On extensions of the weight-center operator defined over intuitionistic fuzzy sets

Alžbeta Michalíková

Faculty of Natural Sciences Matej Bel University Banská Bystrica, Slovakia

January 28, 2014

Alžbeta Michalíková

Il SciencesMatej Bel University Banská Bystrica, Slovakia

◆□> ◆□> ◆臣> ◆臣> 善臣 めへぐ

Fuzzy sets

- Ω universe,
- *A* fuzzy set defined on Ω , $A \subseteq \Omega$,
- $\mu_A(x)$ membership function

 $\mu_A(\mathbf{x}): \Omega \rightarrow [0, 1].$

Alžbeta Michalíková

SciencesMatei Bel University Banská Bystrica, Slovakia

◆□> ◆□> ◆臣> ◆臣> 善臣 めへぐ

IF sets

- Ω universe,
- A IF set defined on Ω , $A \subseteq \Omega$,
- $\mu_A(x)$ membership function,
- $\nu_A(x)$ nonmembership function

$$\mu_{\mathcal{A}}(x), \nu_{\mathcal{A}}(x) : \Omega \to [0, 1]$$

 $\forall x \in \Omega : 0 \le \mu_{\mathcal{A}}(x) + \nu_{\mathcal{A}}(x) \le 1.$

We write

$$A = \{ \langle x, \mu_A(x), \nu_A(x) \rangle \mid x \in \Omega \}.$$

Alžbeta Michalíková

SciencesMatej Bel University Banská Bystrica, Slovakia

イロト イヨト イヨト イヨト ヨー わへの

Operators

Relations and operations defined on IF sets

$$\boldsymbol{A} = \boldsymbol{B} \quad \Leftrightarrow \quad \forall \boldsymbol{x} \in \Omega : \mu_{\boldsymbol{A}}(\boldsymbol{x}) = \mu_{\boldsymbol{B}}(\boldsymbol{x}) \And \nu_{\boldsymbol{A}}(\boldsymbol{x}) = \nu_{\boldsymbol{B}}(\boldsymbol{x})$$

$$A \subseteq B \hspace{0.2cm} \Leftrightarrow \hspace{0.2cm} orall x \in \Omega : \mu_{A}(x) \leq \mu_{B}(x) \And
u_{A}(x) \geq
u_{B}(x)$$

$$\overline{A} = \{ \langle x, \nu_A(x), \mu_A(x) \rangle \mid x \in \Omega \}$$

$$\Box(A) = \{ \langle x, \mu_A(x), 1 - \mu_A(x) \rangle \mid x \in \Omega \}$$

$$\diamond(\boldsymbol{A}) = \{ \langle \boldsymbol{x}, \boldsymbol{1} - \nu_{\boldsymbol{A}}(\boldsymbol{x}), \nu_{\boldsymbol{A}}(\boldsymbol{x}) \rangle \mid \boldsymbol{x} \in \Omega \}$$

Alžbeta Michalíková

Relations and operations defined on IF sets

$$I(A) = \{ \langle x, k, l \rangle \mid x \in \Omega \}$$
$$C(A) = \{ \langle x, K, L \rangle \mid x \in \Omega \}$$

where

$$k = \inf_{y \in \Omega} \mu_A(y), \quad I = \sup_{y \in \Omega} \nu_A(y)$$
$$K = \sup_{y \in \Omega} \mu_A(y), \quad L = \inf_{y \in \Omega} \nu_A(y)$$

Alžbeta Michalíková

SciencesMatei Bel University Banská Bystrica, Slovakia

Operator defined on IF sets over a finite universe

Let Ω be the finite set. Then

$$W(A) = \left\{ \left\langle x, \frac{\sum\limits_{y \in \Omega} \mu_A(y)}{card(\Omega)}, \frac{\sum\limits_{y \in \Omega} \nu_A(y)}{card(\Omega)} \right\rangle \mid x \in \Omega \right\}$$

 $card(\Omega)$ - the number of the elements of the finite universe Ω .

Alžbeta Michalíková

al SciencesMatei Bel University Banská Bystrica, Slovakia

Remark

W(A) is an IF set.

$$0 \leq \frac{\sum\limits_{y \in \Omega} \mu_{A}(y)}{card(\Omega)} + \frac{\sum\limits_{y \in \Omega} \nu_{A}(y)}{card(\Omega)} \leq 1$$

Alžbeta Michalíková

I SciencesMatei Bel University Banská Bystrica, Slovakia

◆□▶ ◆□▶ ◆ □▶ ◆ □▶ □ つへぐ

Assumptions for modifications of weight-center operator defined on IF sets *A* and *B* over the finite universe Ω

Denote

$$H_{\alpha,\beta}(A) = \{ \langle x, \alpha.\mu_A(x), \nu_A(x) + \beta.\pi_A(x) \rangle \mid x \in \Omega \}$$
$$J_{\alpha,\beta}(A) = \{ \langle x, \mu_A(x) + \alpha.\pi_A(x), \beta.\nu_A(x) \rangle \mid x \in \Omega \}$$

where

$$\pi_A(\mathbf{x}) = \mathbf{1} - \mu_A(\mathbf{x}) - \nu_A(\mathbf{x})$$

then

$$H_{0,0}(X) = \{ \langle x, 0, \nu_X(x) \rangle \mid x \in \Omega \}$$
$$J_{0,0}(X) = \{ \langle x, \mu_X(x), 0 \rangle \mid x \in \Omega \}$$

Alžbeta Michalíková

イロト イヨト イヨト イヨト ヨー わへの

Modification of weight-center operators defined on IF sets *A* and *B* over the finite universe Ω

Let Ω be the finite set and $B \neq H_{0,0}(X)$, $B \neq J_{0,0}(X)$. Then

$$W^{1}_{B}(A) = \left\{ \left\langle x, \frac{\sum\limits_{y \in \Omega} \mu_{A}(y) \cdot \mu_{B}(x)}{card(\Omega) \cdot \sum\limits_{y \in \Omega} \mu_{B}(y)}, \frac{\sum\limits_{y \in \Omega} \nu_{A}(y) \cdot \nu_{B}(x)}{card(\Omega) \cdot \sum\limits_{y \in \Omega} \nu_{B}(y)} \right\rangle \mid x \in \Omega \right\}$$

Riečan, B., A. Ban, K. Atanassov, Modifications of the weightcenter operator, defined over intuitionistc fuzzy sets. Part 1. *Issues in Intuitionistic Fuzzy Sets and Generalized Nets*

Alžbeta Michalíková

Assumptions for next modifications of weight-center operators defined on IF sets *A* and *B* over the finite universe Ω

$$\|X\| = rac{\sum\limits_{oldsymbol{y}\in\Omega}(\mu_X(oldsymbol{y})+
u_X(oldsymbol{y}))}{card(\Omega)}$$

Alžbeta Michalíková

I SciencesMatei Bel University Banská Bystrica, Slovakia

◆□> ◆□> ◆目> ◆目> → 目 → のへで

◆□▶ ◆□▶ ◆三▶ ◆三▶ ◆□ ◆ ○へ○

Modification of weight-center operator defined on IF sets A and B over the finite universe Ω

Let $B \neq H_{0,0}(X)$, $B \neq J_{0,0}(X)$ and $||A|| \le ||B||$. Then $W_B^2(A) = \left\{ \left\langle x, \frac{\sum\limits_{y \in \Omega} \mu_A(y) \cdot \mu_B(x)}{2 \max(\sum\limits_{y \in \Omega} \mu_B(y), \sum\limits_{y \in \Omega} \nu_B(y))}, \frac{\sum\limits_{y \in \Omega} \nu_A(y) \cdot \nu_B(x)}{2 \max(\sum\limits_{y \in \Omega} \mu_B(y), \sum\limits_{y \in \Omega} \nu_B(y))} \right\rangle \right\}$

Riečan, B., A. Ban, K. Atanassov, Modifications of the weightcenter operator, defined over intuitionistc fuzzy sets. Part 2. *Notes on Intuitionistic Fuzzy Sets*, Vol. 19, 2013, No. 2, 1-5.

Alžbeta Michalíková

◆□▶ ◆□▶ ◆三▶ ◆三▶ ◆□ ◆ ○へ○

Modification of weight-center operator defined on IF sets A and B over the finite universe $\boldsymbol{\Omega}$

Let
$$B \neq H_{0,0}(X)$$
, $B \neq J_{0,0}(X)$ and $||A|| \le ||B||$. Then

$$W_B^3(A) = \left\{ \left\langle x, \frac{\sum\limits_{y \in \Omega} \mu_A(y) \cdot \mu_B(x)}{\sum\limits_{y \in \Omega} (\mu_B(y) + \nu_B(y))}, \frac{\sum\limits_{y \in \Omega} \nu_A(y) \cdot \nu_B(x)}{\sum\limits_{y \in \Omega} (\mu_B(y) + \nu_B(y))} \right\rangle \right\}$$

Riečan, B., A. Ban, K. Atanassov, Modifications of the weightcenter operator, defined over intuitionistc fuzzy sets. Part 3. *Notes on Intuitionistic Fuzzy Sets*, Vol. 19, 2013, No. 3, 20-24.

Alžbeta Michalíková

◆□▶ ◆□▶ ◆三▶ ◆三▶ ◆□ ◆ ○へ○

Modification of weight-center operator defined on IF sets *A* and *B* over the countable universe Ω

Let Ω be countable and $\sum_{y \in \Omega} \mu_A(y) + \sum_{y \in \Omega} \nu_A(y) < c, c < \infty$. Let $B \neq H_{0,0}(X)$ and $B \neq J_{0,0}(X)$. Then

$$W_B^4(A) = \left\{ \left\langle x, \frac{\sum\limits_{y \in \Omega} \mu_A(y) \cdot \mu_B(x)}{c \cdot \sum\limits_{y \in \Omega} \mu_B(y)}, \frac{\sum\limits_{y \in \Omega} \nu_A(y) \cdot \nu_B(x)}{c \cdot \sum\limits_{y \in \Omega} \nu_B(y)} \right\rangle \mid x \in \Omega \right\}$$

Tomanová, M., Modifications of the weight-center operator, defined over intuitionistc fuzzy sets with a countable universe. *Notes on Intuitionistic Fuzzy Sets*, Vol. 19, 2013, No. 3, 36-42.

Alžbeta Michalíková

Weight-center operator defined on IF sets A and B over the closed interval

Let $\Omega = [\alpha, \beta]$, $\alpha < \beta$. Then

$$W(A) = \left\{ \left\langle x, \frac{\int_{\alpha}^{\beta} \mu_{A}(y) dy}{\beta - \alpha}, \frac{\int_{\alpha}^{\beta} \nu_{A}(y) dy}{\beta - \alpha} \right\rangle \mid x \in \Omega \right\}$$

W(A) is an IF set.

Alžbeta Michalíková

I SciencesMatei Bel University Banská Bystrica, Slovakia

◆□> ◆□> ◆臣> ◆臣> 善臣 めへぐ

Modification of weight-center operator defined on IF sets *A* and *B* over the closed interval

Let $\Omega = [\alpha, \beta]$, $\alpha < \beta$. Let $B \neq H_{0,0}(X)$ and $B \neq J_{0,0}(X)$. Then

$$W_{B}(A) = \left\{ \left\langle x, \frac{\int_{\alpha}^{\beta} \mu_{A}(y) dy. \mu_{B}(x)}{(\beta - \alpha). \int_{\alpha}^{\beta} \mu_{B}(y) dy}, \frac{\int_{\alpha}^{\beta} \nu_{A}(y) dy. \nu_{B}(x)}{(\beta - \alpha) \int_{\alpha}^{\beta} \mu_{B}(y) dy} \right\rangle \mid x \in \Omega \right\}$$

 $W_B(A)$ is not an IF set.

Alžbeta Michalíková

I SciencesMatei Bel University Banská Bystrica, Slovakia

イロト イヨト イヨト イヨト ヨー わへの

Modification of weight-center operator defined on IF sets *A* and *B* over the closed interval

Let $\Omega = [\alpha, \beta]$, $\alpha < \beta$. Then

$$W^{1}_{B}(A) = \left\{ \left\langle x, \frac{\int_{\alpha}^{\beta} \mu_{A}(y) dy}{\beta - \alpha} . \mu_{B}(x), \frac{\int_{\alpha}^{\beta} \nu_{A}(y) dy}{\beta - \alpha} . \nu_{B}(x) \right\rangle \mid x \in \Omega \right\}$$

 $W_B^1(A)$ is an IF set.

Alžbeta Michalíková

Il SciencesMatei Bel University Banská Bystrica, Slovakia

◆□▶ ◆□▶ ◆ □▶ ◆ □▶ □ つへぐ

Assumptions for next modifications of weight-center operators defined on IF sets *A* and *B* over the closed interval

$$\|\boldsymbol{X}\| = \frac{\int_{\alpha}^{\beta} (\mu_{\boldsymbol{X}}(\boldsymbol{y}) + \nu_{\boldsymbol{X}}(\boldsymbol{y}))}{(\beta - \alpha)}$$

Alžbeta Michalíková

I SciencesMatei Bel University Banská Bystrica, Slovakia

◆□> ◆□> ◆臣> ◆臣> 善臣 めへぐ

◆□> ◆□> ◆臣> ◆臣> 善臣 めへぐ

Modification of weight-center operator defined on IF sets *A* and *B* over the closed interval

Let
$$\Omega = [\alpha, \beta]$$
, $\alpha < \beta$.
Let $B \neq H_{0,0}(X)$, $B \neq J_{0,0}(X)$ and $||A|| \le ||B||$. Then

$$W_B^2(A) =$$

$$= \left\{ \left\langle x, \frac{\int_{\alpha}^{\beta} \mu_{A}(y) dy. \mu_{B}(x)}{\int_{\alpha}^{\beta} \mu_{B}(y) dy + \int_{\alpha}^{\beta} \nu_{B}(y) dy}, \frac{\int_{\alpha}^{\beta} \nu_{A}(y) dy. \nu_{B}(x)}{\int_{\alpha}^{\beta} \mu_{B}(y) dy + \int_{\alpha}^{\beta} \nu_{B}(y) dy} \right\rangle \right\}$$

$$W_{B}^{2}(A) \text{ is an IF set.}$$

Alžbeta Michalíková

Modification of weight-center operator defined on IF sets *A* and *B* over the closed interval

Let
$$\Omega = [\alpha, \beta], \alpha < \beta$$
.
Let $B \neq H_{0,0}(X), B \neq J_{0,0}(X)$ and $||A|| \le ||B||$. Then

$$W^3_B(A) =$$

 $\begin{cases} \left\langle \frac{\int_{\alpha}^{\beta} \mu_{A}(y) dy . \mu_{B}(x)}{2. \max(\int_{\alpha}^{\beta} \mu_{B}(y) dy, \int_{\alpha}^{\beta} \nu_{B}(y) dy)}, \frac{\int_{\alpha}^{\beta} \nu_{A}(y) dy . \nu_{B}(x)}{2. \max(\int_{\alpha}^{\beta} \mu_{B}(y) dy, \int_{\alpha}^{\beta} \nu_{B}(y) dy)} W_{B}^{3}(A) \text{ is an IF set.} \end{cases} \end{cases}$

Alžbeta Michalíková

Properties of weight-center operators defined on IF sets A and B over the closed interval

Let $W_B^i(A)$, i = 1, 2, 3 be the modifications of weight-center operator with their properties. Then

$$\overline{W_B^i(\overline{A})} = W_B^i(A)$$

$$I(W_B^i(A) = W_B^i(I(A))$$

$$C(W_B^i(A)) = W_B^i(C(A))$$

Alžbeta Michalíková

SciencesMatei Bel University Banská Bystrica, Slovakia

イロト イヨト イヨト イヨト ヨー わへの

Properties of weight-center operators defined on IF sets *A* and *B* over the closed interval

Let $W_B^i(A)$, i = 1, 2, 3 be the modifications of weight-center operator with their properties.

Then

$$\Box W_B^i(A) \subseteq W_B^i(\Box A)$$

$$\diamond (W_B^i(A) \supseteq W_B^i(\diamond(A))$$

Alžbeta Michalíková

SciencesMatei Bel University Banská Bystrica, Slovakia

イロト イヨト イヨト イヨト ヨー わへの

Thank you for your attention!

Alžbeta Michalíková

I SciencesMatei Bel University Banská Bystrica, Slovakia

イロト イヨト イヨト イヨト ヨー わへの