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Known Facts..!!

T − IT Residual Pair

T - a left continuous t-norm.

IT (x , y) = sup{t ∈ [0, 1]|T (x , t) ≤ y}

IT - a fuzzy implication.

Remark

T is too stringent...

... to get IT ∈ FI(= Set of Fuzzy Implications)

Remedy

Generalise T to some operator C ...

... to get IC ∈ FI

2 / 121



Known Facts..!!

T − IT Residual Pair

T - a left continuous t-norm.

IT (x , y) = sup{t ∈ [0, 1]|T (x , t) ≤ y}

IT - a fuzzy implication.

Remark

T is too stringent...

... to get IT ∈ FI(= Set of Fuzzy Implications)

Remedy

Generalise T to some operator C ...

... to get IC ∈ FI

3 / 121



Known Facts..!!

T − IT Residual Pair

T - a left continuous t-norm.

IT (x , y) = sup{t ∈ [0, 1]|T (x , t) ≤ y}

IT - a fuzzy implication.

Remark

T is too stringent...

... to get IT ∈ FI(= Set of Fuzzy Implications)

Remedy

Generalise T to some operator C ...

... to get IC ∈ FI

4 / 121



Known Facts..!!

T − IT Residual Pair

T - a left continuous t-norm.

IT (x , y) = sup{t ∈ [0, 1]|T (x , t) ≤ y}

IT - a fuzzy implication.

Remark

T is too stringent...

... to get IT ∈ FI(= Set of Fuzzy Implications)

Remedy

Generalise T to some operator C ...

... to get IC ∈ FI

5 / 121



Generalised Operators

The Known Classes

6 / 121



Generalised Operators

Residual

C : [0, 1]2 → [0, 1] be an arbitrary function,

IC : [0, 1]2 → [0, 1], defined as . . .

IC (x , y) = sup{t ∈ [0, 1]|C (x , t) ≤ y}

Remark: For any C : [0, 1]2 → [0, 1]

IC (x , 1) = 1, x ∈ [0, 1].

IC is increasing in the second variable.

IC need not be a fuzzy implication.

C (x , y) = x , then IC = IRS , Rescher implication.

C (x , y) = y , then IC (x , y) = y , not a fuzzy implication.
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Generalised Operators

Conjunctor , [Durante F. et.al, 2007]

C : [0, 1]2 → [0, 1] be a function satisfying

C is increasing in both variables,

C (1, 1) = 1,C (0, 0) = C (0, 1) = C (1, 0) = 0.

Semi-Copula, [Durante F. et.al, 2007]

C : [0, 1]2 → [0, 1] be a function satisfying

C is increasing in both variables,

C (1, 1) = 1,C (0, 0) = C (0, 1) = C (1, 0) = 0,

C (x , 1) = C (1, x) for every x ∈ [0, 1].
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Generalised Operators

Fuzzy Conjunction, [Krol A., 2011]

C : [0, 1]2 → [0, 1] be a function satisfying

C is increasing in both variables,

C (1, 1) = 1,C (0, 0) = C (0, 1) = C (1, 0) = 0,

C (1, y) > 0 for all y > 0.
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Generalised Operators

The class C+, [Demirli K., De Baets B., 1999]

C : [0, 1]2 → [0, 1] be a function satisfying

C is increasing in the first variable,

C (0, 1) = 0,

C (1, y) > 0 for all y > 0.
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What kind of studies have been done..

[Durante F. et.al, 2007]

C− a left-continuous semicopula.

IC has (OP);

IC (1, y) = y for all y ∈ [0, 1];

IC is decreasing in the first variable;

IC is increasing in the second variable;

IC is left-continuous in its first variable;

IC is right-continuous in its second variable.
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What kind of studies have been done..

[Krol A., 2011]

C has left neutral element 1 ⇐⇒ IC has (NP);

C fulfills (EP) ⇐⇒ IC has (EP) ;

C fulfils C (x , 1) ≤ x , x ∈ [0, 1] ⇐⇒ IC has (IP) ;
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Motivation

Minor

Find the most generalised C so that IC is a
fuzzy implication.

Major

Applicability of (C , IC )− pair to Fuzzy
Relational Inference.
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Fuzzy Relational Inference

The Mechanism
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FRI - The Procedure

SISO Rule Base

If x̃ is Ai Then ỹ is Bi , i = 1, 2, . . . , n.

Relation Representation of Rules

Relate the antecedents and consequents ...

... by a fuzzy relation R ∈ F(X × Y )

Ri : X × Y → [0, 1] represents each of the rules.

Commonly Employed Relations R

Ř(x , y) =
n∨

i=1

(Ai (x) ∗ Bi (y))

R̂(x , y) =
n∧

i=1

(Ai (x)→ Bi (y))
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FRI - The Procedure

Output from Composition

Let A′ ∈ F(X ) be the given input.

Compose A′ with R to get the B ′ : B ′ = A′@R

Typical Compositions

Compositional Rule of Inference: CRI

B ′(y) =
∨
x∈X

(A′(x) ∗ R(x , y))

Bandler-Kohout Subproduct: BKS

B ′(y) =
∧
x∈X

(A′(x)→ R(x , y))
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FRI With Generalised Operators

A Generalization of CRI - ◦c
∗ = T , a t-norm

∗ = C , the generalised operator.

CRI With C-Operator

(CRI-C)

B ′ = A′ ◦c R =
∨
x∈X

C (A′(x),R(x , y)). (1)

◦c : sup−C composition.

C ∈ C : Generalised C - Operator .
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FRI With Generalised Operators

A Generalization of BKS - /c

−→= IT , the residual of a left-continuous t-norm T .

−→= Ic . the residual of the generalised operator.

BKS With IC

(BKS-IC )

B ′ = A′ /c R =
∧
x∈X

(A′(x)→cR(x , y)). (2)

/c : inf −Ic composition.

Ic : C ∈ C , Residual of the C - Operator.

Is mere substitution enough?
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Desirable Properties of an inference mechanism

Interpolativity

CRI: Perfilieva, FSS (2006).

BKS: Štěpnička & Jayaram, IEEE TFS (2010)

Continuity

CRI: Perfilieva, FSS (2006).

BKS: Štěpnička & Jayaram, IEEE TFS (2010)

Robustness

CRI: Klawonn & Castro, 1995.

BKS: Štěpnička & Jayaram, IEEE TFS (2010)
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Our Work
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Generalised Operators

The class C+, [Demirli K., De Baets B., 1999]

C : [0, 1]2 → [0, 1] be a function satisfying

C is increasing in the first variable,

C (0, 1) = 0,

C (1, y) > 0 for all y > 0.

The class C−

C : [0, 1]2 → [0, 1] be a function satisfying

C is increasing in the first variable,

C (0, 1−) = 0,

C (1, y) > 0 for all y > 0.
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Generalised Operators

The class C 0

C : [0, 1]2 → [0, 1] be a function satisfying

C is increasing in the first variable,

C (0, 1−) = 0 or C (0, 1) = 0,

C (1, y) > 0 for all y > 0.

C 0 = C− ∪ C+.
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Generalised operator a lá Implication

The class I

I : [0, 1]2 → [0, 1] be a function satisfying

I is decreasing in the first variable,

I is right continuous at (1, 0) with I (1, 0) = 0,

I (0, 0) = 1 or I (0, 0+) = 1.

I ∗ = I ∩ FI
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Class C 0 and Properties of IC
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Properties

Theorem

C ∈ C 0 =⇒ IC ∈ I ∗(= FI ∩I )

Theorem

IC 0 = {IC |C ∈ C 0} is such that...

IC 0 = I ∗.
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Generalised Operators

At a Glance!
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Class C 0 and Solvability of FREs
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Applicability of C and IC where C ∈ C 1

Fuzzy Relational Equations
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Generalised Operators

Recall: The class C 0

C : [0, 1]2 → [0, 1] be a function satisfying

C is increasing in the first variable,

C (0, 1−) = 0 or C (0, 1) = 0,

C (1, y) > 0 for all y > 0.

The class C 1

C : [0, 1]2 → [0, 1] be a function satisfying

C is increasing in both the variables,

C (0, 1) = 0,

C (1, y) > 0 for all y > 0,
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Fuzzy Relational Equations where C ∈ C 1

Generalised Composition - C - composition

Q ◦c P = S

Q ◦c P(x , z) = sup
y∈Y

C (Q(x , y),P(y , z))

Generalised Composition - Ic - composition

Q /c P = S

Q /c P(x , z) = inf
y∈Y

Ic (Q(x , y),P(y , z))
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Fuzzy Relational Equations where C ∈ C 1

Solvability
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Solvability of FRE : C ∈ C 1

Proposition

Q ◦c P = S ⇐⇒ P ⊆ Q−1 /c S , Q−1(x , y) = Q(y , x) .

Proposition

Q−1 ◦c (Q /c P) ⊆ P

S ⊆ Q /c (Q−1 ◦c S)

Solvability Of Q ◦c P = S for P

P̂ = Q−1 /c S is the largest solution.

Solvability Of Q /c P = S for P

P̌ = Q−1 ◦c S is the smallest solution.

Similar to what happens with (T , IT )− pair.
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Class C 0 and Interpolativity of FRI
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BKS with Ic-implications

Interpolativity
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Generalised Operators

The class C 2

C : [0, 1]2 → [0, 1] be a function satisfying

C is increasing in both the variables,

C (0, 1) = 0,

C (1, y) > 0 for all y > 0,

C is commutative.

Weak Law of Importation [S.Massanet, J.Torrens, 2009]

Ic(x , Ic(y , z)) = Ic(C (x , y), z)) (WLI)

Proposition [S.Massanet, J.Torrens, 2009]

C ∈ C 2 =⇒ Ic satisfies (WLI)

81 / 121



Generalised Operators

The class C 2

C : [0, 1]2 → [0, 1] be a function satisfying

C is increasing in both the variables,

C (0, 1) = 0,

C (1, y) > 0 for all y > 0,

C is commutative.

Weak Law of Importation [S.Massanet, J.Torrens, 2009]

Ic(x , Ic(y , z)) = Ic(C (x , y), z)) (WLI)

Proposition [S.Massanet, J.Torrens, 2009]

C ∈ C 2 =⇒ Ic satisfies (WLI)

82 / 121



Interpolativity FRI

Interpolativity

A = Ai =⇒ B = f @R (Ai ) = Bi

A = Ai =⇒ B = f /cR (Ai ) = Bi

Interpolativity ≈ Solvability

A /c R = B??

What is a correct model R of the given rule base for /c?, ...

... i.e., an R such that ...

Ai /c R = Bi .

Can R be any fuzzy relation F(X × Y ) ??

R̂c is the maximal solution of /c compositions.
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Interpolativity of /c , C ∈ C 2 : A Sufficient Condition

A possible relation for R : R̂c

R̂c(x , y) =
n∧

i=1

(Ai (x) −→c Bi (y)) .

Theorem

Let Ai for i = 1, 2, . . . n be normal.

R̂c is a correct model of the rule base for /c if....

...for any i , j ∈ {1 . . . n},∨
x∈X

C (Ai (x),Aj(x)) ≤
∧
y∈Y

(Bi (y)←→C Bj(y)) ,

←→C is bi-implication,

C ∈ C 2.
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Generalised Operators

The class C 3

C : [0, 1]2 → [0, 1] be a function satisfying

C is increasing in both the variables,

C (0, 1) = 0,

C (1, y) = y for all y .

C is commutative.

Note

C 3 ( C 2 ( C 1 ( C 0
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Interpolativity of /c , C ∈ C 3: An Equivalence Condition

Recall: R = R̂c

R̂c(x , y) =
n∧

i=1

(Ai (x) −→c Bi (y)) .

Theorem

Let Ai for i = 1, 2, . . . n be normal. Then TFAE,

1 R̂c is a correct model of the rule base for /c ,

2 For any i , j ∈ {1 . . . n},∨
x∈X

C (Ai (x),Aj(x)) ≤
∧
y∈Y

(Bi (y)←→C Bj(y)) ,

←→C is bi-implication,

C ∈ C 3.
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Class C 0 and Continuity

105 / 121



BKS with Ic-implications

Continuity
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Continuity of /c , C ∈ C 3

Definition

Let R ∈ F(X × Y ) be a fuzzy relation.

R is said to be a Continuous model of the rule base for /c ...

... if for each i ∈ I and for any A ∈ F(X ) ...

∧
y∈Y

[Bi (y)←→C (A /c R) (y)] ≥
∧
x∈X

[Ai (x)←→C A(x)] .

Is R̂c a continuous model for /c ?
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Continuity of /c , C ∈ C 3

Theorem

Let a SISO rule base be given. The following are equivalent:

1 R̂c is a Continuous model for /c .

2 R̂c is a Correct model for /c .
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Continuity

At a Glance!

C ∈ C 3 + C is associative = t-norm.
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Continuity

At a Glance!

C ∈ C 3 + C is associative = t-norm.
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Summary

Proposed the most general class C− for the residuals to be
fuzzy implications.

Discussed solvability of FREs w.r.to these generalised
operators.

Determined the subclasses that are suitable for FRIs.

Discussed BKS with Ic -implications.

Illustrated that some of the desirable properties of BKS are
available.

Specifically, Interpolativity, Continuity.
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Thanks for your patient listening !!!
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