EXTREME VALUE ANALYSIS BASED ON COPULAS AND THEIR DIAGONALS

Who? Maddalena Manzi
From? Ca’ Foscari University of Venice
Table of contents

The problem of risk accumulation
Extreme value distributions
Extreme copula

Danish data and the tails for extreme losses

Diagonals
Application to two assets option pricing
The problem of risk accumulation

- September 11th 2001 terrorist attacks;
- the explosion of the space shuttle Challenger on January 28, 1983: the exceptionally low temperature (15 degrees F lower than the coldest previous launch) the night before launching led to failure of the O-rings which caused the disaster;
- environmental risks (earthquakes, flood);
- civil engineering (the problem of water at flood level in Venice).
The problem of risk accumulation

- September 11th 2001 terrorist attacks;
- the explosion of the space shuttle Challenger on January 28, 1983: the exceptionally low temperature (15 degrees F lower than the coldest previous launch) the night before launching led to failure of the O-rings which caused the disaster;
- environmental risks (earthquakes, flood);
- civil engineering (the problem of water at flood level in Venice).
The problem of risk accumulation

- September 11th 2001 terrorist attacks;
- the explosion of the space shuttle Challenger on January 28, 1983: the exceptionally low temperature (15 degrees F lower than the coldest previous launch) the night before launching led to failure of the O-rings which caused the disaster;
- environmental risks (earthquakes, flood);
- civil engineering (the problem of water at flood level in Venice).
The problem of risk accumulation

- September 11th 2001 terrorist attacks;
- the explosion of the space shuttle Challenger on January 28, 1983: the exceptionally low temperature (15 degrees F lower than the coldest previous launch) the night before launching led to failure of the O-rings which caused the disaster;
- environmental risks (earthquakes, flood);
- civil engineering (the problem of water at flood level in Venice).
Generali collaboration: Solvency II and the dependence between extreme events

Gaussian copula
Traditional, but underestimation of the risk of joint downside movements.

Gumbel copula
Overestimation of the risk.

t-Student copula
Dependence in the tails, but not in the center.
Generali collaboration: Solvency II and the dependence between extreme events

Gaussian copula

Traditional, but underestimation of the risk of joint downside movements.

Gumbel copula

Overestimation of the risk.

t-Student copula

Dependence in the tails, but not in the center.
Generali collaboration: Solvency II and the dependence between extreme events

Gaussian copula

Traditional, but underestimation of the risk of joint downside movements.

Gumbel copula

Overestimation of the risk.

t-Student copula

Dependence in the tails, but not in the center.
Generali collaboration: Solvency II and the dependence between extreme events

- **Gaussian copula**: Traditional, but underestimation of the risk of joint downside movements.
- **Gumbel copula**: Overestimation of the risk.
- **t-Student copula**: Dependence in the tails, but not in the center.
Elliptic copulas

The Normal copula is the dependence function

$$C_n^\Phi(u; \Omega) = \Phi_n(\Phi^{-1}(u_1), \ldots, \Phi^{-1}(u_n); \Omega),$$ \hspace{1cm} (1)

where \(\Phi_n \) is the cdf for the \(n \)-variate standard normal distribution with correlation matrix \(\Omega \).

The t-Student copula

$$C_n^\Psi(u; \Omega, \nu) = \Psi_n(\Psi^{-1}(u_1, \nu), \ldots, \Psi^{-1}(u_n; \nu); \Omega, \nu),$$ \hspace{1cm} (2)

where \(\Phi_n \) denotes the cdf of an \(n \)-variate Student's t distribution with correlation matrix \(\Omega \) and degrees of freedom parameter \(\nu > 2 \).
Elliptic copulas

The Normal copula is the dependence function

\[C_n^\Phi(u; \Omega) = \Phi_n(\Phi^{-1}(u_1), \ldots, \Phi^{-1}(u_n); \Omega), \]

(1)

where \(\Phi_n \) is the cdf for the \(n \)-variate standard normal distribution with correlation matrix \(\Omega \).

The \(t \)-Student copula

\[C_n^\Psi(u; \Omega, \nu) = \Psi_n(\Psi^{-1}(u_1, \nu), \ldots, \Psi^{-1}(u_n; \nu); \Omega, \nu), \]

(2)

where \(\Phi_n \) denotes the cdf of an \(n \)-variate Student’s \(t \) distribution with correlation matrix \(\Omega \) and degrees of freedom parameter \(\nu > 2 \).
Archimedean copula

Gumbel copula: an extreme copula

\[
C^G_n(u; a) = \exp \left(- \left(\sum_{i=1}^{n} (- \log u_i)^a \right)^{\frac{1}{a}} \right),
\]

with \(a \geq 1 \), where \(a = 1 \) implies independence. Upper tail dependence but lower tail independence.
Extreme copula

Definition: MEV copulas

An extreme copula satisfies

\[C(u_1^t, \ldots, u_n^t, \ldots, u_N^t) = C^t(u_1, \ldots, u_n, \ldots, u_N) \quad \forall t > 0. \]

MEV copulas are easily recognized from

\[A(x) = -\log G(x), \]

being homogeneous of order 1, i.e., \(A(tx) = tA(x) \), for all \(t > 0 \), with \(\tilde{G}(x) = C(e^{-x_1}, \ldots, e^{-x_m}). \)

Remark

Gaussian copula is not an extreme value copula.
An extreme copula satisfies

$$C(u_1^t, \ldots, u_n^t, \ldots, u_N^t) = C^t(u_1, \ldots, u_n, \ldots, u_N) \forall t > 0.$$

MEV copulas are easily recognized from

$$A(x) = -\log G(x),$$

being homogeneous of order 1, i.e., $A(tx) = tA(x)$, for all $t > 0$, with $\tilde{G}(x) = C(e^{-x_1}, \ldots, e^{-x_m})$.

Remark

Gaussian copula is not an extreme value copula.
An extreme copula satisfies

\[C(u_1^t, \ldots, u_n^t, \ldots, u_N^t) = C^t(u_1, \ldots, u_n, \ldots, u_N) \forall t > 0. \]

MEV copulas are easily recognized from

\[A(x) = -\log G(x), \]

being homogeneous of order 1, i.e., \(A(tx) = tA(x) \), for all \(t > 0 \), with \(\tilde{G}(x) = C(e^{-x_1}, \ldots, e^{-x_m}). \)

Remark

Gaussian copula is not an extreme value copula.
Extreme copula

Definition: MEV copulas

An extreme copula satisfies

\[C(u_1^t, \ldots, u_n^t, \ldots, u_N^t) = C^t(u_1, \ldots, u_n, \ldots, u_N) \quad \forall t > 0. \]

MEV copulas are easily recognized from

\[A(x) = -\log G(x), \]

being homogeneous of order 1, i.e., \(A(tx) = tA(x) \), for all \(t > 0 \), with \(\tilde{G}(x) = C(e^{-x_1}, \ldots, e^{-x_m}) \).

Remark

Gaussian copula is **not** an extreme value copula.
The set C of 2-copulas is compact with any of the following topologies, equivalent on C: punctual convergence, uniform convergence on $[0, 1]^2$, weak convergence of the associated probability measure.

Let $E_x(C)$ be the set of the extreme points of C. Then Choquet’s representation of C similar to the Birkhoff’s theorem:

$$C \text{ is the convex hull of } E_x(C).$$
The set \mathcal{C} of 2-copulas is compact with any of the following topologies, equivalent on \mathcal{C}: punctual convergence, uniform convergence on $[0, 1]^2$, weak convergence of the associated probability measure.

Let $\mathcal{E}_x(\mathcal{C})$ be the set of the extreme points of \mathcal{C}. Then Choquet’s representation of \mathcal{C} similar to the Birkhoff’s theorem:

\mathcal{C} is the convex hull of $\mathcal{E}_x(\mathcal{C})$.
The determination of the extreme points of C is an open problem.

Theorem

Any element of C that possesses a left or right inverse is extreme.

Examples

Ordinal sums of $C^-(u_1, u_2) = \max(u_1 + u_2 - 1, 0)$ and $C^+(u_1, u_2) = \min(u_1, u_2)$ are extreme points of C.
Extreme copulas

The determination of the extreme points of C is an open problem.

Theorem

Any element of C that possesses a left or right inverse is extreme.

Examples

Ordinal sums of $C^-(u_1, u_2) = \max(u_1 + u_2 - 1, 0)$ and $C^+(u_1, u_2) = \min(u_1, u_2)$ are extreme points of C.
Extreme copulas

The determination of the extreme points of C is an open problem.

Theorem

Any element of C that possesses a left or right inverse is extreme.

Examples

Ordinal sums of $C^-(u_1, u_2) = \max(u_1 + u_2 - 1, 0)$ and $C^+(u_1, u_2) = \min(u_1, u_2)$ are extreme points of C.
Link between extreme value copulas and the multivariate extreme value theory

Denote $\chi_{n,m}^+ = \max(X_{n,1}, \ldots, X_{n,k}, \ldots, X_{n,m})$ with \{X_{n,k}\}, k i.i.d. random variables with the same distribution. Let G_n be the marginal distribution of the univariate extreme $\chi_{n,m}^+$. Then, the joint limit distribution G of $(\chi_{1,m}^+, \ldots, \chi_{n,m}^+, \ldots, \chi_{N,m}^+)$ is such that

$$G(\chi_1^+, \ldots, \chi_n^+, \ldots, \chi_N^+) = C(G_1(\chi_1^+), \ldots, G_n(\chi_n^+), \ldots, G_N(\chi_N^+)),$$

where C is an extreme value copula and G_n a non-degenerate univariate extreme value distribution.
Denote $\chi_{n,m}^+ = \max(X_{n,1}, \ldots, X_{n,k}, \ldots, X_{n,m})$ with
$\{X_{n,k}\}$, k i.i.d. random variables with the same
distribution. Let G_n be the marginal distribution of the
univariate extreme $\chi_{n,m}^+$. Then, the joint limit
distribution G of $(\chi_{1,m}^+, \ldots, \chi_{n,m}^+, \ldots, \chi_{N,m}^+)$ is such that

$$G(\chi_{1}^+, \ldots, \chi_{n}^+, \ldots, \chi_{N}^+) = C(G_1(\chi_{1}^+), \ldots, G_n(\chi_{n}^+), \ldots, G_N(\chi_{N}^+)),$$

where C is an extreme value copula and G_n a
non-degenerate univariate extreme value distribution.
Denote $\chi_{n,m}^+ = \max(X_{n,1}, \ldots, X_{n,k}, \ldots, X_{n,m})$ with \{X_{n,k}\}, k i.i.d. random variables with the same distribution. Let G_n be the marginal distribution of the univariate extreme $\chi_{n,m}^+$. Then, the joint limit distribution G of $(\chi_{1,m}^+, \ldots, \chi_{n,m}^+, \ldots, \chi_{N,m}^+)$ is such that

$$G(\chi_{1}^+, \ldots, \chi_{n}^+, \ldots, \chi_{N}^+) = C(G_1(\chi_{1}^+), \ldots, G_n(\chi_{n}^+), \ldots, G_N(\chi_{N}^+)),$$

where C is an extreme value copula and G_n a non-degenerate univariate extreme value distribution.
Let us first consider m independent random variables $X_1, \ldots, X_k, \ldots, X_m$ with the same probability function F. The distribution of the extremes $\chi_m^+ = (\bigwedge_{k=1}^m X_k)$ is also given by Fisher-Tippett theorem:

If there exist some constants a_m and b_m and a non-degenerate limit distribution G such that

$$\lim_{m \to \infty} P \left\{ \frac{\chi_m^+ - b_m}{a_m} \leq x \right\} = G(x) \quad \forall x \in \mathbb{R}$$

then G is one of the following distributions:
Let us first consider m independent random variables $X_1, \ldots, X_k, \ldots, X_m$ with the same probability function F. The distribution of the extremes $\chi_m^+ = (\bigwedge_{k=1}^m X_k)$ is also given by Fisher-Tippett theorem:

If there exist some constants a_m and b_m and a non-degenerate limit distribution G such that

$$\lim_{m \to \infty} P \left\{ \frac{\chi_m^+ - b_m}{a_m} \leq x \right\} = G(x) \quad \forall x \in \mathbb{R}$$

then G is one of the following distributions:
Let us first consider \(m \) independent random variables \(X_1, \ldots, X_k, \ldots, X_m \) with the same probability function \(F \). The distribution of the extremes \(\chi^+_m = (\wedge_{k=1}^m X_k) \) is also given by Fisher-Tippett theorem:

\[
\lim_{m \to \infty} P\left\{ \frac{\chi^+_m - b_m}{a_m} \leq x \right\} = G(x) \quad \forall x \in \mathbb{R}
\]

then \(G \) is one of the following distributions:
Let us first consider m independent random variables $X_1, \ldots, X_k, \ldots, X_m$ with the same probability function F. The distribution of the extremes $\chi_m^+ = (\wedge_{k=1}^m X_k)$ is also given by Fisher-Tippett theorem:

If there exist some constants a_m and b_m and a non-degenerate limit distribution G such that

$$\lim_{m \to \infty} P \left\{ \frac{\chi_m^+ - b_m}{a_m} \leq x \right\} = G(x) \quad \forall x \in \mathbb{R}$$

then G is one of the following distributions:
Distributions

Fréchet

\[G(x) = \Upsilon_\alpha(x) = \begin{cases}
0 & x \leq 0 \\
\exp(-x^{-\alpha}) & x > 0
\end{cases} \]

Weibull

\[G(x) = \Psi_\alpha(x) = \begin{cases}
\exp(-(-x^\alpha)) & x \leq 0 \\
1 & x > 0
\end{cases} \]

Gumbel

\[G(x) = \Lambda(x) = \exp(-e^{-x}) \quad x \in \mathbb{R} \]

In this case, we say that \(F \) belongs to the maximum domain of attraction of \(G \), \(F \in MDA(G) \).
Distributions

Fréchet

\[G(x) = \Upsilon_\alpha(x) = \begin{cases}
0 & x \leq 0 \\
\exp(-x^{-\alpha}) & x > 0
\end{cases} \]

Weibull

\[G(x) = \Psi_\alpha(x) = \begin{cases}
\exp(-(-x^\alpha)) & x \leq 0 \\
1 & x > 0
\end{cases} \]

Gumbel

\[G(x) = \Lambda(x) = \exp(-e^{-x}) \quad x \in \mathbb{R} \]

In this case, we say that \(F \) belongs to the maximum domain of attraction of \(G \), \(F \in MDA(G) \).
Distributions

Fréchet

\[G(x) = \Upsilon_\alpha(x) = \begin{cases}
0 & x \leq 0 \\
\exp(-x^{-\alpha}) & x > 0
\end{cases} \]

Weibull

\[G(x) = \Psi_\alpha(x) = \begin{cases}
\exp(-(-x^\alpha)) & x \leq 0 \\
1 & x > 0
\end{cases} \]

Gumbel

\[G(x) = \Lambda(x) = \exp(-e^{-x}) \quad x \in \mathbb{R} \]

In this case, we say that \(F \) belongs to the maximum domain of attraction of \(G, F \in MDA(G) \).
Distributions

Fréchet

\[G(x) = \Upsilon_\alpha(x) = \begin{cases}
0 & x \leq 0 \\
\exp(-x^{-\alpha}) & x > 0
\end{cases} \]

Weibull

\[G(x) = \Psi_\alpha(x) = \begin{cases}
\exp(-(-x^\alpha)) & x \leq 0 \\
1 & x > 0
\end{cases} \]

Gumbel

\[G(x) = \Lambda(x) = \exp(-e^{-x}) \quad x \in \mathbb{R} \]

In this case, we say that \(F \) belongs to the maximum domain of attraction of \(G, F \in MDA(G) \).
Max-stable distribution

Definition

A non-degenerate rv X (the corresponding distribution or df) is called *max-stable* if it satisfies the identity in law

$$\max(X_1, \ldots, X_n) \overset{d}{=} c_n X + d_n$$

for i.i.d. X, X_1, \ldots, X_n, appropriate constants $c_n > 0$, $d_n \in \mathbb{R}$ and every $n \geq 2$.

Proposition

The class of multivariate extreme value distributions is the class of max-stable distribution functions with nondegenerate marginals.
Max-stable distribution

Definition
A non-degenerate rv X (the corresponding distribution or df) is called \textit{max-stable} if it satisfies the identity in law

$$\max(X_1, \ldots, X_n) \overset{d}{=} c_n X + d_n$$

for i.i.d. X, X_1, \ldots, X_n, appropriate constants $c_n > 0$, $d_n \in \mathbb{R}$ and every $n \geq 2$.

Proposition
The class of multivariate extreme value distributions is the class of max-stable distribution functions with nondegenerate marginals.
Our problem

Generic choice of copulas also depending on Kendall’s τ (which is also in the a parameter of the Gumbel through the link $a = \frac{1}{1-\tau}$). Therefore, we have the following situation:

$$\tau_C = 4 \int \int_{I^2} C(u, v) dC(u, v) - 1 =$$

$$= Arch.Cop. \ 1 + 4 \int_0^1 \frac{\phi(t)}{\phi'(t)} dt$$
Our problem

Generic choice of copulas also depending on Kendall’s τ (which is also in the a parameter of the Gumbel through the link $a = \frac{1}{1-\tau}$). Therefore, we have the following situation:

$$\tau_C = 4 \int \int_{l^2} C(u, v) dC(u, v) - 1 =$$

$$= Arch. Cop. 1 + 4 \int_0^1 \frac{\phi(t)}{\phi'(t)} dt$$
Our problem

Generic choice of copulas also depending on Kendall’s τ (which is also in the a parameter of the Gumbel through the link $a = \frac{1}{1-\tau}$). Therefore, we have the following situation:

$$\tau_C = 4 \int \int_{I^2} C(u, v)dC(u, v) - 1 =$$

$$= arch. cop. 1 + 4 \int_0^1 \frac{\phi(t)}{\phi'(t)} dt$$
My proposal: Diagonals

Let $C : [0, 1] \to [0, 1]$ be an n-dimensional copula, $n \geq 2$. The function

$$\delta : [0, 1] \to [0, 1], \delta(t) = C(t, \ldots, t)$$

is called a **diagonal section** or **diagonal** for short.

Kendall’s τ in connection with the general copula C.

$$\tau_C = 4 \int_0^1 \delta(t) dt - 1.$$
My proposal: Diagonals

Let $C : [0, 1] \to [0, 1]$ be an n-dimensional copula, $n \geq 2$. The function

$\delta : [0, 1] \to [0, 1]$, $\delta(t) = C(t, \ldots, t)$ is called a diagonal section or diagonal for short.

Kendall’s τ in connection with the general copula C.

$$\tau_C = 4 \int_0^1 \delta(t) dt - 1.$$
Let $C : [0, 1] \rightarrow [0, 1]$ be an n-dimensional copula, $n \geq 2$. The function
\[\delta : [0, 1] \rightarrow [0, 1], \quad \delta(t) = C(t, \ldots, t) \]
is called a diagonal section or diagonal for short.

Kendall’s τ in connection with the general copula C.

\[\tau_C = 4 \int_0^1 \delta(t)dt - 1. \]
Tail dependence

Upper tail dependence

If a bivariate copula C is such that

$$\lim_{u \to 1} \frac{\bar{C}(u, u)}{1 - u} = \lambda_U$$

exists, then C has upper tail dependence for $\lambda_U \in (0, 1]$ and no upper tail dependence for $\lambda_U = 0.$

Lower tail dependence

If a bivariate copula C is such that

$$\lim_{u \to 0} \frac{C(u, u)}{u} = \lambda_L$$

exists, then C has lower tail dependence for $\lambda_L \in (0, 1]$ and no lower tail dependence for $\lambda_L = 0.$
If a bivariate copula C is such that
\[
\lim_{u \to 1} \frac{\bar{C}(u, u)}{1 - u} = \lambda_U
\]
exists, then C has upper tail dependence for $\lambda_U \in (0, 1]$ and no upper tail dependence for $\lambda_U = 0$.

If a bivariate copula C is such that
\[
\lim_{u \to 0} \frac{C(u, u)}{u} = \lambda_L
\]
exists, then C has lower tail dependence for $\lambda_L \in (0, 1]$ and no lower tail dependence for $\lambda_L = 0$.

Tail dependence
Tail dependence: some examples

Gumbel family

The Gumbel family has upper tail dependence, with

\[\lambda_U = 2 - 2^{\frac{1}{\alpha}} \]

Clayton family

The Clayton family has lower tail dependence for \(\alpha > 0 \), since

\[\lambda_L = 2^{-\frac{1}{\alpha}} \]

Frank family

The Frank family has neither lower nor upper tail dependence.
Tail dependence: some examples

Gumbel family

The Gumbel family has upper tail dependence, with

\[\lambda_U = 2 - 2^{\frac{1}{\alpha}} \]

Clayton family

The Clayton family has lower tail dependence for \(\alpha > 0 \), since

\[\lambda_L = 2^{-\frac{1}{\alpha}} \]

Frank family

The Frank family has neither lower nor upper tail dependence.
Tail dependence: some examples

Gumbel family
The Gumbel family has upper tail dependence, with

\[\lambda_U = 2 - 2^{\frac{1}{\alpha}} \]

Clayton family
The Clayton family has lower tail dependence for \(\alpha > 0 \), since

\[\lambda_L = 2^{-\frac{1}{\alpha}} \]

Frank family
The Frank family has neither lower nor upper tail dependence.
Diagonal section of C

$$\delta_C(t) = C(t, t)$$

λ_U in connection with the general copula C by:

$$\lambda_U = 2 - \lim_{t \to 1^-} \frac{1 - C(t, t)}{1 - t} = 2 - \delta'_C(1^-).$$

$$\lambda_L = \lim_{t \to 0^+} \frac{\delta(t)}{t}$$

Remark

The measure λ is extensively used in extreme value theory. It is the probability that one variable is extreme given that the other is extreme.
Diagonal section of C

$$\delta_C(t) = C(t, t)$$

λ_U in connection with the general copula C by:

$$\lambda_U = 2 - \lim_{t \to 1^-} \frac{1 - C(t, t)}{1 - t} = 2 - \delta'_C(1^-).$$

$$\lambda_L = \lim_{t \to 0^+} \frac{\delta(t)}{t}$$

Remark

The measure λ is extensively used in extreme value theory. It is the probability that one variable is extreme given that the other is extreme.
Diagonal section of C

$$\delta_C(t) = C(t, t)$$

λ_U in connection with the general copula C by:

$$\lambda_U = 2 - \lim_{t\to 1^-} \frac{1 - C(t, t)}{1 - t} = 2 - \delta'_C(1^-).$$

$$\lambda_L = \lim_{t\to 0^+} \frac{\delta(t)}{t}$$

Remark

The measure λ is extensively used in extreme value theory. It is the probability that one variable is extreme given that the other is extreme.
Let $U = (U_1, \ldots, U_n)$ be an n-variate random variable with uniform margins, $U_i \sim U(0, 1)$, C its distribution function (hence a copula) and δ the diagonal section of C. Then δ is a distribution function of the random variable $\max\{U_1, \ldots, U_n\} = U_{n:n}$.
Application to two assets option pricing

Let Q_n and Q be the risk-neutral probability distributions of $S_n(T)$ and $S(T) = (S_1(T) \ldots S_N(T))^\top$. With arbitrage theory, we can show that

$$Q(\infty, \ldots, \infty, S_n(T), \infty, \ldots, \infty) = Q_n(S_n(T)).$$

\Rightarrow The margins of Q are RNDs Q_n of Vanilla options.

Remark

European option prices permit to characterize the probability distribution of $S_n(T)$

$$\Phi(T, K) := Q_n(K).$$
Application to two assets option pricing

Let Q_n and Q be the risk-neutral probability distributions of $S_n(T)$ and $\mathbf{S}(T) = (S_1(T) \ldots S_N(T))^\top$.

With arbitrage theory, we can show that

$$Q(+\infty, \ldots, +\infty, S_n(T), +\infty, \ldots, +\infty) = Q_n(S_n(T)).$$

\Rightarrow The margins of Q are RNDs Q_n of Vanilla options.

Remark

European option prices permit to characterize the probability distribution of $S_n(T)$

$$\Phi(T, K) := Q_n(K).$$
Bivariate case

For a call max option $\Phi(T, K)$ is the diagonal section of the copula

$$\Phi(T, K) = C(Q_1(K), Q_2(K))$$

For a spread option, we have

$$\Phi(T, K) = \int_0^{+\infty} \partial_1 C(Q_1(x), Q_2(x + K)) dQ_1(x).$$
Bivariate case

For a call max option $\Phi(T, K)$ is the **diagonal section** of the copula

$$\Phi(T, K) = C(Q_1(K), Q_2(K))$$

For a spread option, we have

$$\Phi(T, K) = \int_0^{+\infty} \partial_1 C(Q_1(x), Q_2(x + K)) dQ_1(x).$$
Concluding remarks

OPEN PROBLEMS:

1. The parametric form of both bivariate and multivariate copulas is not well tractable;

2. Current multivariate extreme value theory, from an applied point of view, only allows for a treatment of fairly low-dimensional problems.
Concluding remarks

OPEN PROBLEMS:

1. The parametric form of both bivariate and multivariate copulas is not well tractable;

2. Current multivariate extreme value theory, from an applied point of view, only allows for a treatment of fairly low-dimensional problems.
THANK YOU FOR YOUR ATTENTION!