Fuzzy Relational Inference based on Generalised Operators

Sayantan Mandal & Balasubramaniam Jayaram

Indian Institute of Technology Hyderabad India

January 28, 2014

$T - I_T$ Residual Pair

- T a left continuous t-norm.
- $I_T(x, y) = \sup\{t \in [0, 1] | T(x, t) \le y\}$
- I_T a fuzzy implication.

$T - I_T$ Residual Pair

- T a left continuous t-norm.
- $I_T(x, y) = \sup\{t \in [0, 1] | T(x, t) \le y\}$
- I_T a fuzzy implication.

Remark

- T is too stringent...
- ... to get $I_T \in \mathcal{FI}(=$ Set of Fuzzy Implications)

$T - I_T$ Residual Pair

- T a left continuous t-norm.
- $I_T(x, y) = \sup\{t \in [0, 1] | T(x, t) \le y\}$
- I_T a fuzzy implication.

Remark

- T is too stringent...
- ... to get $I_T \in \mathcal{FI}(=$ Set of Fuzzy Implications)

Remedy

$T - I_T$ Residual Pair

- T a left continuous t-norm.
- $I_T(x, y) = \sup\{t \in [0, 1] | T(x, t) \le y\}$
- I_T a fuzzy implication.

Remark

• T is too stringent...

• ... to get
$$I_{\mathcal{T}} \in \mathcal{FI}(=$$
 Set of Fuzzy Implications)

Remedy

• Generalise T to some operator C...

• ... to get
$$I_C \in \mathcal{FI}$$

The Known Classes

Residual

• $C \colon [0,1]^2 \to [0,1]$ be an arbitrary function,

•
$$I_C \colon [0,1]^2 \to [0,1]$$
, defined as . .

• $I_C(x, y) = \sup\{t \in [0, 1] | C(x, t) \le y\}$

Residual

• $C \colon [0,1]^2 \to [0,1]$ be an arbitrary function,

•
$$I_C \colon [0,1]^2 \to [0,1]$$
, defined as . .

• $I_C(x,y) = \sup\{t \in [0,1] | C(x,t) \le y\}$

Remark: For any $C: [0,1]^2 \rightarrow [0,1]$

• $I_C(x,1) = 1, x \in [0,1].$

• I_C is increasing in the second variable.

Residual

• $C \colon [0,1]^2 \to [0,1]$ be an arbitrary function,

•
$$I_C \colon [0,1]^2 \to [0,1]$$
, defined as . .

• $I_C(x,y) = \sup\{t \in [0,1] | C(x,t) \le y\}$

Remark: For any $C: [0,1]^2 \rightarrow [0,1]$

- $I_C(x,1) = 1, x \in [0,1].$
- I_C is increasing in the second variable.
- I_C need not be a fuzzy implication.

Residual

• ${\it C}\colon [0,1]^2 \to [0,1]$ be an arbitrary function,

•
$$I_C \colon [0,1]^2 \to [0,1]$$
, defined as . .

• $I_C(x,y) = \sup\{t \in [0,1] | C(x,t) \le y\}$

Remark: For any $C : [0,1]^2 \rightarrow [0,1]$

- $I_C(x,1) = 1, x \in [0,1].$
- I_C is increasing in the second variable.
- I_C need not be a fuzzy implication.
- C(x, y) = x, then $I_C = I_{RS}$, Rescher implication.
- C(x, y) = y, then $I_C(x, y) = y$, not a fuzzy implication.

Conjunctor , [Durante F. et.al, 2007]

- $\mathcal{C}:[0,1]^2 \rightarrow [0,1]$ be a function satisfying
 - C is increasing in both variables,
 - C(1,1) = 1, C(0,0) = C(0,1) = C(1,0) = 0.

- $C:[0,1]^2
 ightarrow [0,1]$ be a function satisfying
 - C is increasing in both variables,
 - C(1,1) = 1, C(0,0) = C(0,1) = C(1,0) = 0.

Semi-Copula, [Durante F. et.al, 2007]

- $\mathcal{C}:[0,1]^2 \rightarrow [0,1]$ be a function satisfying
 - C is increasing in both variables,
 - C(1,1) = 1, C(0,0) = C(0,1) = C(1,0) = 0.

Semi-Copula, [Durante F. et.al, 2007]

- $\mathcal{C}:[0,1]^2 \rightarrow [0,1]$ be a function satisfying
 - C is increasing in both variables,

•
$$C(1,1) = 1, C(0,0) = C(0,1) = C(1,0) = 0,$$

- $\mathcal{C}:[0,1]^2 \rightarrow [0,1]$ be a function satisfying
 - C is increasing in both variables,
 - C(1,1) = 1, C(0,0) = C(0,1) = C(1,0) = 0.

Semi-Copula, [Durante F. et.al, 2007]

- $\mathcal{C}:[0,1]^2 \rightarrow [0,1]$ be a function satisfying
 - C is increasing in both variables,
 - C(1,1) = 1, C(0,0) = C(0,1) = C(1,0) = 0,
 - C(x,1) = C(1,x) for every $x \in [0,1]$.

Fuzzy Conjunction, [Krol A., 2011]

- $\mathcal{C}:[0,1]^2 \rightarrow [0,1]$ be a function satisfying
 - C is increasing in both variables,
 - C(1,1) = 1, C(0,0) = C(0,1) = C(1,0) = 0,
 - C(1, y) > 0 for all y > 0.

The class \mathscr{C}^+ , [Demirli K., De Baets B., 1999]

The class \mathscr{C}^+ , [Demirli K., De Baets B., 1999]

- $\mathcal{C}:[0,1]^2 \rightarrow [0,1]$ be a function satisfying
 - C is increasing in the first variable,

•
$$C(0,1) = 0$$
,

•
$$C(1, y) > 0$$
 for all $y > 0$.

[Durante F. et.al, 2007]

• *C*- a left-continuous semicopula.

[Durante F. et.al, 2007]

- C- a left-continuous semicopula.
- I_C has (OP);
- $I_C(1, y) = y$ for all $y \in [0, 1];$
- I_C is decreasing in the first variable;
- I_C is increasing in the second variable;
- *I_C* is left-continuous in its first variable;
- I_C is right-continuous in its second variable.

[Krol A., 2011]

- C has left neutral element $1 \iff I_C$ has (NP);
- C fulfills (EP) \iff I_C has (EP) ;
- C fulfils $C(x,1) \leq x$, $x \in [0,1] \iff I_C$ has (IP) ;
- C has right neutral element $1 \iff I_C$ has (OP) .

Motivation

Minor

Find the most generalised C so that I_C is a fuzzy implication.

Minor

Find the most generalised C so that I_C is a fuzzy implication.

Fuzzy Relational Inference

The Mechanism

SISO Rule Base

SISO Rule Base

If
$$\tilde{x}$$
 is A_i Then \tilde{y} is B_i , $i = 1, 2, \ldots, n$.

SISO Rule Base

If
$$\tilde{x}$$
 is A_i Then \tilde{y} is B_i , $i = 1, 2, \ldots, n$.

Relation Representation of Rules

SISO Rule Base

If
$$\tilde{x}$$
 is A_i Then \tilde{y} is B_i , $i = 1, 2, \ldots, n$.

Relation Representation of Rules

- Relate the antecedents and consequents ...
- ... by a fuzzy relation $R \in \mathcal{F}(X \times Y)$
- $R_i: X \times Y \rightarrow [0,1]$ represents each of the rules.

SISO Rule Base

If
$$\tilde{x}$$
 is A_i Then \tilde{y} is B_i , $i = 1, 2, \ldots, n$.

Relation Representation of Rules

- Relate the antecedents and consequents ...
- ... by a fuzzy relation $R \in \mathcal{F}(X \times Y)$
- $R_i: X \times Y \rightarrow [0,1]$ represents each of the rules.

Commonly Employed Relations R

$$\check{R}(x,y) = \bigvee_{i=1}^{n} (A_i(x) * B_i(y))$$
$$\hat{R}(x,y) = \bigwedge_{i=1}^{n} (A_i(x) \to B_i(y))$$

Output from Composition

- Let $A' \in \mathcal{F}(X)$ be the given input.
- Compose A' with R to get the B' : B' = A'@R

Output from Composition

- Let $A' \in \mathcal{F}(X)$ be the given input.
- Compose A' with R to get the B' : B' = A'@R

Typical Compositions

• Compositional Rule of Inference: CRI

$$B'(y) = \bigvee_{x \in X} (A'(x) * R(x, y))$$

Bandler-Kohout Subproduct: BKS

$$B'(y) = \bigwedge_{x \in X} (A'(x) \to R(x,y))$$
- * = T, a t-norm
- * = C, the generalised operator.

- * = T, a t-norm
- * = C, the generalised operator.

CRI With C-Operator

- * = T, a t-norm
- * = C, the generalised operator.

CRI With C-Operator

• (CRI-C)

$$B' = A' \circ_c R = \bigvee_{x \in X} C(A'(x), R(x, y)).$$
(1)

- * = T, a t-norm
- * = C, the generalised operator.

CRI With C-Operator

• (CRI-C)

$$B' = A' \circ_c R = \bigvee_{x \in X} C(A'(x), R(x, y)).$$
(1)

- \circ_c : sup -C composition.
- $C \in \mathscr{C}$: Generalised C Operator .

A Generalization of BKS - \triangleleft_c

- $\longrightarrow = I_T$, the residual of a left-continuous t-norm T.
- $\longrightarrow = I_c$. the residual of the generalised operator.

A Generalization of BKS - \triangleleft_c

- $\longrightarrow = I_T$, the residual of a left-continuous t-norm T.
- $\longrightarrow = I_c$. the residual of the generalised operator.

BKS With I_C

A Generalization of BKS - \triangleleft_c

- $\longrightarrow = I_T$, the residual of a left-continuous t-norm T.
- $\longrightarrow = I_c$. the residual of the generalised operator.

BKS With I_C

• (BKS-*I*_C)

$$B' = A' \triangleleft_c R = \bigwedge_{x \in X} (A'(x) \rightarrow_c R(x, y)).$$

A Generalization of BKS - \triangleleft_c

- $\longrightarrow = I_T$, the residual of a left-continuous t-norm T.
- $\longrightarrow = I_c$. the residual of the generalised operator.

BKS With I_C

• (BKS-/_C)

$$B' = A' \triangleleft_c R = \bigwedge_{x \in X} (A'(x) \rightarrow_c R(x, y)).$$
(2)

- \triangleleft_c : inf $-I_c$ composition.
- $I_c : C \in \mathscr{C}$, Residual of the C Operator.

A Generalization of BKS - \triangleleft_c

- $\longrightarrow = I_T$, the residual of a left-continuous t-norm T.
- $\longrightarrow = I_c$. the residual of the generalised operator.

BKS With I_C

• (BKS-*I*_C)

$$B' = A' \triangleleft_c R = \bigwedge_{x \in X} (A'(x) \rightarrow_c R(x, y)).$$
(2)

- \triangleleft_c : inf $-I_c$ composition.
- $I_c : C \in \mathscr{C}$, Residual of the C Operator.

Is mere substitution enough?

Interpolativity

Interpolativity

- CRI: Perfilieva, FSS (2006).
- BKS: Štěpnička & Jayaram, IEEE TFS (2010)

Interpolativity

- CRI: Perfilieva, FSS (2006).
- BKS: Štěpnička & Jayaram, IEEE TFS (2010)

Continuity

Interpolativity

- CRI: Perfilieva, FSS (2006).
- BKS: Štěpnička & Jayaram, IEEE TFS (2010)

Continuity

- CRI: Perfilieva, FSS (2006).
- BKS: Štěpnička & Jayaram, IEEE TFS (2010)

Interpolativity

- CRI: Perfilieva, FSS (2006).
- BKS: Štěpnička & Jayaram, IEEE TFS (2010)

Continuity

- CRI: Perfilieva, FSS (2006).
- BKS: Štěpnička & Jayaram, IEEE TFS (2010)

Robustness

Interpolativity

- CRI: Perfilieva, FSS (2006).
- BKS: Štěpnička & Jayaram, IEEE TFS (2010)

Continuity

- CRI: Perfilieva, FSS (2006).
- BKS: Štěpnička & Jayaram, IEEE TFS (2010)

Robustness

- CRI: Klawonn & Castro, 1995.
- BKS: Štěpnička & Jayaram, IEEE TFS (2010)

Our Work

Generalised Operators

The class \mathscr{C}^+ , [Demirli K., De Baets B., 1999]

- $\mathcal{C}:[0,1]^2 \rightarrow [0,1]$ be a function satisfying
 - C is increasing in the first variable,

•
$$C(0,1) = 0$$
,

Generalised Operators

The class \mathscr{C}^+ , [Demirli K., De Baets B., 1999]

- $\mathcal{C}:[0,1]^2 \rightarrow [0,1]$ be a function satisfying
 - C is increasing in the first variable,

•
$$C(0,1) = 0$$
,

The class \mathscr{C}^-

- $C:[0,1]^2
 ightarrow [0,1]$ be a function satisfying
 - C is increasing in the first variable,
 - $C(0, 1^{-}) = 0$,
 - C(1, y) > 0 for all y > 0.

The class \mathscr{C}^0

- $\mathcal{C}:[0,1]^2 \rightarrow [0,1]$ be a function satisfying
 - C is increasing in the first variable,
 - $C(0,1^-) = 0$ or C(0,1) = 0,
 - C(1, y) > 0 for all y > 0.

The class \mathscr{C}^0

 $\mathcal{C}:[0,1]^2 \rightarrow [0,1]$ be a function satisfying

- C is increasing in the first variable,
- $C(0,1^-) = 0$ or C(0,1) = 0,
- C(1, y) > 0 for all y > 0.

$$\mathscr{C}^0 = \mathscr{C}^- \cup \mathscr{C}^+.$$

Generalised operator a lá Implication

The class ${\mathscr I}$

- $I:[0,1]^2 \rightarrow [0,1]$ be a function satisfying
 - I is decreasing in the first variable,
 - I is right continuous at (1,0) with I(1,0) = 0,

•
$$I(0,0) = 1$$
 or $I(0,0^+) = 1$.

The class \mathscr{I}

- $I:[0,1]^2 \rightarrow [0,1]$ be a function satisfying
 - I is decreasing in the first variable,
 - I is right continuous at (1,0) with I(1,0) = 0,

•
$$I(0,0) = 1$$
 or $I(0,0^+) = 1$.

$$\mathscr{I}^* = \mathscr{I} \cap \mathcal{FI}$$

Class \mathscr{C}^0 and Properties of I_C

Theorem

$$C \in \mathscr{C}^0 \Longrightarrow I_C \in \mathscr{I}^* (= \mathcal{FI} \cap \mathscr{I})$$

Theorem

$$C \in \mathscr{C}^0 \Longrightarrow I_C \in \mathscr{I}^* (= \mathcal{FI} \cap \mathscr{I})$$

Theorem

$$\mathscr{I}_{\mathscr{C}^0} = \{I_C | C \in \mathscr{C}^0\}$$
 is such that...

Theorem

$$C \in \mathscr{C}^0 \Longrightarrow I_C \in \mathscr{I}^* (= \mathcal{FI} \cap \mathscr{I})$$

Theorem

$$\mathscr{I}_{\mathscr{C}^0} = \{I_C | C \in \mathscr{C}^0\}$$
 is such that...

 $\mathscr{I}_{\mathscr{C}^0}=\mathscr{I}^*.$

Generalised Operators

Generalised Operators

Class \mathscr{C}^0 and Solvability of FREs

Applicability of *C* and I_C where $C \in \mathscr{C}^1$ Fuzzy Relational Equations

Generalised Operators

Recall: The class \mathscr{C}^0

- $\mathcal{C}:[0,1]^2 \rightarrow [0,1]$ be a function satisfying
 - C is increasing in the first variable,
 - $C(0,1^-) = 0$ or C(0,1) = 0,
 - C(1, y) > 0 for all y > 0.

Generalised Operators

Recall: The class \mathscr{C}^0

$$\mathcal{C}:[0,1]^2 \rightarrow [0,1]$$
 be a function satisfying

- C is increasing in the first variable,
- $C(0,1^-) = 0$ or C(0,1) = 0,
- C(1, y) > 0 for all y > 0.

The class 🌮

- $\mathcal{C}:[0,1]^2 \rightarrow [0,1]$ be a function satisfying
 - C is increasing in **both** the variables,
 - C(0,1) = 0,
 - C(1, y) > 0 for all y > 0,

Fuzzy Relational Equations where $\mathcal{C}\in \mathscr{C}^1$

Generalised Composition - C- composition

$$Q \circ_c P = S$$

$$Q \circ_c P(x,z) = \sup_{y \in Y} C(Q(x,y), P(y,z))$$

Generalised Composition - I_{c} - composition

$$Q \triangleleft_c P = S$$

$$Q \triangleleft_c P(x,z) = \inf_{y \in Y} I_c(Q(x,y), P(y,z))$$

Fuzzy Relational Equations where $C \in \mathscr{C}^1$ Solvability

Solvability of FRE : $C \in \mathscr{C}^1$
Proposition

$$Q \circ_c P = S \iff P \subseteq Q^{-1} \triangleleft_c S, \quad Q^{-1}(x,y) = Q(y,x) .$$

Proposition

•
$$Q^{-1} \circ_c (Q \triangleleft_c P) \subseteq P$$

• $S \subseteq Q \triangleleft_c (Q^{-1} \circ_c S)$

Proposition

$$Q \circ_c P = S \Longleftrightarrow P \subseteq Q^{-1} \triangleleft_c S$$
, $Q^{-1}(x, y) = Q(y, x)$.

Proposition

•
$$Q^{-1} \circ_c (Q \triangleleft_c P) \subseteq P$$

• $S \subseteq Q \triangleleft_c (Q^{-1} \circ_c S)$

Solvability Of $Q \circ_c P = S$ for P

$$\hat{P} = Q^{-1} \triangleleft_c S$$
 is the **largest** solution.

Proposition

$$Q \circ_c P = S \Longleftrightarrow P \subseteq Q^{-1} \triangleleft_c S$$
, $Q^{-1}(x, y) = Q(y, x)$.

Proposition

•
$$Q^{-1} \circ_c (Q \triangleleft_c P) \subseteq P$$

• $S \subseteq Q \triangleleft_c (Q^{-1} \circ_c S)$

Solvability Of $Q \circ_c P = S$ for P

$$\hat{P} = Q^{-1} \triangleleft_c S$$
 is the **largest** solution.

Solvability Of $Q \triangleleft_c P = S$ for P

 $\check{P} = Q^{-1} \circ_c S$ is the **smallest** solution.

Proposition

$$Q \circ_c P = S \Longleftrightarrow P \subseteq Q^{-1} \triangleleft_c S$$
, $Q^{-1}(x, y) = Q(y, x)$.

Proposition

•
$$Q^{-1} \circ_c (Q \triangleleft_c P) \subseteq P$$

• $S \subseteq Q \triangleleft_c (Q^{-1} \circ_c S)$

Solvability Of $Q \circ_c P = S$ for P

$$\hat{P} = Q^{-1} \triangleleft_c S$$
 is the **largest** solution.

Solvability Of $Q \triangleleft_c P = S$ for P

 $\check{P} = Q^{-1} \circ_c S$ is the **smallest** solution.

Similar to what happens with (T, I_T) – pair.

Class \mathscr{C}^0 and Interpolativity of FRI

BKS with *l_c*-implications

The class 🕯

- $\mathcal{C}:[0,1]^2 \rightarrow [0,1]$ be a function satisfying
 - C is increasing in both the variables,

•
$$C(0,1) = 0$$
,

• C is commutative.

The class 🕯

- $\mathcal{C}:[0,1]^2 \rightarrow [0,1]$ be a function satisfying
 - C is increasing in both the variables,

•
$$C(0,1) = 0$$
,

• C is commutative.

Weak Law of Importation [S.Massanet, J.Torrens, 2009] $I_c(x, I_c(y, z)) = I_c(C(x, y), z))$ (WLI)

Proposition [S.Massanet, J.Torrens, 2009]

 $C \in \mathscr{C}^2 \Longrightarrow I_c$ satisfies (WLI)

$$A = A_i$$

$$A = A_i \Longrightarrow$$

$$A = A_i \Longrightarrow B = f_R^{@}(A_i) = B_i$$

$$A = A_i \Longrightarrow B = f_R^{@}(A_i) = B_i$$
$$A = A_i \Longrightarrow B = f_R^{\triangleleft_c}(A_i) = B_i$$

Interpolativity

$$A = A_i \Longrightarrow B = f_R^{\textcircled{0}}(A_i) = B_i$$
$$A = A_i \Longrightarrow B = f_R^{\triangleleft_c}(A_i) = B_i$$

Interpolativity \approx Solvability

• $A \triangleleft_c R = B??$

Interpolativity

$$A = A_i \Longrightarrow B = f_R^{@}(A_i) = B_i$$
$$A = A_i \Longrightarrow B = f_R^{\triangleleft_c}(A_i) = B_i$$

Interpolativity \approx Solvability

- $A \triangleleft_c R = B??$
- What is a **correct** model *R* of the given rule base for \triangleleft_c ?, ...

Interpolativity

$$A = A_i \Longrightarrow B = f_R^{@}(A_i) = B_i$$
$$A = A_i \Longrightarrow B = f_R^{\triangleleft_c}(A_i) = B_i$$

Interpolativity \approx Solvability

- $A \triangleleft_c R = B??$
- What is a **correct** model *R* of the given rule base for \triangleleft_c ?, ...
- ... i.e., an R such that ...

$$A_i \triangleleft_c R = B_i$$
.

Interpolativity

$$A = A_i \Longrightarrow B = f_R^{@}(A_i) = B_i$$
$$A = A_i \Longrightarrow B = f_R^{\triangleleft_c}(A_i) = B_i$$

Interpolativity \approx Solvability

- $A \triangleleft_c R = B??$
- What is a **correct** model *R* of the given rule base for \triangleleft_c ?, ...
- ... i.e., an R such that ...

$$A_i \triangleleft_c R = B_i$$
.

• Can R be any fuzzy relation $\mathcal{F}(X \times Y)$??

Interpolativity

$$A = A_i \Longrightarrow B = f_R^{@}(A_i) = B_i$$
$$A = A_i \Longrightarrow B = f_R^{\triangleleft_c}(A_i) = B_i$$

Interpolativity \approx Solvability

- $A \triangleleft_c R = B??$
- What is a **correct** model *R* of the given rule base for \triangleleft_c ?, ...
- ... i.e., an R such that ...

$$A_i \triangleleft_c R = B_i$$
.

- Can R be any fuzzy relation $\mathcal{F}(X \times Y)$??
- \hat{R}_c is the maximal solution of \triangleleft_c compositions.

Interpolativity of \triangleleft_c , $C \in \mathscr{C}^2$: A Sufficient Condition

Interpolativity of \triangleleft_c , $C \in \mathscr{C}^2$: A Sufficient Condition

A possible relation for $R : \hat{R_c}$

$$\hat{R}_c(x,y) = \bigwedge_{i=1}^n (A_i(x) \longrightarrow_c B_i(y)) .$$

Interpolativity of \triangleleft_c , $C \in \mathscr{C}^2$: A Sufficient Condition

A possible relation for $R : \hat{R}_c$

$$\hat{R}_c(x,y) = \bigwedge_{i=1}^n (A_i(x) \longrightarrow_c B_i(y)) .$$

Theorem

Let A_i for $i = 1, 2, \ldots n$ be normal.

- \hat{R}_c is a **correct** model of the rule base for \triangleleft_c **if**....
- ... for any $i, j \in \{1 ... n\}$,

$$\bigvee_{x\in X} C\left(A_i(x), A_j(x)
ight) \leq \bigwedge_{y\in Y} \left(B_i(y) \longleftrightarrow_{\mathbf{C}} B_j(y)
ight) ,$$

- $\longleftrightarrow_{\mathbf{C}}$ is bi-implication,
- $C \in \mathscr{C}^2$.

The class 🖌

- $\mathcal{C}:[0,1]^2 \rightarrow [0,1]$ be a function satisfying
 - C is increasing in both the variables,
 - C(0,1) = 0,
 - C(1, y) = y for all y.
 - C is commutative.

The class 😮

- $\mathcal{C}:[0,1]^2 \rightarrow [0,1]$ be a function satisfying
 - C is increasing in both the variables,

•
$$C(0,1) = 0$$
,

- C(1, y) = y for all y.
- C is commutative.

Note

$$\mathscr{C}^3 \subsetneq \mathscr{C}^2 \subsetneq \mathscr{C}^1 \subsetneq \mathscr{C}^0$$

Interpolativity of \triangleleft_c , $C \in \mathscr{C}^3$: An Equivalence Condition

Interpolativity of \triangleleft_c , $C \in \mathscr{C}^3$: An Equivalence Condition

Recall: $R = \hat{R}_c$

$$\hat{R}_c(x,y) = \bigwedge_{i=1}^n (A_i(x) \longrightarrow_c B_i(y)) .$$

Interpolativity of \triangleleft_c , $C \in \mathscr{C}^3$: An Equivalence Condition

Recall: $R = \hat{R}_c$

$$\hat{R}_c(x,y) = \bigwedge_{i=1}^n (A_i(x) \longrightarrow_c B_i(y)) .$$

Theorem

Let A_i for i = 1, 2, ..., n be normal. Then TFAE,

(1) \hat{R}_c is a **correct** model of the rule base for \triangleleft_c ,

2 For any
$$i, j \in \{1 ... n\}$$
,

$$\bigvee_{x\in X} C\left(A_i(x), A_j(x)
ight) \leq \bigwedge_{y\in Y} \left(B_i(y) \longleftrightarrow_{\mathsf{C}} B_j(y)
ight) \, ,$$

• \longleftrightarrow_{C} is bi-implication,

• $C \in \mathscr{C}^3$.

Class \mathscr{C}^0 and Continuity

BKS with *l_c*-implications Continuity

Definition

- Let $R \in \mathcal{F}(X \times Y)$ be a fuzzy relation.
- *R* is said to be a **Continuous** model of the rule base for $\triangleleft_{c...}$
- ... if for each $i \in I$ and for any $A \in \mathcal{F}(X)$...

$$\bigwedge_{y\in Y} \left[B_i(y)\longleftrightarrow_{\mathbf{C}} (A\triangleleft_c R)(y)\right] \geq \bigwedge_{x\in X} \left[A_i(x)\longleftrightarrow_{\mathbf{C}} A(x)\right] \ .$$
Definition

- Let $R \in \mathcal{F}(X \times Y)$ be a fuzzy relation.
- *R* is said to be a **Continuous** model of the rule base for $\triangleleft_{c...}$
- ... if for each $i \in I$ and for any $A \in \mathcal{F}(X)$...

$$\bigwedge_{y\in Y} \left[B_i(y)\longleftrightarrow_{\mathbf{C}} (A\triangleleft_c R)(y)\right] \geq \bigwedge_{x\in X} \left[A_i(x)\longleftrightarrow_{\mathbf{C}} A(x)\right] \ .$$

Is \hat{R}_c a continuous model for \triangleleft_c ?

Theorem

Let a SISO rule base be given. The following are equivalent:

- \hat{R}_c is a **Continuous** model for \triangleleft_c .
- **2** \hat{R}_c is a **Correct** model for \triangleleft_c .

Continuity

At a Glance!

Continuity

At a Glance!

$C \in \mathscr{C}^3 + C$ is associative = t-norm.

• Proposed the most general class \mathcal{C}^- for the residuals to be fuzzy implications.

- Proposed the most general class \mathcal{C}^- for the residuals to be fuzzy implications.
- Discussed solvability of FREs w.r.to these generalised operators.

- Proposed the most general class C^- for the residuals to be fuzzy implications.
- Discussed solvability of FREs w.r.to these generalised operators.
- Determined the subclasses that are suitable for FRIs.

- Proposed the most general class C^- for the residuals to be fuzzy implications.
- Discussed solvability of FREs w.r.to these generalised operators.
- Determined the subclasses that are suitable for FRIs.
- Discussed **BKS** with *I_c*-implications.

- Proposed the most general class C^- for the residuals to be fuzzy implications.
- Discussed solvability of FREs w.r.to these generalised operators.
- Determined the subclasses that are suitable for FRIs.
- Discussed **BKS** with *I_c*-implications.
- Illustrated that some of the desirable properties of **BKS** are available.

- Proposed the most general class C^- for the residuals to be fuzzy implications.
- Discussed solvability of FREs w.r.to these generalised operators.
- Determined the subclasses that are suitable for FRIs.
- Discussed **BKS** with *I_c*-implications.
- Illustrated that some of the desirable properties of **BKS** are available.
- Specifically, Interpolativity, Continuity.

Thanks for your patient listening !!!