b1 ∧ c1, for some
b1 ≥ b and c1 ≥ c .

Theorem

If m is a meet-irreducible and distributive element in a
meet-semilattice L, and M = ↑m, then ≈M is a congruence on S.

A meet-semilattice is said to be distributive (Chajda), if

x 6 y ∧ z implies x 6 y1 ∧ z1 for some y1 > y and z1 > z .

A distributive join-semilatice is defined dually.
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H. Monim, B. Šešelja, A. Tepavčević Structural analysis of semilattices and lattices by fuzzy sets



Let (S ,∧) be a meet-semilattice.

An element c ∈ S is said to be a relative pseudocomplement of
a with respect to b, if c is the greatest element of S such that
a ∧ c 6 b.

If such c exists for all a, b ∈ S , then S is a relatively
pseudocomplemented (Brouwerian) semilattice.

Every relatively pseudocomplemented semilattice is distributive.
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A relatively pseudocomplemented semilattice (S ,∧) with the
bottom element 0, is a Heyting semilattice.

Theorem

If S is a distributive or Heyting semilattice and m ∈ S meet
irreducible element, then for M = ↑m, ≈M is a congruence on S.
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We say that a collection of subsets of a nonempty set X is a
semi-closure system on X , if it is closed under nonempty
intersections of arbitrary subcollections.

Theorem

Let S be a complete meet-semilattice and X a nonempty set. If µ
is a function in SX defined by

µ(x) =
∨
{p ∈ S | x ∈ µp}

for every x ∈ X , then the collection µS , ordered by inclusion, is a
semi-closure system on X .

The converse:

Theorem

If F is a semi-closure system over a nonempty set X , then there is
a meet-semilattice S and a fuzzy set µ : X → S, such that the
collection of cuts of µ coincides with F .
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We say that a collection of subsets of a nonempty set X is a dual
semi-closure system on X , if it is closed under intersections of
arbitrary nonempty subcollections.

Theorem

Let S be a complete join-semilattice and X be a nonempty set. If
µ is a function in SX defined by µ(x) =

∨
{p ∈ S | x ∈ µp} for

every x ∈ X , then the collection µS , ordered by inclusion, is a dual
semi-closure system on X .

The converse:

Theorem

If F is a dual semi-closure system over a nonempty set X , then
there is a join-semilattice S and a fuzzy set µ : X → S, such that
the collection of cuts of µ coincides with F .
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Let L be a complete lattice and X a nonempty set.

For µ ∈ LX , let

Lµ := ({↑p ∩ µ(X ) | p ∈ L},⊆).

By the definition, Lµ consists of particular collections of images of
µ in L and is a poset under inclusion.
µL = {µp | p ∈ L} - the lattice of cuts of µ.

Proposition

Lµ is a lattice isomorphic with the lattice µL of cuts of µ, under
f : µp 7→↑p ∩ µ(X ).
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A classification of functions in the set LX is introduced as follows.

Let ∼ be the relation on LX , defined by:
µ ∼ ν if and only if the correspondence f : µ(x) 7→ ν(x), x ∈ X is
a bijection from µ(X ) onto ν(X ) which has an extension to an
isomorphism from the lattice Lµ onto the lattice Lν , given by the
map
F (↑p ∩ µ(X )) :=↑

∧
{ν(x) | µ(x) ≥ p} ∩ ν(X ), p ∈ L.
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If µ ∼ ν, then the fuzzy sets µ and ν on X are said to be
equivalent.

Classification of functions in LX

Theorem

Let µ, ν : X → L. Then µ ∼ ν if and only if fuzzy sets µ and ν
have equal collections of cuts.
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Example
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Lµ = ({↑p ∩ µ(X ) | p ∈ L},⊆)
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µp = µ−1(↑p); µL = {µp | p ∈ L}
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Thank you, this was all!
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